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Abstract: The digital transformation of agriculture has evolved various aspects of management into 

artificial intelligent systems for the sake of making value from the ever-increasing data originated 

from numerous sources. A subset of artificial intelligence, namely machine learning, has a consid-

erable potential to handle numerous challenges in the establishment of knowledge-based farming 

systems. The present study aims at shedding light on machine learning in agriculture by thoroughly 

reviewing the recent scholarly literature based on keywords’ combinations of “machine learning” 

along with “crop management”, “water management”, “soil management”, and “livestock manage-

ment”, and in accordance with PRISMA guidelines. Only journal papers were considered eligible 

that were published within 2018–2020. The results indicated that this topic pertains to different dis-

ciplines that favour convergence research at the international level. Furthermore, crop management 

was observed to be at the centre of attention. A plethora of machine learning algorithms were used, 

with those belonging to Artificial Neural Networks being more efficient. In addition, maize and 

wheat as well as cattle and sheep were the most investigated crops and animals, respectively. Fi-

nally, a variety of sensors, attached on satellites and unmanned ground and aerial vehicles, have 

been utilized as a means of getting reliable input data for the data analyses. It is anticipated that this 

study will constitute a beneficial guide to all stakeholders towards enhancing awareness of the po-

tential advantages of using machine learning in agriculture and contributing to a more systematic 

research on this topic. 

Keywords: machine learning; crop management; water management; soil management; livestock 

management; artificial intelligence; precision agriculture; precision livestock farming 

 

1. Introduction 

1.1. General Context of Machine Learning in Agriculture 

Modern agriculture has to cope with several challenges, including the increasing call 

for food, as a consequence of the global explosion of earth’s population, climate changes 

[1], natural resources depletion [2], alteration of dietary choices [3], as well as safety and 

health concerns [4]. As a means of addressing the above issues, placing pressure on the 

agricultural sector, there exists an urgent necessity for optimizing the effectiveness of ag-

ricultural practices by, simultaneously, lessening the environmental burden. In particular, 

these two essentials have driven the transformation of agriculture into precision agricul-

ture. This modernization of farming has a great potential to assure sustainability, maximal 

productivity, and a safe environment [5]. In general, smart farming is based on four key 
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pillars in order to deal with the increasing needs; (a) optimal natural resources’ manage-

ment, (b) conservation of the ecosystem, (c) development of adequate services, and (d) 

utilization of modern technologies [6]. An essential prerequisite of modern agriculture is, 

definitely, the adoption of Information and Communication Technology (ICT), which is 

promoted by policy-makers around the world. ICT can indicatively include farm manage-

ment information systems, humidity and soil sensors, accelerometers, wireless sensor net-

works, cameras, drones, low-cost satellites, online services, and automated guided vehi-

cles [7]. 

The large volume of data, which is produced by digital technologies and usually re-

ferred to as “big data”, needs large storage capabilities in addition to editing, analyzing, 

and interpreting. The latter has a considerable potential to add value for society, environ-

ment, and decision-makers [8]. Nevertheless, big data encompass challenges on account 

of their so-called “5-V” requirements; (a) Volume, (b) Variety, (c) Velocity, (d) Veracity, 

and (e) Value [9]. The conventional data processing techniques are incapable of meeting 

the constantly growing demands in the new era of smart farming, which is an important 

obstacle for extracting valuable information from field data [10]. To that end, Machine 

Learning (ML) has emerged, which is a subset of artificial intelligence [11], by taking ad-

vantage of the exponential computational power capacity growth. 

There is a plethora of applications of ML in agriculture. According to the recent liter-

ature survey by Liakos et al. [12], regarding the time period of 2004 to 2018, four generic 

categories were identified (Figure 1). These categories refer to crop, water, soil, and live-

stock management. In particular, as far as crop management is concerned, it represented 

the majority of the articles amongst all categories (61% of the total articles) and was further 

sub-divided into: 

 Yield prediction; 

 Disease detection; 

 Weed detection; 

 Crop recognition; 

 Crop quality. 

The generic categories dealing with the management of water and soil were found to 

be less investigated, corresponding cumulatively to 20% of the total number of papers 

(10% for each category). 

Finally, two main sub-categories were identified for the livestock-related applica-

tions corresponding to a total 19% of journal papers: 

 Livestock production; 

 Animal welfare. 
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Figure 1. The four generic categories in agriculture exploiting machine learning techniques, as 

presented in [12]. 

1.2. Open Problems Associated with Machine Learning in Agriculture 

Due to the broad range of applications of ML in agriculture, several reviews have 

been published in this research field. The majority of these review studies have been ded-

icated to crop disease detection [13–16], weed detection [17,18], yield prediction [19,20], 

crop recognition [21,22], water management [23,24], animal welfare [25,26], and livestock 

production [27,28]. Furthermore, other studies were concerned with the implementation 

of ML methods regarding the main grain crops by investigating different aspects includ-

ing quality and disease detection [29]. Finally, focus has been paid on big data analysis 

using ML, aiming at finding out real-life problems that originated from smart farming 

[30], or dealing with methods to analyze hyperspectral and multispectral data [31]. 

Although ML in agriculture has made considerable progress, several open problems 

remain, which have some common points of reference, despite the fact that the topic co-

vers a variety of sub-fields. According to [23,24,28,32], the main problems are associated 

with the implementation of sensors on farms for numerous reasons, including high costs 

of ICT, traditional practices, and lack of information. In addition, the majority of the avail-

able datasets do not reflect realistic cases, since they are normally generated by a few peo-

ple getting images or specimens in a short time period and from a limited area [15,21–23]. 

Consequently, more practical datasets coming from fields are required [18,20]. Moreover, 

the need for more efficient ML algorithms and scalable computational architectures has 

been pointed out, which can lead to rapid information processing [18,22,23,31]. The chal-

lenging background, when it comes to obtaining images, video, or audio recordings, has 

also been mentioned owing to changes in lighting [16,29], blind spots of cameras, envi-

ronmental noise, and simultaneous vocalizations [25]. Another important open problem 

is that the vast majority of farmers are non-experts in ML and, thus, they cannot fully 

comprehend the underlying patterns obtained by ML algorithms. For this reason, more 

user-friendly systems should be developed. In particular, simple systems, being easy to 

understand and operate, would be valuable, as for example a visualization tool with a 

user-friendly interface for the correct presentation and manipulation of data [25,30,31]. 

Taking into account that farmers are getting more and more familiar with smartphones, 

specific smartphone applications have been proposed as a possible solution to address the 

above challenge [15,16,21]. Last but not least, the development of efficient ML techniques 
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by incorporating expert knowledge from different stakeholders should be fostered, par-

ticularly regarding computing science, agriculture, and the private sector, as a means of 

designing realistic solutions [19,22,24,33]. As stated in [12], currently, all of the efforts per-

tain to individual solutions, which are not always connected with the process of decision-

making, as seen for example in other domains. 

1.3. Aim of the Present Study 

As pointed out above, because of the multiple applications of ML in agriculture, sev-

eral review studies have been published recently. However, these studies usually concen-

trate purely on one sub-field of agricultural production. Motivated by the current tremen-

dous progress in ML, the increasing interest worldwide, and its impact in various do-

mains of agriculture, a systematic bibliographic survey is presented on the range of the 

categories proposed in [12], which were summarized in Figure 1. In particular, we focus 

on reviewing the relevant literature of the last three years (2018–2020) for the intention of 

providing an updated view of ML applications in agricultural systems. In fact, this work 

is an updated continuation of the work presented at [12]; following, consequently, exactly 

the same framework and inclusion criteria. As a consequence, the scholarly literature was 

screened in order to cover a broad spectrum of important features for capturing the cur-

rent progress and trends, including the identification of: (a) the research areas which are 

interested mostly in ML in agriculture along with the geographical distribution of the con-

tributing organizations, (b) the most efficient ML models, (c) the most investigated crops 

and animals, and (d) the most implemented features and technologies. 

As will be discussed next, overall, a 745% increase in the number of journal papers 

took place in the last three years as compared to [12], thus justifying the need for a new 

updated review on the specific topic. Moreover, crop management remained as the most 

investigated topic, with a number of ML algorithms having been exploited as a means of 

tackling the heterogeneous data that originated from agricultural fields. As compared to 

[12], more crop and animal species have been investigated by using an extensive range of 

input parameters coming mainly from remote sensing, such as satellites and drones. In 

addition, people from different research fields have dealt with ML in agriculture, hence, 

contributing to the remarkable advancement in this field. 

1.4. Outline of the Paper 

The remainder of this paper is structured as follows. The second section briefly de-

scribes the fundamentals of ML along with the subject of the four generic categories for 

the sake of better comprehension of the scope of the present study. The implemented 

methodology, along with the inclusive criteria and the search engines, is analyzed in the 

third section. The main performance metrics, which were used in the selected articles, are 

also presented in this section. The main results are shown in the fourth section in the form 

of bar and pie charts, while in the fifth section, the main conclusions are drawn by also 

discussing the results from a broader perspective. Finally, all the selected journal papers 

are summarized in Tables A1–A9, in accordance with their field of application, and pre-

sented in the Appendix A, together with Tables A10 and A11 that contain commonly used 

abbreviations, with the intention of not disrupting the flow of the main text. 

2. Background 

2.1. Fundamentals of Machine Learning: A Brief Οverview 

In general, the objective of ML algorithms is to optimize the performance of a task, 

via exploiting examples or past experience. In particular, ML can generate efficient rela-

tionships regarding data inputs and reconstruct a knowledge scheme. In this data-driven 

methodology, the more data are used, the better ML works. This is similar to how well a 

human being performs a particular task by gaining more experience [34]. The central out-

come of ML is a measure of generalizability; the degree to which the ML algorithm has 
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the ability to provide correct predictions, when new data are presented, on the basis of 

learned rules originated from preceding exposure to similar data [35]. More specifically, 

data involve a set of examples, which are described by a group of characteristics, usually 

called features. Broadly speaking, ML systems operate at two processes, namely the learn-

ing (used for training) and testing. In order to facilitate the former process, these features 

commonly form a feature vector that can be binary, numeric, ordinal, or nominal [36]. This 

vector is utilized as an input within the learning phase. In brief, by relying on training 

data, within the learning phase, the machine learns to perform the task from experience. 

Once the learning performance reaches a satisfactory point (expressed through mathemat-

ical and statistical relationships), it ends. Subsequently, the model that was developed 

through the training process can be used to classify, cluster, or predict. 

An overview of a typical ML system is illustrated in Figure 2. With the intention of 

forming the derived complex raw data into a suitable state, a pre-processing effort is re-

quired. This usually includes: (a) data cleaning for removing inconsistent or missing items 

and noise, (b) data integration, when many data sources exist and (c) data transformation, 

such as normalization and discretization [37]. The extraction/selection feature aims at cre-

ating or/and identifying the most informative subset of features in which, subsequently, 

the learning model is going to be implemented throughout the training phase [38]. Re-

garding the feedback loop, which is depicted in Figure 2, it serves for adjustments per-

taining to the feature extraction/selection unit as well as the pre-processing one that fur-

ther improves the overall learning model’s performance. During the phase of testing, pre-

viously unseen samples are imported to the trained model, which are usually represented 

as feature vectors. Finally, an appropriate decision is made by the model (for example, 

classification or regression) in reliance of the features existing in each sample. Deep learn-

ing, a subfield of ML, utilizes an alternative architecture via shifting the process of con-

verting raw data to features (feature engineering) to the corresponding learning system. 

Consequently, the feature extraction/selection unit is absent, resulting in a fully trainable 

system; it starts from a raw input and ends with the desired output [39,40]. 

 

Figure 2. A graphical illustration of a typical machine learning system. 

Based on the learning type, ML can be classified according to the relative literature 

[41,42] as: 

 Supervised learning: The input and output are known and the machine tries to find 

the optimal way to reach an output given an input; 
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 Unsupervised learning: No labels are provided, leaving the learning algorithm itself 

to generate structure within its input; 

 Semi-supervised learning: Input data constitute a mixture of labeled and non-labeled 

data; 

 Reinforcement learning: Decisions are made towards finding out actions that can 

lead to the more positive outcome, while it is solely determined by trial and error 

method and delayed outcome. 

Nowadays, ML is used in facilitating several management aspects in agriculture [12] 

and in a plethora of other applications, such as image recognition [43], speech recognition 

[44], autonomous driving [45], credit card fraud detection [46], stock market forecasting 

[47], fluid mechanics [48], email, spam and malware filtering [49], medical diagnosis [40], 

contamination detection in urban water networks [50], and activity recognition [51], to 

mention but a few. 

2.2. Brief Description of the Four Generic Categories 

2.2.1. Crop Management 

The crop management category involves versatile aspects that originated from the 

combination of farming techniques in the direction of managing the biological, chemical 

and physical crop environment with the aim of reaching both quantitative and qualitative 

targets [52]. Using advanced approaches to manage crops, such as yield prediction, dis-

ease detection, weed detection, crop recognition, and crop quality, contributes to the in-

crease of productivity and, consequently, the financial income. The above aspects consti-

tute key goals of precision agriculture. 

Yield Prediction 

In general, yield prediction is one of the most important and challenging topics in 

modern agriculture. An accurate model can help, for instance, the farm owners to take 

informed management decisions on what to grow towards matching the crop to the exist-

ing market’s demands [20]. However, this is not a trivial task; it consists of various steps. 

Yield prediction can be determined by several factors such as environment, management 

practices, crop genotypic and phenotypic characteristics, and their interactions. Hence, it 

necessitates a fundamental comprehension of the relationship between these interactive 

factors and yield. In turn, identifying such kinds of relationships mandates comprehen-

sive datasets along with powerful algorithms such as ML techniques [53]. 

Disease Detection 

Crop diseases constitute a major threat in agricultural production systems that dete-

riorate yield quality and quantity at production, storage, and transportation level. At farm 

level, reports on yield losses, due to plant diseases, are very common [54]. Furthermore, 

crop diseases pose significant risks to food security at a global scale. Timely identification 

of plant diseases is a key aspect for efficient management. Plant diseases may be provoked 

by various kinds of bacteria, fungi, pests, viruses, and other agents. Disease symptoms, 

namely the physical evidence of the presence of pathogens and the changes in the plants’ 

phenotype, may consist of leaf and fruit spots, wilting and color change [55], curling of 

leaves, etc. Historically, disease detection was conducted by expert agronomists, by per-

forming field scouting. However, this process is time-consuming and solely based on vis-

ual inspection. Recent technological advances have made commercially available sensing 

systems able to identify diseased plants before the symptoms become visible. Further-

more, in the past few years, computer vision, especially by employing deep learning, has 

made remarkable progress. As highlighted by Zhang et al. [56], who focused on identify-

ing cucumber leaf diseases by utilizing deep learning, due to the complex environmental 

background, it is beneficial to eliminate background before model training. Moreover, ac-
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curate image classifiers for disease diagnosis need a large dataset of both healthy and dis-

eased plant images. In reference to large-scale cultivations, such kinds of automated pro-

cesses can be combined with autonomous vehicles, to timely identify phytopathological 

problems by implementing regular inspections. Furthermore, maps of the spatial distri-

bution of the plant disease can be created, depicting the zones in the farm where the in-

fection has been spread [57]. 

Weed Detection 

As a result of their prolific seed production and longevity, weeds usually grow and 

spread invasively over large parts of the field very fast, competing with crops for the re-

sources, including space, sunlight, nutrients, and water availability. Besides, weeds fre-

quently arise sooner than crops without having to face natural enemies, a fact that ad-

versely affects crop growth [18]. In order to prevent crop yield reduction, weed control is 

an important management task by either mechanical treatment or application of herbi-

cides. Mechanical treatment is, in most cases, difficult to be performed and ineffective if 

not properly performed, making herbicide application the most widely used operation. 

Using large quantities of herbicides, however, turns out to be both costly and detrimental 

for the environment, especially in the case of uniform application without taking into ac-

count the spatial distribution of the weeds. Remarkably, long-term herbicide use is very 

likely to make weeds more resistant, thus, resulting in more demanding and expensive 

weed control. In recent years, considerable achievements have been made pertaining to 

the differentiation of weeds from crops on the basis of smart agriculture. This discrimina-

tion can be accomplished by using remote or proximal sensing with sensors attached on 

satellites, aerial, and ground vehicles, as well as unmanned vehicles (both ground (UGV) 

and aerial (UAV)). The transformation of data gathered by UAVs into meaningful infor-

mation is, however, still a challenging task, since both data collection and classification 

need painstaking effort [58]. ML algorithms coupled with imaging technologies or non-

imaging spectroscopy can allow for real-time differentiation and localization of target 

weeds, enabling precise application of herbicides to specific zones, instead of spraying the 

entire fields [59] and planning of the shortest weeding path [60]. 

Crop Recognition 

Automatic recognition of crops has gained considerable attention in several scientific 

fields, such as plant taxonomy, botanical gardens, and new species discovery. Plant spe-

cies can be recognized and classified via analysis of various organs, including leaves, 

stems, fruits, flowers, roots, and seeds [61,62]. Using leaf-based plant recognition seems 

to be the most common approach by examining specific leaf’s characteristics like color, 

shape, and texture [63]. With the broader use of satellites and aerial vehicles as means of 

sensing crop properties, crop classification through remote sensing has become particu-

larly popular. As in the above sub-categories, the advancement on computer software and 

image processing devices combined with ML has led to the automatic recognition and 

classification of crops. 

Crop Quality 

Crop quality is very consequential for the market and, in general, is related to soil 

and climate conditions, cultivation practices and crop characteristics, to name a few. High 

quality agricultural products are typically sold at better prices, hence, offering larger earn-

ings to farmers. For instance, as regards fruit quality, flesh firmness, soluble solids con-

tent, and skin color are among the most ordinary maturity indices utilized for harvesting 

[64]. The timing of harvesting greatly affects the quality characteristics of the harvested 

products in both high value crops (tree crops, grapes, vegetables, herbs, etc.) and arable 

crops. Therefore, developing decision support systems can aid farmers in taking appro-

priate management decisions for increased quality of production. For example, selective 
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harvesting is a management practice that may considerably increase quality. Furthermore, 

crop quality is closely linked with food waste, an additional challenge that modern agri-

culture has to cope with, since if the crop deviates from the desired shape, color, or size, 

it may be thrown away. Similarly to the above sub-section, ML algorithms combined with 

imaging technologies can provide encouraging results. 

2.2.2. Water Management 

The agricultural sector constitutes the main consumer of available fresh water on a 

global scale, as plant growth largely relies on water availability. Taking into account the 

rapid depletion rate of a lot of aquifers with negligible recharge, more effective water 

management is needed for the purpose of better conserving water in terms of accomplish-

ing a sustainable crop production [65]. Effective water management can also lead to the 

improvement of water quality as well as reduction of pollution and health risks [66]. Re-

cent research on precision agriculture offers the potential of variable rate irrigation so as 

to attain water savings. This can be realized by implementing irrigation at rates, which 

vary according to field variability on the basis of specific water requirements of separate 

management zones, instead of using a uniform rate in the entire field. The effectiveness 

and feasibility of the variable rate irrigation approach depend on agronomic factors, in-

cluding topography, soil properties, and their effect on soil water in order to accomplish 

both water savings and yield optimization [67]. Carefully monitoring the status of soil 

water, crop growth conditions, and temporal and spatial patterns in combination with 

weather conditions monitoring and forecasting, can help in irrigation programming and 

efficient management of water. Among the utilized ICTs, remote sensing can provide im-

ages with spatial and temporal variability associated with the soil moisture status and 

crop growth parameters for precision water management. Interestingly, water manage-

ment is challenging enough in arid areas, where groundwater sources are used for irriga-

tion, with the precipitation providing only part of the total crop evapotranspiration (ET) 

demands [68]. 

2.2.3. Soil Management 

Soil, a heterogeneous natural resource, involves mechanisms and processes that are 

very complex. Precise information regarding soil on a regional scale is vital, as it contrib-

utes towards better soil management consistent with land potential and, in general, sus-

tainable agriculture [5]. Better management of soil is also of great interest owing to issues 

like land degradation (loss of the biological productivity), soil-nutrient imbalance (due to 

fertilizers overuse), and soil erosion (as a result of vegetation overcutting, improper crop 

rotations rather than balanced ones, livestock overgrazing, and unsustainable fallow pe-

riods) [69]. Useful soil properties can entail texture, organic matter, and nutrients content, 

to mention but a few. Traditional soil assessment methods include soil sampling and la-

boratory analysis, which are normally expensive and take considerable time and effort. 

However, remote sensing and soil mapping sensors can provide low-cost and effortless 

solution for the study of soil spatial variability. Data fusion and handling of such hetero-

geneous “big data” may be important drawbacks, when traditional data analysis methods 

are used. ML techniques can serve as a trustworthy, low-cost solution for such a task. 

2.2.4. Livestock Management 

It is widely accepted that livestock production systems have been intensified in the 

context of productivity per animal. This intensification involves social concerns that can 

influence consumer perception of food safety, security, and sustainability, based on ani-

mal welfare and human health. In particular, monitoring both the welfare of animals and 

overall production is a key aspect so as to improve production systems [70]. The above 

fields take place in the framework of precision livestock farming, aiming at applying en-
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gineering techniques to monitor animal health in real time and recognizing warning mes-

sages, as well as improving the production at the initial stages. The role of precision live-

stock farming is getting more and more significant by supporting the decision-making 

processes of livestock owners and changing their role. It can also facilitate the products’ 

traceability, in addition to monitoring their quality and the living conditions of animals, 

as required by policy-makers [71]. Precision livestock farming relies on non-invasive sen-

sors, such as cameras, accelerometers, gyroscopes, radio-frequency identification systems, 

pedometers, and optical and temperature sensors [25]. IoT sensors leverage variable phys-

ical quantities (VPQs) as a means of sensing temperature, sound, humidity, etc. For in-

stance, IoT sensors can warn if a VPQ falls out of regular limits in real-time, giving valu-

able information regarding individual animals. As a result, the cost of repetitively and 

arduously checking each animal can be reduced [72]. In order to take advantage of the 

large amounts of data, ML methodologies have become an integral part of modern live-

stock farming. Models can be developed that have the capability of defining the manner 

a biological system operates, relying on causal relationships and exploiting this biological 

awareness towards generating predictions and suggestions. 

Animal Welfare 

There is an ongoing concern for animal welfare, since the health of animals is strongly 

associated with product quality and, as a consequence, predominantly with the health of 

consumers and, secondarily, with the improvement of economic efficiency [73]. There ex-

ist several indexes for animal welfare evaluation, including physiological stress and be-

havioral indicators. The most commonly used indicator is animal behavior, which can be 

affected by diseases, emotions, and living conditions, which have the potential to demon-

strate physiological conditions [25]. Sensors, commonly used to detect behavioral changes 

(for example, changes in water or food consumption, reduced animal activity), include 

microphone systems, cameras, accelerometers, etc. 

Livestock Production 

The use of sensor technology, along with advanced ML techniques, can increase live-

stock production efficiency. Given the impact of practices of animal management on pro-

ductive elements, livestock owners are getting cautious of their asset. However, as the 

livestock holdings get larger, the proper consideration of every single animal is very dif-

ficult. From this perspective, the support to farmers via precision livestock farming, men-

tioned above, is an auspicious step for aspects associated with economic efficiency and 

establishment of sustainable workplaces with reduced environmental footprint [74]. Gen-

erally, several models have been used in animal production, with their intentions nor-

mally revolving around growing and feeding animals in the best way. However, the large 

volumes of data being involved, again, call for ML approaches. 

3. Methods 

3.1. Screening of the Relative Literature 

In order to identify the relevant studies concerning ML in respect to different aspects 

of management in agriculture, the search engines of Scopus, Google Scholar, ScienceDi-

rect, PubMed, Web of Science, and MDPI were utilized. In addition, keywords’ combina-

tions of “machine learning” in conjunction with each of the following: “crop manage-

ment”, “water management”, “soil management”, and “livestock management” were 

used. Our intention was to filter the literature on the same framework as [12]; however, 

focusing solely within the period 2018–2020. Once a relevant study was being identified, 

the references of the paper at hand were being scanned to find studies that had not been 

found throughout the initial searching procedure. This process was being iterated until 

no relevant studies occurred. In this stage, only journal papers were considered eligible. 

Thus, non-English studies, conferences papers, chapters, reviews, as well as Master and 
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Doctoral Theses were excluded. The latest search was conducted on 15 December 2020. 

Subsequently, the abstract of each paper was being reviewed, while, at a next stage, the 

full text was being read to decide its appropriateness. After a discussion between all co-

authors with reference to the appropriateness of the selected papers, some of them were 

excluded, in the case they did not meet the two main inclusion criteria, namely: (a) the 

paper was published within 2018–2020 and (b) the paper referred to one of the categories 

and sub-categories, which were summarized in Figure 1. Finally, the papers were classi-

fied in these sub-categories. Overall, 338 journal papers were identified. The flowchart of 

the present review methodology is depicted in Figure 3, based on the PRISMA guidelines 

[75], along with information about at which stage each exclusive criterion was imposed 

similarly to recent systematic review studies such as [72,76–78]. 

 

Figure 3. The flowchart of the methodology of the present systematic review along with the flow of information regarding 

the exclusive criteria, based on PRISMA guidelines [75]. 
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3.2. Definition of the Performance Metrics Commonly Used in the Reviewed Studies 

In this subsection, the most commonly used performance metrics of the reviewed 

papers are briefly described. In general, these metrics are utilized in an effort to provide a 

common measure to evaluate the ML algorithms. The selection of the appropriate metrics 

is very important, since: (a) how the algorithm’s performance is measured relies on these 

metrics and (b) the metric itself can influence the way the significance of several charac-

teristics is weighted. 

Confusion matrix constitutes one of the most intuitive metrics towards finding the 

correctness of a model. It is used for classification problems, where the result can be of at 

least two types of classes. Let us consider a simple example, by giving a label to a target 

variable: for example, “1” when a plant has been infected with a disease and “0” other-

wise. In this simplified case, the confusion matrix (Figure 4) is a 2 × 2 table having two 

dimensions, namely “Actual” and “Predicted”, while its dimensions have the outcome of 

the comparison between the predictions with the actual class label. Concerning the above 

simplified example, this outcome can acquire the following values: 

 True Positive (TP): The plant has a disease (1) and the model classifies this case as 

diseased (1); 

 True Negative (TN): The plant does not have a disease (0) and the model classifies 

this case as a healthy plant (0); 

 False Positive (FP): The plant does not have a disease (0), but the model classifies this 

case as diseased (1); 

 False Negative (FN): The plant has a disease (1), but the model classifies this case as 

a healthy plant (0). 

 

Figure 4. Representative illustration of a simplified confusion matrix. 

As can be shown in Table 1, the aforementioned values can be implemented in order 

to estimate the performance metrics, typically observed in classification problems [79]. 

Table 1. Summary of the most commonly used evaluation metrics of the reviewed studies. 

Name Formula 

Accuracy (TP + TN)/(TP + FP + FN + TN) 

Recall TP/(TP + FN) 

Precision TP/(TP + FP) 

Specificity TN/(TN + FP) 

F1 score (2 × Recall × Precision)/(Recall + Precision) 

Other common evaluation metrics were the coefficient of correlation (�), coefficient 

of determination (��; basically, the square of the correlation coefficient), Mean Absolute 

Error (MAE), Mean Absolute Percentage Error (MAPE), and Mean Squared Error (MSE), 

which can be given via the following relationships [80,81]: 
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where �(�) and �(�) correspond to the predicted and real value, respectively, � stands 

for the iteration at each point, while � for the testing records number. Accordingly, low 

values of MAE, MAPE, and MSE values denote a small error and, hence, better perfor-

mance. In contrast, �� near 1 is desired, which demonstrates better model performance 

and also that the regression curve efficiently fits the data. 

4. Results 

4.1. Preliminary Data Visualization Analysis 

Graphical representation of data related to the reviewed studies, by using maps, bar 

or pie charts, for example, can provide an efficient approach to demonstrate and interpret 

the patterns of data. The data visualization analysis, as it usually refers to, can be vital in 

the context of analyzing large amounts of data and has gained remarkable attention in the 

past few years, including review studies. Indicatively, significant results can be deduced 

in an effort to identify: (a) the most contributing authors and organizations, (b) the most 

contributing international journals (or equivalently which research fields are interested in 

this topic), and (c) the current trends in this field [82]. 

4.1.1. Classification of the Studies in Terms of Application Domain 

As can be seen in the flowchart of the present methodology (Figure 3), the literature 

survey on ML in agriculture resulted in 338 journal papers. Subsequently, these studies 

were classified into the four generic categories as well as into their sub-categories, as al-

ready mentioned above. Figure 5 depicts the aforementioned papers’ distribution. In par-

ticular, the majority of the studies were intended for crop management (68%), while soil 

management (10%), water management (10%), and livestock management (12% in total; 

animal welfare: 7% and livestock production: 5%) had almost equal contribution in the 

present bibliographic survey. Focusing on crop management, the most contributing sub-

categories were yield prediction (20%) and disease detection (19%). The former research 

field arises as a consequence of the increasing interest of farmers in taking decisions based 

on efficient management that can lead to the desired yield. Disease detection, on the other 

hand, is also very important, as diseases constitute a primary menace for food security 

and quality assurance. Equal percentages (13%) were observed for weed detection and 

crop recognition, both of which are essential in crop management at farm and agricultural 

policy making level. Finally, examination of crop quality was relatively scarce corre-

sponding to 3% of all studies. This can be attributed to the complexity of monitoring and 

modeling the quality-related parameters. 
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Figure 5. The classification of the reviewed studies according to the field of application. 

In this fashion, it should be mentioned again that all the selected journal papers are 

summarized in Tables A1-A9, depending on their field of application, and presented in 

the Appendix A. The columns of the tables correspond (from left to right) to the “Refer-

ence number” (Ref), “Input Data”, “Functionality”, “Models/Algorithms”, and “Best Out-

put”. One additional column exists for the sub-categories belonging in crop management, 

namely “Crop”, whereas the corresponding column in the sub-categories pertaining to 

livestock management refers to “Animal”. The present systematic review deals with a 

plethora of different ML models and algorithms. For the sake of brevity, the commonly 

used abbreviations are used instead of the entire names, which are summarized in Tables 

A10 and A11 (presented also in the Appendix A). The list of the aforementioned Tables, 

along with their content, is listed in Table 2. 
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Table 2. List of the tables appearing in the Appendix A related to: (a) the categories and sub-cate-

gories of the machine learning applications in agriculture (Tables A1–A9) and (b) the abbrevia-

tions of machine learning models and algorithms (Tables A10 and A11, respectively). 

Table Content 

A1 Crop Management: Yield Prediction 

A2 Crop Management: Disease Detection 

A3 Crop Management: Weed Detection 

A4 Crop Management: Crop Recognition 

A5 Crop Management: Crop Quality 

A6 Water Management 

A7 Soil Management 

A8 Livestock Management: Animal Welfare 

A9 Livestock Management: Livestock Production 

A10 Abbreviations of machine learning models 

A11 Abbreviations of machine learning algorithms 

4.1.2. Geographical Distribution of the Contributing Organizations 

The subject of this sub-section is to find out the geographical distribution of all the 

contributing organizations in ML applications in agriculture. To that end, the author’s 

affiliation was taken into account. In case a paper included more than one author, which 

was the most frequent scenario, each country could contribute only once in the final map 

chart (Figure 6), similarly to [83,84]. As can be gleaned from Figure 6, investigating ML in 

agriculture is distributed worldwide, including both developed and developing econo-

mies. Remarkably, out of the 55 contributing countries, the least contribution originated 

from African countries (3%), whereas the major contribution came from Asian countries 

(55%). The latter result is attributed mainly to the considerable contribution of Chinese 

(24.9%) as well as Indian organizations (10.1%). USA appeared to be the second most con-

tributing country with 20.7% percentage, while Australia (9.5%), Spain (6.8%), Germany 

(5.9%), Brazil, UK, and Iran (5.62%) seem to be particularly interested in ML in agriculture. 

It should be stressed that livestock management, which is a relatively different sub-field 

comparing to crop, water, and soil management, was primary examined from studies 

coming from Australia, USA, China, and UK, while all the papers regarding Ireland were 

focused on animals. Finally, another noteworthy observation is that a large number of 

articles were a result of international collaboration, with the synergy of China and USA 

standing out. 
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Figure 6. Geographical distribution of the contribution of each country to the research field focusing on machine learning 

in agriculture. 

4.1.3. Distribution of the Most Contributing Journal Papers 

For the purpose of identifying the research areas that are mostly interested in ML in 

agriculture, the most frequently appeared international journal papers are depicted in Fig-

ure 7. In total, there were 129 relevant journals. However, in this bar chart, only the jour-

nals contributing with at least 4 papers are presented for brevity. As a general remark, 

remote sensing was of particular importance, since reliable data from satellites and UAV, 

for instance, constitute valuable input data for the ML algorithms. In addition, smart farm-

ing, environment, and agricultural sustainability were of central interest. Journals associ-

ated with computational techniques were also presented with considerable frequency. A 

typical example of such type of journals, which was presented in the majority of the stud-

ies with a percentage of 19.8%, was “Computers and Electronics in Agriculture”. This journal 

aims at providing the advances in relation to the application of computers and electronic 

systems for solving problems in plant and animal production. 

The “Remote Sensing” and “Sensors” journals followed with approximately 11.8% and 

6.5% of the total number of publications, respectively. These are cross-sectoral journals 

that are concentrated on applications of science and sensing technologies in various fields, 

including agriculture. Other journals, covering this research field, were also “IEEE Access” 

and “International Journal of Remote Sensing” with approximately 2.1% and 1.2% contribu-

tion, respectively. Moreover, agriculture-oriented journals were also presented in Figure 

7, including “Precision Agriculture”, “Frontiers in Plant Science”, “Agricultural and Forest Me-

teorology”, and “Agricultural Water Management” with 1–3% percentage. These journals 

deal with several aspects of agriculture ranging from management strategies (so as to in-

corporate spatial and temporal data as a means of optimizing productivity, resource use 

efficiency, sustainability and profitability of agricultural production) up to crop molecular 

genetics and plant pathogens. An interdisciplinary journal concentrating on soil functions 

and processes also appeared with 2.1%, namely “Geoderma”, plausibly covering the soil 

management generic category. Finally, several journals focusing on physics and applied 

natural sciences, such as “Applied Sciences” (2.7%), “Scientific Reports” (1.8%), “Biosystems 

Engineering” (1.5%), and “PLOS ONE” (1.5%), had a notable contribution to ML studies. 
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As a consequence, ML in agriculture concerns several disciplines and constitutes a funda-

mental area for developing various techniques, which can be beneficial to other fields as 

well. 

 

Figure 7. Distribution of the most contributing international journals (published at least four articles) concerning applica-

tions of machine learning in agriculture. 

4.2. Synopsis of the Main Features Associated with the Relative Literature 

4.2.1. Machine Learning Models Providing the Best Results 

A wide range of ML algorithms was implemented in the selected studies; their ab-

breviations are given in Table A11. The ML algorithms that were used by each study as 

well as those that provided the best output have been listed in the last two columns of 

Tables A1–A9. These algorithms can be classified into the eight broad families of ML mod-

els, which are summarized in Table A10. Figure 8 focuses on the best performed ML mod-

els as a means of capturing a broad picture of the current situation and demonstrating 

advancement similarly to [12]. 

As can be demonstrated in Figure 8, the most frequent ML model providing the best 

output was, by far, Artificial Neural Networks (ANNs), which appeared in almost half of 

the reviewed studies (namely, 51.8%). More specifically, ANN models provided the best 

results in the majority of the studies concerning all sub-categories. ANNs have been in-

spired by the biological neural networks that comprise human brains [85], while they al-

low for learning via examples from representative data describing a physical phenome-

non. A distinct characteristic of ANNs is that they can develop relationships between de-

pendent and independent variables, and thus extract useful information from representa-

tive datasets. ANN models can offer several benefits, such as their ability to handle noisy 

data [86], a situation that is very common in agricultural measurements. Among the most 
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popular ANNs are the Deep Neural Networks (DNNs), which utilize multiple hidden 

layers between input and output layers. DNNs can be unsupervised, semi-supervised, or 

supervised. A usual kind of DNNs are the Convolutional Neural Networks (CNNs), 

whose layers, unlike common neural networks, can set up neurons in three dimensions 

[87]. In fact, CNNs were presented as the algorithms that provide the best output in all 

sub-categories, with an almost 50% of the individual percentage of ANNs. As stressed in 

recent studies, such as that of Yang et al. [88], CNNs are receiving more and more atten-

tion because of their efficient results when it comes to detection through images’ pro-

cessing. 

Recurrent Neural Networks (RNNs) followed, representing approximately 10% of 

ANNs, with Long Short-Term Memory (LSTM) standing out. They are called “recurrent” 

as they carry out the same process for every element, with the previous computations 

determining the current output, while they have a “memory” that stores information per-

taining to what has been calculated so far. RNNs can face problems concerning vanishing 

gradients and inability to “memorize” many sequential data. Towards addressing these 

issues, the cell structures of LSTM can control which part of information will be either 

stored in long memory or discarded, resulting in optimization of the memorizing process 

[51]. Moreover, Multi-Layer Perceptron (MLP), Fully Convolutional Networks (FCNs), 

and Radial Basis Function Networks (RBFNs) appeared to have the best performance in 

almost 3–5% of ANNs. Finally, ML algorithms, belonging to ANNs with low frequency, 

were Back-Propagation Neural Networks (BPNNs), Modular Artificial Neural Networks 

(MANNs), Deep Belief Networks (DBNs), Adaptive-Neuro Fuzzy Inference System (AN-

FIS), Subtractive Clustering Fuzzy Inference System (SCFIS), Takagi-Sugeno Fuzzy Neu-

ral Networks (TS-FNN), and Feed Forward Neural Networks (FFNNs). 

 

Figure 8. Machine Learning models giving the best output. 
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The second most accurate ML model was Ensemble Learning (EL), contributing to 

the ML models used in agricultural systems with approximately 22.2%. EL is a concise 

term for methods that integrate multiple inducers for the purpose of making a decision, 

normally in supervised ML tasks. An inducer is an algorithm, which gets as an input a 

number of labeled examples and creates a model that can generalize these examples. Thus, 

predictions can be made for a set of new unlabeled examples. The key feature of EL is that 

via combining various models, the errors coming from a single inducer is likely to be com-

pensated from other inducers. Accordingly, the prediction of the overall performance 

would be superior comparing to a single inducer [89]. This type of ML model was pre-

sented in all sub-categories, apart from crop quality, perhaps owing to the small number 

of papers belonging in this subcategory. Support Vector Machine (SVM) followed, con-

tributing in approximately 11.5% of the studies. The strength of the SVM stems from its 

capability to accurately learn data patterns while showing reproducibility. Despite the fact 

that it can also be applied for regression applications, SVM is a commonly used method-

ology for classification extending across numerous data science settings [90], including 

agricultural research. 

Decision Trees (DT) and Regression models came next with equal percentage, namely 

4.7%. Both these ML models were presented in all generic categories. As far as DT are 

concerned, they are either regression or classification models structured in a tree-like ar-

chitecture. Interestingly, handling missing data in DT is a well-established problem. By 

implementing DT, the dataset can be gradually organized into smaller subsets, whereas, 

in parallel, a tree graph is created. In particular, each tree’s node denotes a dissimilar pair-

wise comparison regarding a certain feature, while each branch corresponds to the result 

of this comparison. As regards leaf nodes, they stand for the final decision/prediction pro-

vided after following a certain rule [91,92]. As for Regression, it is used for supervised 

learning models intending to model a target value on the basis of independent predictors. 

In particular, the output can be any number based on what it predicts. Regression is typ-

ically applied for time series modeling, prediction, and defining the relationships between 

the variables. 

Finally, the ML models, leading to optimal performance (although with lower con-

tribution to literature), were those of Instance Based Models (IBM) (2.7%), Dimensionality 

Reduction (DR) (1.5%), Bayesian Models (BM) (0.9%), and Clustering (0.3%). IBM ap-

peared only in crop, water, and livestock management, whereas BM only in crop and soil 

management. On the other hand, DR and Clustering appeared as the best solution only in 

crop management. In brief, IBM are memory-based ML models that can learn through 

comparison of the new instances with examples within the training database. DR can be 

executed both in unsupervised and supervised learning types, while it is typically carried 

out in advance of classification/regression so as to prevent dimensionality effects. Con-

cerning the case of BM, they are a family of probabilistic models whose analysis is per-

formed within the Bayesian inference framework. BM can be implemented in both classi-

fication and regression problems and belong to the broad category of supervised learning. 

Finally, Clustering belongs to unsupervised ML models. It contains automatically discov-

ering of natural grouping of data [12]. 

4.2.2. Most Studied Crops and Animals 

In this sub-section, the most examined crops and animals that were used in the ML 

models are discussed as a result of our searching within the four sub-categories of crop 

management similarly to [12]. These sub-categories refer to yield prediction, disease de-

tection, crop recognition, and crop quality. Overall, approximately 80 different crop spe-

cies were investigated. The 10 most utilized crops are summarized in Figure 9. Specifi-

cally, the remarkable interest on maize (also known as corn) can be attributed to the fact 

that it is cultivated in many parts across the globe as well as its versatile usage (for exam-

ple, direct consumption by humans, animal feed, producing ethanol, and other biofuels). 
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Wheat and rice follow, which are two of the most widely consumed cereal grains. Accord-

ing to the Food and Agriculture Organization (FAO) [93], the trade in wheat worldwide 

is more than the summation of all other crops. Concerning rice, it is the cereal grain with 

the third-highest production and constitutes the most consumed staple food in Asia [94]. 

The large contribution of Asian countries presented in Figure 6, like China and India, jus-

tifies the interest in this crop. In the same vein, soybeans, which are broadly distributed 

in East Asia, USA, Africa, and Australia [95], were presented in many studies. Finally, 

tomato, grape, canola/rapeseed (cultivated primarily for its oil-rich seed), potato, cotton, 

and barley complete the top 10 examined crops. All these species are widely cultivated all 

over the world. Some other indicative species, which were investigated at least five times 

in the present reviewed studies, were also alfalfa, citrus, sunflower, pepper, pea, apple, 

squash, sugarcane, and rye. 

 

Figure 9. The 10 most investigated crops using machine learning models; the results refer to crop management. 

As far as livestock management is concerned, the examined animal species can be 

classified, in descending order of frequency, into the categories of cattle (58.5%), sheep 

and goats (26.8%), swine (14.6%), poultry (4.9%), and sheepdog (2.4%). As can be depicted 

in Figure 10, the last animal, which is historically utilized with regard to the raising of 

sheep, was investigated only in one study belonging to animal welfare, whereas all the 

other animals were examined in both categories of livestock management. In particular, 

the most investigated animal in both animal welfare and livestock production was cattle. 
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Sheep and goats came next, which included nine studies for sheep and two studies for 

goats. Cattles are usually raised as livestock aimed at meat, milk, and hide used for 

leather. Similarly, sheep are raised for meat and milk as well as fleece. Finally, swine (often 

called domestic pigs) and poultry (for example, chicken, turkey, and duck), which are 

used mainly for their meat or eggs (poultry), had equal contribution from the two live-

stock sub-categories. 

 

Figure 10. Frequency of animal species in studies concerning livestock management by using machine learning models. 

4.2.3. Most Studied Features and Technologies 

As mentioned in the beginning of this study, modern agriculture has to incorporate 

large amounts of heterogeneous data, which have originated from a variety of sensors 

over large areas at various spatial scale and resolution. Subsequently, such data are used 

as input into ML algorithms for their iterative learning up until modeling of the process 

in the most effective way possible. Figure 11 shows the features and technologies that 

were used in the reviewed studies, separately for each category, for the sake of better 

comprehending the results of the analysis. 

Data coming from remote sensing were the most common in the yield prediction sub-

category. Remote sensing, in turn, was primarily based on data derived from satellites 

(40.6% of the total studies published in this sub-category) and, secondarily, from UAVs 

(23.2% of the total studies published in this sub-category). A remarkable observation is 

the rapid increase of the usage of UAVs versus satellites from the year 2018 towards 2020, 

as UAVs seem to be a reliable alternative that can give faster and cheaper results, usually 

in higher resolution and independent of the weather conditions. Therefore, UAVs allow 

for discriminating details of localized circumscribed regions that the satellites’ lowest res-

olution may miss, especially under cloudy conditions. This explosion in the use of UAV 

systems in agriculture is a result of the developing market of drones and sensing solutions 

attached to them, rendering them economically affordable. In addition, the establishment 

of formal regulations for UAV operations and the simplification and automatization of 

the operational and analysis processes had a significant contribution on the increasing 

popularity of these systems. Data pertaining to the weather conditions of the investigated 

area were also of great importance as well as soil parameters of the farm at hand. An 
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additional way of getting the data was via in situ manual measurements, involving meas-

urements such as crop height, plant growth, and crop maturity. Finally, data concerning 

topographic, irrigation, and fertilization aspects were presented with approximately 

equal frequency. 

As far as disease detection is concerned, Red-Green-Blue (RGB) images appear to be 

the most usual input data for the ML algorithms (in 62% of the publications). Normally, 

deep learning methods like CNNs are implemented with the intention of training a clas-

sifier to discriminate images depicting healthy leaves, for example, from infected ones. 

CNNs use some particular operations to transform the RGB images so that the desired 

features are enhanced. Subsequently, higher weights are given to the images having the 

most suitable features. This characteristic constitutes a significant advantage of CNNs as 

compared to other ML algorithms, when it comes to image classification [79]. The second 

most common input data came from either multispectral or hyperspectral measurements 

originated from spectroradiometers, UAVs, and satellites. Concerning the investigated 

diseases, fungal diseases were the most common ones with diseases from bacteria follow-

ing, as is illustrated in Figure 12a. This kind of disease can cause major problems in agri-

culture with detrimental economic consequences [96]. Other examined origins of crop dis-

eases were, in descending order of frequency, pests, viruses, toxicity, and deficiencies. 
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Figure 11. Distribution of the most usual features implemented as input data in the machine learning algorithms for each 

category/sub-category. 

Images were also the most used input data for weed detection purposes. These im-

ages were RGB images that originated mainly from in situ measurements as well as from 

UGVs and UAVs and, secondarily, multispectral images from the aforementioned 

sources. Finally, other parameters that were observed, although with lower frequency, 

were satellite multispectral images, mainly due to the considerably low resolution they 

provide, video recordings, and hyperspectral and greyscale images. Concerning crop 
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recognition, the majority of the studies used data coming mostly from satellites and, sec-

ondarily, from in situ manual measurements. This is attributed to the fact that most of the 

studies in this category concern crop classification, a sector where satellite imaging is the 

most widely used data source owing to its potential for analysis of time series of extremely 

large surfaces of cultivated land. Laboratory measurements followed, while RGB and 

greyscale images as well as hyperspectral and multispectral measurements from UAVs 

were observed with lower incidence. 

The input data pertaining to crop quality consisted mainly of RGB images, while X-

ray images were also utilized (for seed germination monitoring). Additionally, quality 

parameters, such as color, mass, and flesh firmness, were used. There were also two stud-

ies using spectral data either from satellites or spectroradiometers. In general, the studies 

belonging in this sub-category dealt with either crop quality (80%) or seed germination 

potential (20%) (Figure 12b). The latter refers to the seed quality assessment that is essen-

tial for the seed production industry. Two studies were found about germination that both 

combined X-ray images analysis and ML. 

Concerning soil management, various soil properties were taken into account in 

65.7% of the studies. These properties included salinity, organic matter content, and elec-

trical conductivity of soil and soil organic carbon. Usage of weather data was also very 

common (in 48.6% of the studies), while topographic and data pertaining to the soil mois-

ture content (namely the ratio of the water mass over the dry soil) and crop properties 

were presented with lower frequency. Additionally, remote sensing, including satellite 

and UAV multispectral and hyperspectral data, as well as proximal sensing, to a lesser 

extent, were very frequent choices (in 40% of the studies). Finally, properties associated 

with soil temperature, land type, land cover, root microbial dynamics, and groundwater 

salinity make up the rest of data, which are labeled as “other” in the corresponding graph 

of Figure 11. 

In water management, weather data stood for the most common input data (ap-

peared in the 75% of the studies), with ET being used in the vast majority of them. In many 

cases, accurate estimation of ET (the summation of the transpiration via the plant canopy 

and the evaporation from plant, soil, and open water surface) is among the most central 

elements of hydrologic cycle for optimal management of water resources [97]. Data from 

remote sensors and measurements of soil water content were also broadly used in this 

category. Soil water availability has a central impact on crops’ root growth by affecting 

soil aeration and nutrient availability [98]. Stem water potential, appearing in three stud-

ies, is actually a measure of water tension within the xylem of the plant, therefore func-

tioning as an indicator of the crop’s water status. Furthermore, in situ measurements, soil, 

and other parameters related to cumulative water infiltration, soil and water quality, field 

topography, and crop yield were also used, as can be seen in Figure 11. 

Finally, in what concerns livestock management, motion capture sensors, including 

accelerometers, gyroscopes, and pedometers, were the most common devices giving in-

formation about the daily activities of animals. This kind of sensors was used solely in the 

studies investigating animal welfare. Images, audio, and video recordings came next, 

however, appearing in both animal welfare and livestock production sub-categories. 

Physical and growth characteristics followed, with slightly less incidence, by appearing 

mainly in livestock production sub-category. These characteristics included the animal’s 

weight, gender, age, metabolites, biometric traits, backfat and muscle thickness, and heat 

stress. The final characteristic may have detrimental consequences in livestock health and 

product quality [99], while through the measurement of backfat and muscle thickness, 

estimations of the carcass lean yield can be made [100]. 
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Figure 12. Distribution of the most usual output features of the machine learning algorithms regarding: (a) Disease detec-

tion and (b) Crop quality. 

5. Discussion and Main Conclusions 

The present systematic review study deals with ML in agriculture, an ever-increasing 

topic worldwide. To that end, a comprehensive analysis of the present status was con-

ducted concerning the four generic categories that had been identified in the previous 

review by Liakos et al. [12]. These categories pertain to crop, water, soil, and livestock 

management. Thus, by reviewing the relative literature of the last three years (2018–2020), 

several aspects were analyzed on the basis of an integrated approach. In summary, the 

following main conclusions can be drawn: 

 The majority of the journal papers focused on crop management, whereas the other 

three generic categories contributed almost with equal percentage. Considering the 

review paper of [12] as a reference study, it can be deduced that the above picture 

remains, more or less, the same, with the only difference being the decrease of the 

percentage of the articles regarding livestock from 19% to 12% in favor of those re-

ferring to crop management. Nonetheless, this reveals just one side of the coin. Tak-

ing into account the tremendous increase in the number of relative papers published 

within the last three years (in particular, 40 articles were identified in [12] comparing 

to the 338 of the present literature survey), approximately 400% more publications 

were found on livestock management. Another important finding was the increasing 

research interest on crop recognition. 

 Several ML algorithms have been developed for the purpose of handling the hetero-

geneous data coming from agricultural fields. These algorithms can be classified in 

families of ML models. Similar to [12], the most efficient ML models proved to be 

ANNs. Nevertheless, in contrast to [12], the interest also been shifted towards EL, 

which can combine the predictions that originated from more than one model. SVM 

completes the group with the three most accurate ML models in agriculture, due to 

some advantages, such as its high performance when it works with image data [101].  

 As far as the most investigated crops are concerned, mainly maize and, secondarily, 

wheat, rice, and soybean were widely studied by using ML. In livestock manage-

ment, cattle along with sheep and goats stood out constituting almost 85% of the 

studies. Comparing to [12], more species have been included, while wheat and rice 

as well as cattle, remain important specimens for ML applications. 

 A very important result of the present review study was the demonstration of the 

input data used in the ML algorithms and the corresponding sensors. RGB images 

constituted the most common choice, thus, justifying the broad usage of CNNs due 

to their ability to handle this type of data more efficiently. Moreover, a wide range 
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of parameters pertaining to weather as well as soil, water, and crop quality was used. 

The most common means of acquiring measurements for ML applications was re-

mote sensing, including imaging from satellites, UAVs and UGVs, while in situ and 

laboratory measurements were also used. As highlighted above, UAVs are con-

stantly gaining ground against satellites mainly because of their flexibility and ability 

to provide images with high resolution under any weather conditions. Satellites, on 

the other hand, can supply time-series over large areas [102]. Finally, animal welfare-

related studies used mainly devices such as accelerometers for activity recognition, 

whereas those ones referring to livestock production utilized primary physical and 

growth characteristics of the animal. 

As can be inferred from the geographical distribution (illustrated in Figure 6) in tan-

dem with the broad spectrum of research fields, ML applications for facilitating various 

aspects of management in the agricultural sector is an important issue on an international 

scale. As a matter of fact, its versatile nature favors convergence research. Convergence 

research is a relatively recently introduced approach that is based on shared knowledge 

between different research fields and can have a positive impact on the society. This can 

refer to several aspects, including improvement of the environmental footprint and assur-

ing human’s health. Towards this direction, ML in agriculture has a considerable potential 

to create value. 

Another noteworthy finding of the present analysis is the capturing of the increasing 

interest on topics concerning ML analyses in agricultural applications. More specifically, 

as can be shown in Figure 13, an approximately 26% increase was presented in the total 

number of the relevant studies, if a comparison is made between 2018 and 2019. The next 

year (i.e., 2020), the corresponding increase jumped to 109% against 2019 findings; thus, 

resulting in an overall 164% rise comparing with 2018. The accelerating rate of the research 

interest on ML in agriculture is a consequence of various factors, following the consider-

able advancements of ICT systems in agriculture. Moreover, there exists a vital need for 

increasing the efficiency of agricultural practices while reducing the environmental bur-

den. This calls for both reliable measurements and handling of large volumes of data as a 

means of providing a wide overview of the processes taking place in agriculture. The cur-

rently observed technological outbreak has a great potential to strengthen agriculture in 

the direction of enhancing food security and responding to the rising consumers’ de-

mands. 

 

Figure 13. Temporal distribution of the reviewed studies focusing on machine learning in agriculture, which were pub-

lished within 2018–2020. 
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In a nutshell, ICT in combination with ML, seem to constitute one of our best hopes 

to meet the emerging challenges. Taking into account the rate of today’s data accumula-

tion along with the advancement of various technologies, farms will certainly need to ad-

vance their management practices by adopting Decision Support Systems (DSSs) tailored 

to the needs of each cultivation system. These DSSs use algorithms, which have the ability 

to work on a wider set of cases by considering a vast amount of data and parameters that 

the farmers would be impossible to handle. However, the majority of ICT necessitates 

upfront costs to be paid, namely the high infrastructure investment costs that frequently 

prevent farmers from adopting these technologies. This is going to be a pressing issue, 

mainly in developing economies, where agriculture is an essential economic factor. Nev-

ertheless, having a tangible impact is a long-haul game. A different mentality is required 

by all stakeholders so as to learn new skills, be aware of the potential profits of handling 

big data, and assert sufficient funding. Overall, considering the constantly increasing 

recognition of the value of artificial intelligence in agriculture, ML will definitely become 

a behind-the-scenes enabler for the establishment of a sustainable and more productive 

agriculture. It is anticipated that the present systematic effort is going to constitute a ben-

eficial guide to researchers, manufacturers, engineers, ICT system developers, policymak-

ers, and farmers and, consequently, contribute towards a more systematic research on ML 

in agriculture. 
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Appendix A 

In this section, the reviewed articles are summarized within the corresponding Ta-

bles as described in Table 2. 

Table A1. Crop Management: Yield Prediction. 

Ref Crop Input Data Functionality 
Models/Algo-

rithms 
Best Output 

[103] Coffee Weather data, soil fertility 

Prediction of Robusta 

coffee yield by using 

various soil fertility 

properties 

ELM, RF, MLR 

ELM: Model with SOM, K, S: 

RMSE = 496.35 kgha−1, MAE = 

326.40 kgha−1 

[104] Maize 
Weather and satellite 

spectral data 

Silage maize yield esti-

mation via Landsat 8 

OLI data 

BRT, RFR, SVR, 

GPR 
BRT: R = 0.89, RMSE = 4.66 

[105] Maize 

Soil properties, 

topographic, multispectral 

aerial images 

Prediction of corn 

yield and soil proper-

ties (SOM, CEC, Mg, 

K, pH) 

RF, ANN, SVM, 

GBM, Cubist 

(1) Corn yield: RF (R2 = 0.53); 

(2) SOM: NN (R2 = 0.64); (3) 

CEC: NN (R2 = 0.67); (4) K: 

SVM (R2 = 0.21); 5) Mg: SVM 

(R2 = 0.22); 6) pH: GBM (R2 = 

0.15) 
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[106] Cotton Satellite spectral data 
Cotton yield 

estimation 
ANN 

1) 2013: Yield vs. CI (R = −0.2–

0.60), best ANN (R = 0.68); 2) 

2014: Yield vs. CI (R = −0.79–

0.84), best ANN (R = 0.86) 

[107] Apple RGB images 

Detection and 

estimation of the 

number of apples in 

canopy images 

MLR 

Yield relative error = −10–13%, 

Yield relative error STD = 28% 

of average tree yield 

[108] Maize 
Crop data—CERES model,  

satellite spectral data 

Forecasting spring 

maize yield from 

Landsat-8 images 

SVM, RF, DT, 

LDA, KNN 

RS: SVM: Acc = 97%, RMSE = 

397 kgha−1 

[109] 
Maize, 

soybean 
Satellite spectral data 

Estimation of corn and 

soybean yield via 

Landsat and SPOT 

images 

MLR, ANN 
R2 values: (1) Maize: ANN: 

0.92, (2) Soybean: ANN: 0.90 

[110] Turmeric Soil fertility, weather data 

Forecasting oil yield 

produced from 

turmeric rhizomes 

ANN 
Μultilayer-feed-forward NN 

with 12 nodes: R2 = 0.88 

[111] Sunflower Plant height, SPAD 
Prediction of 

sunflower seed yield 
PLSR, ANN 

(1) ANN: RMSE = 0.66 tha−1, R2 

= 0.86; (2) PLSR: RMSE = 0.93 

tha−1, R2 = 0.69 

[112] Pistachio 
Irrigation, soil 

characteristics 

Estimation of pistachio 

yield in orchards 
MLR, ANN 

Acc values: ANN: 90%, MLR: 

28% 

[113] Rice 
Weather data, irrigation, 

planting area, fertilization 

Evaluation of feature 

subsets for prediction 

of paddy crop yield 

ANN, SVR, KNN, 

RF 

Forward Feature Selection: 

RF: RMSE = 0.085, MAE = 

0.055, R = 0.93 

[114] Potato Satellite spectral data 

Prediction of potato 

yield via Sentinel 2 

satellite data 

MLR, RQL, LB, 

SVM, RF, MARS, 

KNN, ANN 

(1) Reduced dataset: LB: MAE = 

8.95%, R2 = 0.89; (2) No feature 

selection: SVM: MAE = 8.64%, 

R2 = 0.93; (3) 1–2 months prior 

to harvest: RF: MAE = 8.71%, R2 

= 0.89 

[115] Wheat Satellite spectral data 
Prediction of wheat 

yield 
SVM, RF, ANN 

R2 values: (1) SVM: 0.74; (2) RF: 

0.68; (3) ANN: 0.68 

[116] 
Soybean, 

Maize 

Hydrological, weather and 

satellite spectral data 

Prediction of soybean 

and corn yields 

DNN, RF, SVM, 

MARS, ERT, ANN 

DNN (1) Corn: 21–33% more 

accurate (2) Soybean: 17–22% 

more accurate 

[117] 
Wheat, 

barley 

Multispectral images from 

UAV 

Prediction of barley 

and wheat yields 
CNN 

(1) Early growth phase(<25%): 

MAE = 484.3 kgha−1, MAPE = 

8.8%; (2) Later growth 

phase(>25%): MAE = 484.3  

kgha−1, MAPE = 8.8% 

[118] Strawberry 
Multispectral images from 

UAV 

Detection and 

counting of strawberry 

species for yield 

prediction 

CNN 

Faster RCNN: (1) Detection: 

MaP = 0.83 (at 2 m), MaP = 0.72 

(at 3 m); (2) Count: Acc = 

84.1%, Average occlusion = 

13.5% 

[119] Rice 
Weather data, irrigation, 

planting area, fertilization 

Prediction of paddy 

fields yield 

ANN, MLR, SVR, 

KNN, RF 

ANN-MLR: R = 0.99, RMSE = 

0.051, MAE = 0.041 
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[120] Soybean 
Weather and satellite 

spectral data 

Prediction of soybean 

yield in 15 states of 

USA 

CNN, LSTM 
2011–2015: End-of-season 

RMSE = 329.53 kgha−1, R2 = 0.78 

[121] Maize Satellite spectral data 
Prediction of maize 

yield 
MLR, RF, SVM 

RF: (1) yield: R2 = 0.6; (2) 

GNDVI: R2 = 0.48; 

Best monitoring period: 

Crop age = 105–135 days 

[122] Mango 
Multispectral data from 

UGV 

Estimation of mango 

maturity level by 

simulating imaging 

devices of optical 

filters 

SVM 

Estimation of dry matter by 

using a 4-sensor device with 4 

filters: R2 = 0.69 

[123] 

Rapeseed, 

barley, 

wheat 

EC, STI, gamma 

radiometrics and weather 

data 

Forecasting crop yield RF 
RMSE = 0.36–0.42 t/ha, Lin’s 

CCC = 0.89–0.92 

[53] Maize 

Genetic information of 

hybrids, soil and weather 

data 

Prediction of maize 

yield 
DNN 

(1) With predicted weather 

data: RMSE = 12% of average 

yield, 50% of STD; (2) Using 

ideal weather data: RMSE = 

11% of average yield, 46% of 

STD 

[124] Rice RGB leaf images 

Prediction of nutrient 

deficiencies (P, N, K) in 

image leaves from 

paddy fields 

ANN Acc = 77% 

[125] Rice 
RGB and multispectral 

images from UAV 

Estimation of rice grain 

yield 
CNN 

R2 values: (1) Only RGB images: 

0.424–0.499; (2) RGB and 

multispectral images: 0.464–

0.511 

[126] Maize 
Satellite spectral data, crop 

modeling data 

Estimation of end-of-

season and early maize 

yield 

RF 

(1) Early maize yield: R2 = 0.53, 

RMSE = 271 kgha−1, MAE = 202 

kgha−1; (2) End-of-season maize 

yield: R2 = 0.59, RMSE = 258 kg 

ha−1, MAE = 201 kgha−1 

[127] Potato 
Soil parameters and tillage 

treatments 

Forecasting of organic 

potato yield 
ANN, MLR 

(1) MLR: R2 = 0.894, RMSE = 

0.431, MAE = 0.327; (2) ANN: 

R2 = 0.95, RMSE = 0.431, MAE = 

0.327 

[128] Maize 
Simulations data, weather 

and soil data 

Prediction of crop 

yield based on gridded 

crop meta-models 

RF, XGBoost 

(1) XGBoost: (a) growing 

season climate: R2 = 0.91, MAE 

= 0.74, (b) annual climate: R2 = 

0.92, MAE = 0.66: 2) RF: (a) 

growing season climate: R2 = 

0.94, MAE = 0.71, (b) annual 

climate: R2 = 0.95, MAE = 0.58 

[129] Soybean 
Satellite spectral data, 

precipitation and daytime 

Forecasting soybean 

yield 

RF, multivariate 

OLS, LSTM 

(1) DOY 16: OLS: 

MAE = 0.42 Mgha−1; (2) DOY 

32: LSTM: MAE = 0.42 Mgha−1; 

(3) DOY 48: LSTM: MAE = 0.25 

Mgha-1; (4) DOY 64: LSTM: 

MAE = 0.24 Mgha−1 
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[130] Potato 

Topography, soil EC, soil 

chemistry and 

multispectral data from 

ground based sensors 

Potato tuber yield 

prediction via ground 

based proximal 

sensing 

LR, KNN, EN, SVR 

Best models: (1) SVR: 2017: (a) 

New Brunswick: RMSE = 5.97 

tha−1, (b) Prince Edward Island: 

RMSE = 6.60 tha−1; (2) 2018: a) 

New Brunswick RMSE = 4.62 

tha−1, b) Prince Edward Island: 

RMSE = 6.17 tha−1 

[131] 

Rice, 

maize, 

millet, ragi 

Weather data 
Prediction of various 

kharif crops yield 
MANN, SVR Overall RMSE = 79.85% 

[132] Wheat 
Soil, weather, and satellite 

spectral data 

Winter wheat 

prediction from four 

mid-season timings 

RF, GPR, SVM, 

ANN, KNN, DT, 

BT 

(1) RF: R2 = 0.81, RMSE = 910–

920 kgha−1, MAE = 740 kgha−1; 

(2) GPR: R2 = 0.78, RMSE = 920–

960 kgha−1, MAE = 735–767 

kgha−1 

[133] Maize 
Data derived from various 

cropping systems 

Maize grain yield 

prediction from CA 

and conventional 

cropping systems  

LDA, MLR, GNB, 

KNN, CART, SVM 

Best results: LDA: Acc = 0.61, 

Precision = 0.59, Recall = 0.59, 

F1-score = 0.59 

[134] Soybean 
Multispectral, RGB and 

thermal images from UAV 

Estimation of soybean 

grain yield 

DNN, PLSR, RFR, 

SVR 

DNN: (1) Intermediate-level 

feature fusion: R2 = 0.720, 

Relative RMSE = 15.9%; (2) 

input-level feature fusion: R2 = 

0.691, 

Relative RMSE = 16.8% 

[135] 
Soybean, 

Maize 
Weather data and soil data 

Soybean and corn 

yield forecasting 

CNN-RNN, RF, 

LASSO, DNN 

CNN-RNN: RMSE values 

(bushels/acre): (1) Soybean: 

2016: 4.15, 2017: 4.32, 2018: 4.91; 

(2) Maize: 2016: 16.48, 2017: 

15.74, 2018: 17.64 

[136] Grape 
Multispectral images from 

UAV 

Estimation of vineyard 

final yield 
MLP 

(1) Only NDVI: RMSE = 1.2 

kg/vine, Relative error = 28.7%; 

(2) Both NDVI ANF VFC: 

RMSE = 0.9 kg/vine, 

Relative error = 21.8% 

[137] Rice Satellite spectral data 
Prediction of rice crop 

yield 
RF, SVM 

(1) HD NDVI: RF: RMSE = 

11.2%, 

MAE = 9.1%, SVM: RMSE = 

8.7%, MAE = 5.6%; (2) HDM 

NDVI: RF: RMSE = 11.3%, 

MAE = 9.2%, SVM: RMSE = 

8.7%, MAE = 5.6% 

[138] Maize 

Fertilization, planting 

density, soil EC, satellite 

spectral data 

Prediction of corn 

yield response to 

nitrogen and seed rate 

management 

CNN 
Average value for 9 fields in 

the USA: RMSE = 0.7 

[139] Sugarcane Monthly precipitation data 
Forecasting of 

sugarcane yield  
RNN 

RMSE = 0.31 tha−1, MAE = 0.39  

tha−1, MAPE = 5.18% 

[140] Wheat 
Satellite spectral and 

weather data 

Estimation of wheat 

yield 

SVR, RF, Cubist, 

XGBoost, MLP, 

GPR, KNN, MARS 

SVR: RMSE = 0.55 tha−1, R2 = 

0.77 
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[141] 
Maize, 

Soybean 
Satellite spectral data 

Forecasting of maize 

and soybean yield  
MLR, ANN 

ANN: (1) Corn: RMSE = 4.83–

8.41, R = 0.91–0.99; (2) Soybean: 

RMSE = 5.18–7.77, R = 0.79–0.99 

[142] Maize 
Satellite spectral and 

weather data 

Prediction of maize 

yield under severe 

weather conditions  

DNN 

(1) Drought cases: R = 0.954; 2) 

Heatwave cases: R = 0.887–

0.914 

[143] Rice Weather data Paddy yield prediction ANN 
R = 0.78–1.00, 

MSE = 0.040–0.204 

[144] Maize 
Plant population, soil and 

weather data 

Maize yield forecasting 

in 3 US states of Corn 

Belt 

XGBoost, RF, 

LASSO, GBM, 

WEL 

WEL: RMSE = 1.138 kgha−1 

[145] Maize 
Satellite spectral and 

weather data 

Estimation of maize 

yield  
DLS R2 = 0.76, RMSE = 0.038 tha−1 

[146] 
Various 

crops 

Satellite spectral and 

weather data 

Prediction of autumn 

crops yield 
SVR, RF, DNN 

RMSE values (×104 tons) 

SVR = 501.98; RF = 477.45; 

DNN = 253.74 

[147] Wheat 
Multispectral images from 

UAV 

Growth monitoring 

and yield prediction of 

wheat in key growth 

stages 

LR, SMLR, PLSR, 

ANN, RF 

Best results: RF: 

R2 = 0.78, RMSE = 0.103 

[148] Cotton 
Topographic, weather, soil 

and satellite spectral data 

Within-field yield 

prediction 
RF, GB 

Best results: RF: RMSE = 0.20 

tha−1, CCC = 0.50–0.66 

[149] Cotton Satellite spectral data Yield prediction  RF, CART 
RF: RMSE = 62.77 Kg ha−1, 

MAPE = 0.32 

[150] Rice 
Multispectral images from 

UAV 

Prediction of rice grain 

yield 
RF 

RMSE = 62.77 Kg ha−1, MAPE = 

0.32 

[151] Soybean 
Multispectral images from 

UAV 

Yield estimation in 

soybean 
MLP R = 0.92 

[152] Potato 
Weather, irrigation, and  

satellite spectral data 

Forecasting of yield in 

potato fields at 

municipal level 

RF, SVM, GLM 

(1) winter cycle: R2 = 

0.757, %RMSE = 18.9; (2) 

summer cycle; R2 = 

0.858, %RMSE = 14.9 

[153] Sugarcane Satellite spectral data 
Prediction of 

sugarcane yield 
MLR R2 = 0.92–0.99 

[154] Cotton 
Multispectral images from 

UAV 

Estimation of cotton 

yield 
ANN, SVR, RFR ANN: R2 = 0.9 

[155] Rice Weather and soil data 

Prediction of rice 

yields from Blockchain 

nodes 

RF, MLR, GBR, 

DTR 

RF: R2 = 0.941, %RMSE = 0.62, 

MAE = 0.72 

[156] Maize 
Multispectral images from 

UAV 

Prediction of maize 

yield at specific 

phenological stages 

GB 
Stage V10: R2 = 0.90; Stage VT: 

R2 = 0.93 

[157] Wheat 

Satellite spectral and 

weather data, soil 

hydraulic properties 

Forecasting of wheat 

yield 
RF, MLR 

RF: 1 month before harvest: R = 

0.85, RMSE = 0.70 tha−1, ROC = 

0.90 

[158] Maize Soil and weather data 

Estimation of maize 

yield with publicly 

available data 

LSTM, LASSO, RF, 

SVR, AdaBoost 

LSTM: MAE = 0.83 (buac−1), 

MAPE = 0.48% 

[159] Rice Soil and weather data 
Finding optimal 

features gathering for 
RF, DT, GBM RF: MSE = 0.07, R2 = 0.67; 
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forecasting paddy 

yield 

[160] Alfalfa 
Hyperspectral data from 

UAV 

In-season alfalfa yield 

forecast 

Combination of 

RF, 

SVR, KNN 

R2 = 0.874 

[161] Maize 
Multispectral images from 

UAV 

Yield prediction of 

maize 

BPNN, SVM, RF, 

ELM 

SVM: RMSE = 1.099, MAE = 

0.886 

[162] Mentha 

Satellite spectral data,  

field inventory data (soil, 

plant height, biomass) 

Mentha crop biomass 

forecasting 
MLP R2 = 0.762, RMSE = 2.74 th−1 

[163] Wheat 
Multispectral images from 

UAV 

Prediction of wheat 

grain yield 

LR, RF, SVM, 

ANN 

LR: RMSE = 972 kgha−1, R2 = 

0.62 

[164] Maize 
Multispectral images from 

UAV 

Prediction of maize 

yield 

RF, RF+R, 

RF+BAG, SVM, 

LR, KNN, ANN 

RF: R = 0.78, MAE =  853.11 

kgha−1 

[165] Potato 
Hyperspectral data from 

UAV 

Yield prediction at two 

growth stages 
RF, PLSR 

RF: R2 = 0.63, MAE =  853.11 

kgha−1 

[166] Carrot Satellite spectral data Carrot yield Mapping RF 
R2 = 0.82, RMSE = 2.64 Mgha−1; 

MAE = 1.74 Mgha−1 

[167] Soybean 
multispectral images from 

UAV 
Predicting yield DT RMSE = 196 kgha−1 

[168] Wheat 
Satellite spectral,  soil and 

weather data 

Winter wheat yield 

prediction at a regional 

level 

Combination of 

LSTM and CNN 
R2 = 0.75, RMSE = 732 kgha−1; 

[169] Potato 
Hyperspectral data from 

UAV 

Yield prediction at two 

growth stages 
RF, PLSR R2 values: RF: 0.63; PLSR: 0.81 

[170] Wheat 
Satellite spectral and 

weather data 

Winter yield 

prediction in the 

Conterminous United 

States 

OLS, LASSO, 

SVM, RF, 

AdaBoost, DNN 

AdaBoost: R2 = 0.86, RMSE = 

0.51 tha−1, MAE = 0.39 tha−1 

Acc: Accuracy: CA: Conservation Agriculture; CI: Crop Indices; CEC: Cation Exchange Capacity; CCC: Concordance Cor-

relation Coefficient; DOY: Day Of Year; EC: Electrical Conductivity; HD: Heading Date; HDM: Heading Date to Maturity; 

K: Potassium; Mg: Magnesium; N: Nitrogen; OLI: Operational Land Imager; P: Phosphorus; RGB: Red-Green-Blue; S: 

Sulphur; SOM: Soil Organic Matter; SPAD: Soil and Plant Analyzer Development; STI: Soil Texture Information; STD: 

Standard Deviation; UAV: Unmanned Aerial Vehicle; UGV: Unmanned Ground Vehicle. 

Table A2. Crop Management: Disease Detection. 

Ref Crop Input Data Functionality 
Models/Algo-

rithms 
Best Output 

[171] 
Various 

crops 
RGB images 

Detection and diagnosis 

of plant diseases 
CNN Acc = 99.53% 

[172] Melon 
Fluorescence, thermal 

images 

Detection of Dickeya 

dadantii in melon 

plants 

LR, SVM, ANN 
ANN: Whole leaves: Acc = 

96%; F1 score = 0.99 

[173] Tomato RGB images 

Recognition of 10 plant 

diseases and pests in 

tomato plants 

CNN Recognition rate = 96% 

[174] Avocando Hyperspectral images 

Detection of nitrogen 

and iron deficiencies 

and laurel wilt disease 

in avocando 

DT, MLP 
MLP: Detection at early stage: 

Acc = 100% 
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[175] Maize RGB images 

Examination of nine 

factors affecting disease 

detection in maize fields

CNN 

Acc values: (1) Original 

dataset: 76%; Background 

removed: 79%; (2) Subdivided 

(full): 87%; (3) Subdivided 

(reduced): 81% 

[176] Milk thistle 
Spectral measurements 

form spectroradiometer 

Identification of 

Microbotryum silybum 

in milk thistle plants 

MLP-ARD Acc = 90.32% 

[177] Tomato 
Spectral measurements 

form spectroradiometer 

Detection of leaf 

diseases (target, 

bacterial spots and late 

blight) in tomato 

KNN 

Acc values: (1) Healthy leaves: 

100%, (2) Asymptomatic: 

100%, (3) Early stage: 97.8%, (4) 

Late stage: 100% 

[178] Maize RGB images 

Identification of eight 

types of leaf diseases in 

maize 

CNN 

1) GoogLeNet: 

Acc = 98.9%; 2) Cifar10: Acc = 

98.8% 

[179] 
Various 

crops 
RGB images 

Identification of six 

plant leaf diseases 
RBFN 

(1) Early blight: Acc = 0.8914; 

(2) Common rusts: Acc = 0.8871 

[180] Citrus RGB images 
Detection and classifica-

tion of citrus diseases 
SVM 

Acc values: 1st dataset: 97%; 

1st and 2nd dataset: 89%; 3rd 

dataset: 90.4% 

[181] Grape 
Multispectral images 

from UAV 

Identification of 

infected areas 
CNN 

(1) Color space YUV: Acc = 

95.84%; (2) Color space YUV 

and ExGR: Acc = 95.92% 

[182] Soybeean RGB images 

Detection and 

classification of three 

leaf diseases in 

soybeans 

SVM 

(1) Healthy: Acc = 82%; (2) 

Downy mildew: Acc = 79%; (3) 

Frog eye: Acc = 95.9%; (4) 

Septoria leaf blight: Acc = 90% 

[183] Millet RGB images 

Identification of fungal 

disease (mildew) in 

pearl millet 

CNN 

Acc = 95.00%, Precision = 

90.50%, Recall = 94.50%, F1 

score = 91.75% 

[184] Maize RGB images from UAV 
Detection of northern 

leaf blight in maize 
CNN Acc = 95.1% 

[185] Wheat RGB images from UAV 

Classification of 

helminthosporium leaf 

blotch in wheat 

CNN Acc = 91.43%, 

[186] Avocado 
RGB images, 

multispectral images 

Detection of laurel wilt 

disease in healthy and 

stressed avocado plants 

in early stage 

MLP, KNN 

Healthy vs. Nitrogen 

deficiency using 6 bands 

images: (1) MLP: 

Acc = 98%; (2) KNN: Acc = 86% 

[187] Basil RGB images 

Identification and 

classification of five 

types of leave diseases 

in four kinds of basil 

leaves 

DT, RF, SVM, 

AdaBoost, GLM, 

ANN, NB, KNN, 

LDA 

RF: Acc = 98.4% 

[188] 
Various 

crops 
RGB images 

Identification of several 

diseases on leaves 
CNN 

Acc values: (1) Healthy: 89%; 

(2) Mildly diseased: 31%; (3) 

Moderately diseased: 87%; (4) 

Severely diseased: 94% 

[189] Tea RGB images from UAV 
Identification of tea red 

Scab, tea leaf blight and 

SVM, DT, RF, 

CNN 
CNN: Acc values: 
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tea red leaf spot 

diseases in tea leaves 

(1) tea red Scab:0.7; (2) tea leaf 

blight:1.0; (3)tea red leaf 

spot:1.0 

[190] Wheat 
Hyperspectral images 

from UAV 

Detection of yellow rust 

in wheat plots 
CNN Acc = 0.85 

[191] Grape RGB images 
Detection of grapevine 

yellows in red grapes 
CNN 

Sensitivity = 98.96% 

Specificity = 99.40% 

[192] Maize RGB images from UAV 
Detection of northern 

leaf blight in maize 
CNN 

Acc = 0.9979, 

F1 score = 0.7153 

[193] Sugar beet RGB images 

Detection and 

classification of 

diseased leaf spots in 

sugar beet 

CNN Acc = 95.48% 

[194] 
Various 

crops 
RGB images 

Identification of various 

plant leaf diseases 
CNN Acc = 96.46% 

[195] Strawberry RGB images 

Detection of powdery 

mildew in strawberry 

leaves 

LDA 

(1) Artificial lighting 

conditions: 

recall = 95.26%, precision = 

95.45%, F1 score = 95.37%; (2) 

Natural lighting conditions: 

recall = 81.54%, precision = 

72%, F1 score = 75.95% 

[196] 

Various 

different 

crops 

RGB images 
Detection of diseased 

plants 
DL Acc = 93.67% 

[197] Citrus 
Hyperspectral images 

from UAV 

Detection of canker 

disease on leaves and 

immature fruits 

RBFN, 

KNN 

RBFN: Acc values: (a) 

asymptomatic: 94%, (b) early 

stage: 96%, (c) late stage: 100% 

[198] Grape RGB images 
Detection of diseased 

vine on leaves 
SVM Acc = 95% 

[199] Wheat RGB images 
Identification of three 

leaf diseases in wheat 
CNN 

Acc values: (1) Septoria: 100%; 

(2) Tan Spot: 99.32%; (3) Rust: 

99.29% 

[200] Grape 
Spectral measurements 

form spectroradiometer 

Classification of Flaves-

cence dorée disease in 

grapevines 

SVM, LDA SVM: Acc = 96% 

[201] Papaya RGB images 
Recognition of five 

papaya diseases 
SVM Acc = 90%, Precision = 85.6% 

[202] Rice RGB images 

Recognition and 

classification of rice 

infected leaves 

KNN, ANN ANN: Acc = 90%, Recall = 88% 

[203] Tomato 
Hyperspectral images 

from UAV 

Detection of bacterial 

spot and target spot on 

tomato leaves 

MLP, STDA 
MLP: Acc values: (a) bacterial 

spot: 98%, (b) target spot: 97% 

[204] Squash 

Hyperspectral images 

from UAV and 

laboratory 

measurements 

Classification of pow-

dery mildew in squash 

RBFN 

 

Acc values: (1) Laboratory: 

Asymptomatic: 82%, Late 

stage: 99%; (2) Field conditions: 

Early stage: 89%, Late disease 

stage: 96% 
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[205] Tomato 

Hyperspectral images 

from UAV and 

laboratory 

measurements 

Detection of bacterial 

spot and target spot on 

tomato leaves 

RBFN, STDA 

 

Field conditions: Acc values: a) 

Healthy vs. BS: 98%, b) Healthy 

vs. TS: 96%, c) Healthy vs. 

TYLC: 100% 

[206] Tomato RGB images 
Identification of various 

diseases in tomato 
CNN 

Acc values: (1) PV dataset: 

98.4%; (2) 2nd dataset: 98.7%; 

(3) Field data: 86.27% 

[79] Walnut RGB images 

Identification of 

anthracnose infected  

leaves 

CNN 

Acc values: (1) RGB: 95.97%; (2) 

Grayscale: 92.47%; (3) Fast 

Fourier: 92.94% 

[207] 
Various 

crops 
RGB images 

Classification of 

infected leaves 
DBN 

Acc = 0.877, Sensitivity = 0.862, 

Specificity = 0.877 

[208] Grape 
Multispectral images 

from UAV 

Detection of Mildew 

disease in vineyards 
CNN 

Acc values: (1) Grapevine-

level: 92%; 2) Leaf level: 87% 

[209] Rice RGB images, videos 

Video detection of 

brown spot, stem borer 

and sheath blight in rice 

CNN 

(1) Brown spot: Recall = 75.0%, 

Precision = 90.0%; (2) Stem 

borer: 

Recall = 45.5%, Precision = 

71.4%; 

(3) Sheath blight: Recall = 

74.1%, 

Precision = 90.9% 

[210] Cassava RGB images 

Detection and 

classification of 

diseased leaves of fine-

grain cassava 

CNN Acc = 93% 

[211] Banana 

Satellite spectral data,  

Multispectral images 

from UAV, RGB images 

from UAV 

Detection of banana 

diseases in different 

African landscapes 

RF, SVM 

RF: Acc = 97%, omissions error 

= 10%; commission error = 10%; 

Kappa coefficient = 0.96 

[212] Tomato RGB images 

Detection of early 

blight, leaf mold and 

late blight on tomato 

leaves 

CNN Acc = 98% 

[213] Pepper 
Spectral reflectance at 

350–2500 nm 

Detection of fusarium 

disease in pepper leaves 
ANN, NB, KNN 

ΚNN: Average success rate = 

100% 

[214] Tomato 
Spectral measurements 

form spectroradiometer 

Detection of fusarium 

disease on pepper 

leaves 

CNN Acc = 98.6% 

[215] Citrus 
Multispectral images 

from UAV 

Detection of citrus 

greening in citrus 

orchards 

SVM, KNN, MLR, 

NB, AdaBoost, 

ANN 

AdaBoost: Acc = 100% 

[216] Soybean RGB images 
Prediction of charcoal 

rot disease in soybean 
GBT 

Sensitivity = 96.25%, specificity 

= 97.33% 

[217] Wheat RGB images from UAV 
Detection of wheat 

lodging  
RF, CNN, SVM CNN: Acc = 93% 

[218] Tomato Weather data 

Prediction of powdery 

mildew disease in to-

mato plants 

ELM Acc = 89.19%, AUC = 88.57% 

[219] Soybean RGB images 
Diagnosis of soybean 

leaf diseases 
CNN Acc = 98.14% 
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[220] Potato RGB images 
Identification of early 

and late blight disease 
NB, KNN, SVM SVM: Average Acc = 99.67% 

[221] 
Various 

crops 
RGB images 

Quantification of uncer-

tainty in detection of 

plant diseases 

BDL 

Mean softmax probability 

values: (1) Healthy: 0.68; (2) 

Non-Healthy: 0.72; 

[222] Coffee Satellite spectral data 

Identification of coffee 

berry necrosis via satel-

lite imagery 

MLP, RF, NB NB: Acc = 0.534 

[223] Tomato RGB images 

Recognition of blight, 

powdery mildew, leaf 

mold fungus and to-

bacco mosaic virus dis-

eases 

CNN 
Faster RCNN: 

mAP = 97.01% 

[224] Maize RGB images 

Diagnosis of northern 

leaf blight, gray leaf 

spot, and common rust 

diseases  

CNN 
Acc = 98.2%; macro average 

precision = 0.98 

[225] Grape RGB images 

Detection of black mea-

sles, black rot, leaf 

blight and mites on 

leaves 

CNN mAP = 81.1% 

[226] Grape 

Weather data, expert in-

put (disease incidence 

form visual inspection) 

Forecasting downy mil-

dew in vineyards 

GLM, LASSO, RF, 

GB 
GB: AUC = 0.85 

[227] Maize RGB images 
Detection of northern 

leaf blight in maize 
CNN mAP = 91.83% 

[228] Onion RGB images 

Detection of downy 

mildew symptoms in 

onions field images 

WSL mAP@0.5 = 74.1–87.2% 

[229] Coffee RGB images 

Detection of coffee leaf 

rust via remote sensing 

and wireless sensor net-

works 

CNN F1 score = 0.775, p-value = 0.231 

[230] Tomato 

Weather data, multispec-

tral images captured 

from UAV 

Detection of late blight 

disease 
CNN 

Acc values: AlexNet: (1) 

Transfer learning: 89.69%; (2) 

Feature extraction: 93.4%, 

[231] Rice RGB images 
Detection of brown rice 

planthopper 
CNN 

Average recall rate = 81.92%, 

average Acc = 94.64% 

[232] Grape 

UAV multispectral im-

ages, depth map infor-

mation 

Detection of vine dis-

eases 
CNN VddNet: Accuracy = 93.72% 

[233] Apple RGB images 
Identification of apple 

leaf diseases (S, FS, CR) 
CNN 

Improved VGG16: Acc = 

99.40%(H), 98.04% (S), 

98.33%(FS), 100%(CR) 

[234] Cotton 
UAV multispectral im-

ages 

Disease classification of 

cotton root rot 
KM, SVM 

KM: Acc = 88.39%, Kappa = 

0.7198 

Acc: Accuracy; AUC: Area Under Curve; CR: Cedar Rust; ExGR: Excess Green Minus Excess Red; FS: Frogeye Spot; H: 

Healthy; mAP: mean Average Precision; RGB: Red-Green-Blue; S: Scab; TYLC: Tomato Yellow Leaf Curl; UAV: Unmanned 

Aerial Vehicle; VddNet: Vine Disease Detection Network. 
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Table A3. Crop Management: Weed Detection. 

Ref Input Data Functionality 
Models/Algo-

rithms 
Best Output 

[235] RGB images 

Classification of thinleaf 

(monocots), broa leaf (dicots) 

weeds 

AdaBoost with NB 

Acc values: (1) Original da-

taset: 98.40%; (2) expanded 

dataset: 94.72% 

[236] RGB images from UAV 
Detection of weeds in bean, 

spinach fields 
CNN 

Acc values: (1) Bean field: 

88.73%; 

(2) Spinach field: 94.34% 

[237] RGB images 
Detection of four weed species in 

sugar beet fields 
SVN, ANN 

Overall Acc: SVM: 95.00%; 

Weed classification: SVM: 

93.33%; Sugar beet plants: 

SVM: 96.67% 

[238] 
RGB images from UAV, 

multispectral images 

Detection of Gramineae weed in 

rice fields 
ANN 

Best system: 

80% < M/MGT < 108%, 70% < 

MP < 85% 

[239] RGB images 
Classification of crops (three 

species) and weeds (nine species) 
CNN Average Acc: 98.21±0.55% 

[240] 
Multispectral and RGB 

images from UAV 

Weed mapping between and 

within crop rows, (1) cotton; (2) 

sunflower 

RF 

Weed detection Acc: 

(1) Cotton: 84% 

(2) Sunflower: 87.9% 

[241] Hyperspectral images 
Recognition of three weed species 

in maize crops 
RF 

Mean correct classification 

rate: (1) Zea mays: 1.0; (2) 

Convolvulus arvensis: 

0.789; Rumex: 0.691; 

Cirsium arvense 0.752 

[242] RGB images from UAV 
Detection of weeds in early season 

maize fields 

RF 

 

Overall Acc = 0.945, Kappa 

= 0.912 

[243] RGB images from UAV 
Weed mapping and prescription 

map generation in rice field 
FCN 

Overall Acc = 0.9196, 

mean intersection over un-

ion (mean IU) = 0.8473 

[244] Handheld multispectral data 

Weed detection in maize and 

sugar beet row-crops with: 

(1) spectral method; (2) spatial; (3) 

both methods 

SVM 

Mean detection rate: (1) 

spectral method: 75%; (2) 

spatial: 79%; (3) both meth-

ods: 89% 

[245] 
Multispectral images from 

UAV 

Development of Weed/crop 

segmentation, mapping 

framework in sugar beet fields 

DNN 

AUC: (1) background: 

0.839; (2) crop: 0.681; (3) 

weed: 0.576 

[246] RGB images 
Classification of potato plant and 

three weed species 
ANN Acc = 98.1% 

[247] RGB images 
Estimation of weed growth stage 

(18 species) 
CNN 

Maximum Acc = 78% (Po-

lygonum spp.), minimum 

Acc = 46% (blackgrass), av-

erage Acc = 70% (the num-

ber of leaves) and 96% for 

deviation of two leaves 
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[248] Multispectral images 
Classification of corn (crop) and 

silver beet (weed) 
SVM Precision = 98%, Acc = 98% 

[249] RGB images 

Classification of Carolina 

Geranium within strawberry 

plants 

CNN 

 

F1 score values: (1)  

DetectNet: (0.94, highest); 

(2) VGGNet: 0.77; 

(3) GoogLeNet: 0.62 

[250] RGB images 
Classification of weeds in organic 

carrot production 
CNN 

Plant-based evaluation: 

Acc = 94.6%, 

Precision = 93.20%, 

Recall = 97.5%, 

F1 Score = 95.32% 

[251] Grayscale images from UGV 
Recognition of Broad-leaved dock 

in grasslands 
CNN, SVM VGG-F: Acc = 96.8% 

[252] 
Multispectral images from 

UAV 

Mapping of Black-grass weed in 

winter wheat fields 
CNN 

Baseline model: 

AUC = 0.78; Weighted 

kappa = 0.59; Average mis-

classsification rate = 17.8% 

[253] RGB images 

Segmentation of rice and weed 

images at seedling stage in paddy 

fields 

FCN 
Semantic segmentation: 

Average Acc rate = 92.7% 

[254] RGB images from UGV 

Creation of multiclass dataset for 

classification of eight Australian 

rangelands weed species 

CNN 

RS-50: Average Acc = 

95.7%, average inference 

time = 53.4 ms per image 

[255] RGB images 

Evaluation of weed detection, 

spraying and mapping system. 

Two Scenarios: (1) artificial 

weeds, plants; (2) real weeds, 

plants 

CNN 

Scenario: (1) Acc = 91%, Re-

call = 91%; (2) Acc = 71%, 

Precision = 78% (for plant 

detection and spraying 

Acc) 

[256] RGB images 
Detection of goldenrod weed in 

wild blueberry crops 
LC, QC QC: Acc = 93.80% 

[257] RGB images 
Detection of five weed species in 

turfgrass 
CNN 

Precision values: Dollar 

weed: VGGNet (0.97); old 

world diamond-flower: 

VGGNet (0.99); Florida 

pusley: VGGNet (0.98); an-

nual bluegrass: DetectNet 

(1.00) 

[258] RGB images 
Detection of three weed species in 

perennial ryegrass 
CNN 

Precision values: Dande-

lion: DetectNet (0.99); 

ground ivy: VGGNet 

(0.99), spotted spurge: 

AlexNet (0.87) 

[259] 
RGB images, multispectral 

images from UGV 

Crop-weed classification along 

with stem detection 
FCN 

Overall: Mean precision = 

91.3%, Mean recall = 96.3% 

[260] RGB images 

Identification of crops (cotton, 

tomato) and weeds (velvetleaf 

and nightsade) 

CNN, SVM, 

XGBoost, LR 

Densenet and SVM: 

micro F1 score = 99.29% 
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[261] Videos recordings 
Classification of two weeds 

species in rice field 
ANN, KNN 

Acc values: Right channel 

(76.62%), Left channel 

(85.59%) 

[262] RGB images 
Weed and crop discrimination in 

paddy fields 
MCS, SRF, SVM 

Acc values: Right channel 

(76.62%), Left channel 

(85.59%) 

[263] Gray-scale and RGB images 
Weed and crop discrimination in 

carrot fields 
RF Acc = 94% 

[264] 
Multispectral and RGB 

images 

Discrimination of weed and crops 

with similar morphologies 
CNN Acc = 98.6% 

[265] RGB images 
Detection of C. sepium weed and 

sugar beet plants 
CNN 

mAP = 0.751–0.829 

APs@IoU0.5 = 0.761–0.897 

[266] RGB images 
Recognition of eight types of 

weeds in rangelands 
CNN, RNN 

DeepWeeds dataset: 

Acc = 98.1% 

[267] 
Multispectral images from 

UAV 
Weed estimation on lettuce crops SVM, CNN 

F1 score values: (1) SVM: 

88%; (2) CNN-YOLOv3: 

94%; (3) Mask R-CNN: 94% 

[268] RGB images 

Examination of pre-trained DNN 

for improvements in weed identi-

fication 

CNN 

(1) Xception: improvement 

= 0.51%; (2) Inception-

Resnet: improvement = 

1.89% 

[269] RGB images from UAV 
Detection of five weeds in 

soybean fields  
CNN 

Faster RCNN: precision = 

065, recall = 0.68, F1 score = 

0.66, IoU = 0.85 

[270] RGB images 
Detection of goose grass weed in 

tomato, strawberry fields 
CNN 

(1) Strawberry: (a) entire 

plant: F1 score = 0.75, (b) 

leaf blade: F1 score = 0.85; 

(2) Tomato: (a) entire plant: 

F1 score = 0.56, (b) leaf 

blade: F1 score = 0.65 

[271] Video recordings 
Detection of five weed species in 

Marfona potato fields 
ANN 

Correct classification rate = 

98.33% 

[272] 
In situ measurements, satellite 

spectral data 

Identification of gamba grass in 

pasture fields 
XGBoost Balanced Acc = 86.9% 

[273] 
RGB images from UAV, 

satellite spectral data 
Weed maps creation in oat fields RF 

Acc values: (1) Subset A: 

89.0%; (2) Subset B: 87.1% 

[274] 
In situ measurements, RGB 

images from UAV 

Identification of Italian ryegrass in 

early growth wheat 
DNN 

Presicion = 95.44%, recall = 

95.48%, F score = 95.56% 

[275] RGB images from UGV 

Weed detection evaluation of a 

spraying robot in potato fields on: 

(1) Image-level; (2) application-

level; (3) field-level 

CNN 

YOLOv3: (1) Image-level: 

recall = 57%, precision = 

84%; (2) application-level: 

plants detected = 83%; (3) 

field-level: correct spraying 

= 96% 

[276] RGB images from UGV 
Detection of four weed species in 

maize and bean crops 
CNN 

Average precision = 0.15–

0.73 
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[277] RGB images from UAV 
Detection of Colchicum 

autumnale in grassland sites 
CNN 

U-Net: Precision = 0.692, 

Recall = 0.886, F2 score = 

0.839 

[278] RGB images from UAV 
Weed mapping of Rumex 

obtusifolius in native grasslands 
CNN 

VGG16: Acc = 92.1%, F1 

score = 78.7% 

Acc: Accuracy; AUC: Area under Curve; IoU: Intersection over Union; mAP: mean Average Precision; RGB: Red-Green-

Blue; UAV: Unmanned Aerial Vehicle; UGV: Unmanned Ground Vehicle. 

Table A4. Crop Management: Crop Recognition. 

Ref Crop Input Data Functionality 
Models/Algo-

rithms 
Best Output 

[279] 
Various 

crops 
Satellite spectral data Classification of early-season crops RF 

Beginning of growth 

stage: acc = 97.1%, 

kappa = 93.5% 

[280] 
Various 

crops 

Satellite spectral and 

phenological data 

Identification of various crops from 

remote sensing imagery 
SVM, RF, DF 

DF: (1) 2015: overall 

acc = 88%; (2) 2016: 

overall acc = 85% 

[281] 
Maize, Rice, 

Soybean 
Satellite spectral data 

Three-dimensional classification of 

various crops 

CNN, SVM, 

KNN 

CNN: (1) 2015: overall 

acc = 0.939, kappa = 

0.902; (2) 2016: overall 

acc = 0.959, kappa = 

0.924 

[282] 
Various 

crops 

Satellite spectral data, in 

situ data 

Identification of crops growing 

under plastic covered greenhouses 
DT 

Overall acc = 75.87%, 

Kappa = 0.63 

[283] 
Various 

crops 

Satellite data, 

phenological, in situ data 
Classification of various crops NB, DT, KM 

KM: overall acc = 

92.04%, Kappa = 

0.7998 

[284] 
Cabbage, 

Potato 

RGB images from UAV, 

in situ data 

Classification of potato and cabbage 

crops 
SVM, RF 

SVM: overall acc = 

90.85% 

[285] 
Various 

crops 
Satellite spectral data Classification of various crops SVM Overall acc = 94.32% 

[286] 
Various 

crops 

Satellite spectral data, in 

situ data 

Classification of various crops in 

large areas 

EBT, DT, 

WNN 
EBT: overall acc = 87% 

[287] 
Various 

crops 

Satellite spectral data, in 

situ data 
Classification of various crops SVM overall acc = 92.64% 

[288] 
Various 

crops 

Field location, in situ and 

satellite spectral data 

Classification of six crops with small 

sample sizes 

FFNN, ELM, 

MKL, SVM 

MKL: accuracy = 

92.1% 

[289] 

Wolfberry, 

Maize, 

Vegetables 

Satellite spectral data 
Crop classification in cloudy and 

rainy areas 
RNN 

Landsat-8: overall acc 

= 88.3%, Kappa = 0.86 

[290] 

Maize, 

Canola, 

Wheat 

Satellite spectral data, in 

situ data 
Crop classification 

RF, ANN, 

SVM 

RF: overall acc = 0.93, 

Kappa = 0.91 

[291] 
Various 

crops 
Satellite spectral data Classification of various crop types 

Combination 

of FCN-LSTM 
Acc = 86%, IoU = 0.64 

[292] 
Various 

crops 
Satellite spectral data Crop classification of various crops LightGBM Highest acc: 92.07% 

[293] 
Maize, 

Peanut, 

Satellite spectral and in 

situ data 
Prediction of different crop types FCN, SVM, RF 

Best crop mapping: 

FCN: acc = 85%, 

Kappa = 0.82 
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Soybeans, 

Rice 

[294] 
Various 

crops 

Satellite spectral and in 

situ data 
Classification of early growth crops 

CNN, RNN, 

RF 

Highest Kappa: 1D 

CNN: 0.942 

[295] 
Various 

crops 

Satellite spectral and in 

situ data 
Classification of various crops 

CNN, LSTM, 

RF, XGBoost, 

SVM 

CNN: acc = 85.54%, F1 

score = 0.73 

[296] 
Various 

crops 
Satellite spectral data Classification of parcel-based crops LSTM, DCN 

DCN: overall acc = 

89.41% 

[297] 
Various 

crops 
Satellite spectral data 

Classification of crops in farmland 

parcel maps 

LSTM, RF, 

SVM 

LSTM: overall acc = 

83.67%, kappa = 

80.91% 

[298] 
Various 

crops 

Satellite spectral data, in 

situ data 
Crop classification 

SVM, RF, 

CNN-RNN, 

GBM 

Pixel R-CNN: acc = 

96.5% 

[299] 

Zea mays, 

Canola, 

radish 

Grayscale testbed data 
Classification of the crops 

 
SVM 

Quadratic SVM: Preci-

sion = 91.87%, Recall = 

91.85%, F1 score = 

91.83% 

[300] Rice Morphological data 
Classification of two rice species 

(Osmancik-97 and Cammeo) 

LR, MLP, 

SVM, DT, RF, 

NB, KNN 

LR: acc = 93.02% 

[301] Soybean 
Hyperspectral data, seed 

properties 

Discrimination of 10 soybean seed 

varieties 

TS-FFNN, 

SIMCA, PLS-

DA, BPNN 

TS-FFNN in terms of 

identification Acc, sta-

bility and computa-

tional cost 

[302] Cotton 
Hyperspectral data, seed 

properties 

Identification of seven cotton seed 

varieties: (1) Full spectra, (2) 

Effective wavelengths 

PLS-DA, LGR, 

SVM, CNN 

(1) Full spectra: 

CNN-SoftMax: 

88.838%; 

(2) Effective wave-

lengths: 

CNN-SVM: 84.260 % 

[303] 
Various 

plants 
RGB images of leaves 

Recognition of 15 plant species of 

Swedish leaf dataset 
CNN 

Macro average: 

(1) Precision = 0.97, (2) 

Recall = 0.97, (3) F1 

score = 0.97 

[304] 

Various 

shrubs and 

trees 

RGB images of leaves 
Identification of 30 shrub and trees 

species 

RF, SVM, 

AdaBoost, 

ANN 

SVM: acc = 96.5–98.4% 

[305] 
Various 

plants 
RGB images of leaves Identification of seven plant species 

BPNN, SOM, 

KNN, SVM 

BPNN: Recognition 

rate = 92.47% 

[306] 
Various 

crops  
Satellite spectral data Crop classification SVM 

SVM (RBF): overall 

acc values: (1) 2016: 

88.3%; (2) 2017: 91%; 

(3) 2018: 85.00% 

[307] 
Various 

crops 
Satellite spectral data Crop classification FCN 

3D FCN: overall acc = 

97.56%, Kappa = 

95.85% 

[308] 

Cotton, 

Rice,Wheat, 

Gram 

Satellite spectral data Crop classification RF, KM RF: acc = 95.06% 
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[309] 
Various 

crops 
Satellite spectral data Crop classification 

SVM, RF, 

CART 

RF: overall acc = 

97.85%, Kappa = 0.95 

[310] 
Various 

crops 

Satellite spectral data, in 

situ data 
Crop classification RF 

overall acc = 75%, 

Kappa = 72% 

[311] 
Maize, 

Soybean 
Satellite spectral data Crop classification 

RF, MLP, 

LSTM 

LSTM: confidence in-

terval = 95% 

[312] 
Various 

crops 

Satellite spectral and in 

situ data 
Crop classification 

XGBoost, 

SVM, RF, 

MLP, CNN, 

RNN 

CNN: overall acc = 

96.65% 

[313] Rice Satellite spectral data Crop classification 

CNN, SVM, 

RF, XGboost, 

MLP 

CNN: overall acc = 

93.14%, F1 score = 

0.8552 

[314] 
Various 

crops 

Satellite spectral and in 

situ data 
Crop classification RF 

Overall acc = 0.94, 

Kappa = 0.93 

[315] 
Various 

crops 
Satellite spectral data Crop classification 

CNN, LSTM, 

SVM 

CNN: overall acc = 

95.44%, Kappa = 

94.51% 

[316] 
Various 

crops 
Satellite spectral data 

Crop classification prior to 

harvesting 

DT, KNN, RF, 

SVM 

RF: overall acc = 

81.5%, Kappa = 0.75 

[317] 
Various 

crops 
Satellite spectral data Crop classification CNN Overall acc = 98.19% 

[318] 
Various 

crops 
Satellite spectral data Crop classification 

SVM, DA, DT, 

NNL 
NNL: F1 score = 0.88 

[319] 

Banana, 

Rice, 

Sugarcane, 

Cotton 

Satellite spectral and in 

situ data 
Crop classification SVM Overall acc = 89% 

[320] 
Various 

crops 

Satellite spectral and in 

situ data 
Crop classification RF Overall acc = 93.1% 

Acc: Accuracy; IoU: Intersection over Union; RGB: Red-Green-Blue; UAV: Unmanned Aerial Vehicle. 

Table A5. Crop Management: Crop Quality. 

Ref Crop Input Data Functionality 
Models/Algo-

rithms 
Best Output 

[64] Apples 

Quality features, (flesh 

firmness, soluble solids, 

fruit mass and skin color) 

Classification of apple 

total quality: very poor, 

poor, medium, good 

and excellent 

FIS, ANFIS 

FIS: acc values: (1) 2005: 

83.54%; 2006: 

92.73%; 2007: 96.36% 

[321] Pepper 

RGB images, quality 

features (color, mass and 

density of peppers) 

Recognition of pepper 

seed quality 
BLR, MLP 

MLP: 15 traits, stability = 

99.4%, predicted germination 

= 79.1%, predicted selection 

rate = 90.0% 

[322] Soybeans 
Satellite spectral and soil 

data 

Estimation of crop gross 

primary productivity 
RF, ANN 

ANN: R2 = 0.92, RMSE = 1.38 

gCdm−2 

[323] Wheat 
RGB images captured by 

UAV 

Estimation of 

aboveground nitrogen 

content combining 

various VI and WFs 

PLSR, PSO-SVR 
PSO-SVR: R2 = 0.9025, RMSE  

= 0.3287  
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[324] 

Millet, 

rye, 

maize 

RGB images captured in 

laboratory 

Assessment of grain 

crops seed quality 
CNN 

Faster R-CNN: (1) Pearl millet: 

mAP = 94.3%; (2) rye: mAP = 

94.2%, (3) Maize: mAP = 

97.9% 

 

[325] 
Jatropha 

curcas 
X-ray imaging 

Prediction of vigor and 

germination 
LDA 

Acc values: 

Fast germination: 82.08%; 

Slow germination: 76.00%; 

Non-germinated: 88.24% 

[326] 
Various 

legumes 

Spectral data form 

spectroradiomener 

Estimation of five 

warm-season legumes 

forage quality 

PLS, SVM, GP 

SVM: All five crops: Acc = 
���

�

��
�  

= 0.92–0.99, IVTD: Acc =  
���

�

��
�  

= 0.42–0.98 

[327] 
Forage 

grass 
X-ray imaging 

Prediction of vigor and 

seed germination 

LDA, PLS-DA, RF, 

NB, SVM 

PLS-DA: Acc values: 

(1) Vigor: FT-NIR: 0.61, X-ray: 

0.68, 

Combination: 0.58; 

(2) Germination: FT-NIR: 0.82, 

X-ray: 0.86, Combination: 0.82 

[328] Tomato RGB images 

Dimensions and mass 

estimation for quality 

inspection 

(1) DSM, (2) Di-

mensions (CNN), 

(3) Mass estima-

tion on: a) MMD 

(BET, GPR, SVR, 

ANN, GPR), b) 

EDG (BET, GPR, 

SVR, ANN) 

(1) DSM: precision = 99.7%; 

MAE values: (2) Width (2.38), 

Length (2.58); (3) Mass 

estimation: (a) MMD (4.71), 

(b) EDG (13.04) 

[329] Peach Hyperspectral images 
Estimation of soluble 

solids content 
SAE-RF R2 = 0.9184, RMSE = 0.6693 

Acc: Accuracy; DSM: Detection and Segmentation Module; EDG: Estimated Dimensions Geometry; IVTD: In Vitro True 

Digestibility; RGB; Red-Green-Blue; MMD: Manually Measured Dimensions; mAP: mean Average Precision; PSO: Particle 

Swarm Optimization; RGB; Red-Green-Blue; SAE: Stacked AutoEncoder; VI: Vegetation Indices; WF: Wavelet Features. 
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Table A6. Water management. 

Ref Property Input Data Functionality 
Models/Algo-

rithms 
Best Output 

[330] Crop water status 
Weather data, crop water 

status, thermal images 

Prediction of vineyard’s 

water status. Scenario A: 

with RT; Scenario B: 

without RT 

REPTree 

(1) Scenario A: pre-

diction: R2 = 0.58, 

RMSE = 0.204 MPa; 

(2) Scenario B: pre-

diction: R2 = 0.65, 

RMSE = 0.184 MPa. 

[331] Crop water status 
Crop water status, hyper-

spectral data 

Discrimination of 

stressed and non-stressed 

vines 

RF, XGBoost 
RF: Acc = 83.3%, 

Kappa = 0.67 

[332] Groundwater level 
Water table depth, weather 

data 

Prediction of water table 

depth 
LSTM, FFNN, 

LSTM: R2 = 0.789–

0.952 

[333] 
Irrigation schedul-

ing 

Weather, irrigation, soil 

moisture, yield data 

Prediction of weekly irri-

gation plan in jojoba or-

chards 

DTR, RFR, 

GBRT, MLR, 

BTC 

(1) Regression: 

GBRT: Acc = 93%; 

(2) Classification: 

GBRT: Acc = 95% 

[334] Crop water status 
Water status, multispectral 

UAV data 

Estimation of vineyard 

water status 
MLR, ANN ANN: R2 = 0.83 

[335] ET Weather data Estimation of daily ETo ELM, WANN 

ELM: RMSE val-

ues: Region case A: 

0.1785 mm/day; 

Region case B: 

0.359 mm/day 

[336] ET Weather data Estimation of daily ETo 

RF, M5Tree, 

GBDT, 

XGBoost, SVM, 

RF 

XGBoost: RMSE = 

0.185–0.817 

mmday−1 

[337] Soil water content 
Weather data, volumetric 

soil moisture content 

Prediction of one-day-

ahead volumetric soil 

moisture content 

FFNN, LSTM LSTM: R2 > 0.94 

[338] Infiltration 

Field data, moisture content, 

cumulative infiltration of 

soil 

Estimation of cumulative 

infiltration of soil 

SVM, ANN, 

ANFIS 

ANFIS: RMSE = 

0.8165 cm, CC = 

0.9943 

[339] Soil water content 

Weather data, soil moisture 

difference, ultraviolet radia-

tion 

Prediction of soil mois-

ture 
SVR 

R = 0.98, R2 = 0.96, 

MSE = 0.10 

[340] Soil water content 
Simulated soil moisture 

data, weather data 

Forecasting of monthly 

soil moisture for: Sce-

nario A: upper; Scenario 

B: lower layers 

ELM 

(1) Scenario A: 

RRMSE = 19.16%; 

(2) Scenario B: 

RRMSE = 18.99% 

[341] ET 
Weather and in situ crop 

data 

Estimation of actual ET 

Scenario A: rainfed maize 

field under non-mulch-

ing; Scenario B: partial 

plastic film mulching 

ANN, SVM 

ANN: Scenario A: 

ET = 399.3 mm, 

RMSE = 0.469, 

MAE = 0.376; 

Scenario B: ET = 

361.2 mm, RMSE = 

0.421, MAE = 0.322 
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[342] 
Infiltration and in-

filtration rate 
Soil and hydraulic data 

Prediction of cumulative 

infiltration and infiltra-

tion rate in arid areas 

ANFIS, SVM, 

RF 

SVM: RMSE val-

ues: cumulative in-

filtration: 0.2791 

cm, infiltration 

rate: 0.0633 cmh−1 

[343] Water quality NIR spectroscopy. 
Estimation of water pol-

lution level 
CNN 

RMSE = 25.47 

mgL−1 

[344] ET 
Weather data, simulated ET 

data 

Estimation of ETo: 

(1) 2011–2015; (2) 2016–

2017 

LSTM 

(1) Predictions in 3 

sites: R2 > 0.90; (2) 

All sites: RMSE = 

0.38–0.58 mmday−1 

[345] Soil water content 
Weather data, potential ET, 

simulated soil moisture data 

Estimation of soil mois-

ture 
FFNN, Ross-IES 

FFNN: RMSE = 

0.15–0.25, NSE = 

0.71–0.91 

[346] ET 
Weather data, simulated ET 

data, soil data 

Estimation of daily ki-

kuyu grass crop ET 

RT, SVR, MLP, 

KNN, LGR, 

MLR, BN, RFC 

RFC: R = 0.9936, 

RMSE = 0.183 

mmday−1, MRE = 

6.52% 

[347] Drought Weather data 
Evaluation of farmers’ 

draught perception  
RF, DT 

Most influential 

parameters: 

farmer’s age, edu-

cation level, years 

of experience and 

number of culti-

vated land plots 

[348] ET 
Weather and soil data; simu-

lated ET 

Prediction of daily potato 

ET 

ANN,  

AdaBoost, KNN 

KNN: R2 = 0.8965, 

RMSE = 0.355 mm 

day−1, MSE = 0.126 

mm day−1 

[349] Soil water erosion 
In situ data, geological, and 

weather data 

Susceptibility mapping 

of soil erosion from water
RF, GP, NB 

RF: Acc = 0.91, 

kappa = 0.94, POD 

= 0.94 

[350] ET, drought 
Weather data, simulated ET 

index 
Prediction of drought SVR 

Fuzzy-SVR: R2 = 

0.903, RMSE = 

0.137, MAE = 0.105 

[351] ET Weather data, simulated ETo Estimation of daily ETo 
CNN, ANN, 

XGBoost, RF 

CNN: (1) Regional:  

R2 = 0.91, RMSE = 

0.47; (2) Local: R2 = 

0.92, RMSE = 0.37 

[352] ET Weather data Estimation of daily ETo ELM, ANN, RF 

ELM: R2 = 0.920, 

MAE = 0.394 

mmday−1 

[353] ET Weather data 
Prediction of ET in semi-

arid and arid regions 

CART, CCNN, 

SVM 

SVM: (1) Station I: 

R2 = 0.92; (1) Sta-

tion II: R2 = 0.97 

[354] Pan evaporation Weather data 
Prediction of monthly 

pan evaporation 

ELM, ANN, 

M5Tree 

ELM: R2 = 0.864–

0.924, RMSE = 

0.3069–0.4212 

[355] ET Weather data, simulated ETo 

Evaluation of ML algo-

rithms in daily reference 

ET prediction 

Cubist, SVM, 

ANN, MLR 

Cubist: R2 = 0.99, 

RMSE = 0.10 



Sensors 2021, 21, 3758 45 of 70 
 

 

mmday−1, MAE = 

0.07 mmday−1 

[356] ET Weather data, simulated ET Estimation of ETo 

SVM, MLP, 

CNN, GRNN, 

GMDH 

SVM: R = 0.96–1.00, 

ME = 95–99% 

[357] Drought 
Weather data, simulated 

Palmer Z-index values 

Estimation of Palmer 

drought severity index 

ANN, DT, LR, 

SVM 

ANN: R = 0.98, 

MSE = 0.40, RMSE 

= 0.56 

[358] Water quality 
In-situ water quality data, 

hyperspectral, satellite data. 

Estimation of inland wa-

ter quality. 

LSTM, PLSR, 

SVR, DNN 

DNN: R2 = 0.81, 

MSE = 0.29, RMSE 

= 0.54 

[359] Groundwater 

In-situ water quality data, 

hyperspectral, satellite spec-

tral data 

Estimation of water qual-

ity 
DT 

Acc = 81.49%, ROC 

= 87.75% 

[360] Groundwater 
Weather data, ET, satellite 

spectral data, land use 

Estimation of groundwa-

ter withdrawals 
RF 

R2 = 0.93, MAE = 

4.31mm, RMSE = 

13.50mm 

[361] 
Groundwater ni-

trate concentration 

Various geo-environmental 

data 

Comparison of different 

ML models for estimat-

ing nitrate concentration 

SVM, Cubist, 

RF, Bayesian-

ANN 

RF: R2 = 0.89, 

RMSE = 4.24, 

NSE = 0.87 

Acc: Accuracy; CC: Coefficient of Correlation; ET: Evapotranspiration; ETO: reference EvapoTranspiration; ROC: Receiver 

Operating Characteristic; ME: Model Efficiency; NSE: Nash-Sutcliffe model efficiency Coefficient; POD: Probability Of 

Detection. 

Table A7. Soil management. 

Ref Property Input Data Functionality 
Models/Algo-

rithms 
Best Output 

[362] Soil organic matter 
Soil properties, spectrometer 

NIR data 

Estimation of soil 

organic matter 
ELM, SVM 

TRI-ELM: R2 = 0.83, 

RPIQ = 3.49 

[363] 
Soil microbial dynam-

ics 

Microbial dynamics measure-

ments from root samples 

Prediction of mi-

crobial dynamics: 

(1) BP; (2) PS and 

(3) ACCA 

ANN, SVR, FIS 

SCFIS: (1) BP: RMSE 

= 1350000, R2 = 1.00; 

(2) PS: RMSE = 

45.28, R2 = 1.00; (3) 

ACCA: RMSE = 271, 

R2 = 0.52 

[364] Soil salinity 
Soil salinity, hyperspectral 

data, satellite data 

Prediction of soil 

salinity 

Bootstrap 

BPNN 

BPNN with hyper-

spectral data: R2 = 

0.95, RMSE = 4.38 

g/kg 

 

[365] Soil properties 
Simulated topographic attrib-

utes, satellite data 

Prediction of SOC, 

CCE, clay content 
Cu, RF, RT, MLR 

(1) CCE: Cu: R2 = 

0.30, RMSE = 9.52; 

(2) SOC: 

Cu, RF: R2 = 0.55; (3) 

Clay contents: RF: 

R2 = 0.15, RMSE = 

7.86 

[366] Soil organic matter 
Soil properties, weather data, 

terrain, satellite spectral data 

Prediction of soil 

organic matter 

DT, BDT, RF, 

GBRT 

GBRT: ME = 1.26 

g/kg, RMSE = 5.41 

g/kg, CCC = 0.72 
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[367] Soil organic matter 

soil properties, satellite, land 

cover, topographic, weather 

data 

Prediction of soil 

organic matter 

CNN, RF, 

XGBoost 

XGBoost: ME = 

0.3663 g/kg, MSE = 

1.0996 g/kg 

[368] Electrical conductivity 
soil properties, simulated 

electrical conductivity 

Prediction of soil 

electrical conduc-

tivity 

MLP 

MLP: WI = 0.780, 

ENS = 0.725, 

ELM = 0.552 

[369] Soil moisture content 

Hyperspectral images data, 

UAV, soil moisture content 

data samples 

Estimation of soil 

moisture content 
RF, ELM 

RF: R2 = 

0.907,RMSEP = 

1.477, RPD = 3.396 

[370] Soil temperature Weather data 

Estimation of soil 

temperature at var-

ious depths 

ELM, GRNN, 

BPNN, RF 

ELM: RMSE = 2.26–

2.95 oC, MAE = 

1.76–2.26 oC, NSE = 

0.856–0.930, CC = 

0.925–0.965 

[371] SOC 
Soil properties, vis-NIR spec-

tral data 
Estimation of SOC RF 

R2 = 0.74–0.84, 

RMSEP = 0.14–

0.18%, RPD = 1.98–

2.5 

[372] Soil properties 
Soil properties, visible-NIR, 

MIR spectral data 

Prediction of total 

carbon, cation ex-

change capacity 

and SOC 

PLSR, Cu, CNN CNN: R2 = 0.95–0.98 

[373] Soil properties 

Soil properties, simulated or-

ganic, mineral samples, soil 

spectral data  

Estimation of vari-

ous soil properties 
CNN 

RMSE values: OC: 

28.83 g/kg, CEC: 

8.68 cmol+/kg, Clay: 

7.47%, Sand: 

18.03%, 

pH: 0.5 g/kg, N: 1.52 

g/kg 

[374] 
Soil moisture content, 

soil ET 

Soil properties, water, 

weather and crop data 

Estimation of soil 

moisture content 

and soil ET 

NN-RBF 

Soil MC: RMSE = 

0.428, RSE = 0.985, 

MSE = 0.183, RPD = 

8.251 

[375] Soil salinity 
Soil salinity, crop field tem-

perature 

Estimation of 

leaching water re-

quirements for sa-

line soils 

Naive Bayes clas-

sifier 
Acc = 85% 

[376] Soil erosion 
Weather data, satellite, soil 

chemical data 

Estimation of soil 

erosion susceptibil-

ity 

Combination of 

GWR-ANN 

GWR-ANN: AUC = 

91.64% 

[377] Soil fertility 
Spectral, weather data, EC, 

soil properties 

Prediction of soil 

fertility and 

productivity 

PLS 

(1) Productivity: 

RMSEC = 0.20 T/ha, 

RMSECV = 0.54 

T/ha, R2 = 0.9189; 

(2) Organic matter: 

R2 = 0.9345, 

RMSECV = 0.54%; 

(3)Clay: R2 = 0.9239, 

RMSECV = 5.28% 
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[378] Soil moisture 

Multispectral images from 

UAV, in situ soil moisture, 

weather data. 

Retrieval of surface 

soil moisture 

BRT, RF, SVR, 

RVR 
BRT: MAE = 3.8% 

[379] Soil moisture 
Soil samples, simulated PWP, 

field capacity data 

Estimation of PWP 

and field capacity 
ANN, KNN, DL 

R2 = 0.829, R = 0.911, 

MAE = 0.027 

[380] Soil temperature Weather data 
Estimation of soil 

temperature 

GMDH, ELM, 

ANN, CART, 

MLR 

ELM: R = 0.99 

[381] Soil moisture 

Soil samples, on-field ther-

mal, simulated soil moisture 

data 

Estimation of soil 

moisture content 

ANN, SVM, AN-

FIS 

SVM: R = 0.849, 

RMSE = 0.0131 

[382] Gully erosion 
Geological, environmental, 

geographical data 

Evaluation of gully 

erosion susceptibil-

ity mapping 

RF, CDTree, 

BFTree, KLR 
RF: AUC = 0.893 

[383] Groundwater salinity 
Topographic, groundwater 

salinity data 

Evaluation of 

groundwater salin-

ity susceptibility 

maps 

StoGB, RotFor, 

BGLM 

BGLM: Kappa = 

0.85 

[384] Heavy metals transfer Soil and crop properties 

Identification of 

factors related to 

heavy metals 

transfer 

RF, GBM, GLM RF: R2 = 0.17–0.84 

[385] Land suitability 
Soil properties, weather, to-

pography data 

Prediction of land 

suitability maps 
SVM, RF 

RF: Kappa = 0.77, 

overall acc = 0.79 

[386] SOC 
Soil properties, satellite, sim-

ulated environmental data 
Prediction of SOC 

MLR, SVM, Cu, 

RF, ANN 
RF: R2 = 0.68 

[387] 
Electrical conductiv-

ity, SOC 
Soil properties, weather data 

Electrical conduc-

tivity and SOC pre-

diction 

GLM 

(1) EC: MSPE = 

0.686, MAPE = 

0.635; (2) OC: MSPE 

= 0.413, MAPE = 

0.474 

[388] SOC, soil moisture 

Proximal spectral data, elec-

trical conductivity, soil sam-

ples data 

Prediction of SOC 

and soil moisture 

3D maps 

Cu, RF 
Cu: R2 = 0.76, CCC = 

0.84, RMSE = 0.38% 

[389] 
Soil aggregate stabil-

ity 
Soil samples data 

Prediction of soil 

aggregate stability 
GLM, ANN ANN: R2 = 0.82 

[390] SOC 
Soil samples, weather, topo-

graphic, satellite data 
Prediction of SOC 

Cu, RF, SVM, 

XGBoost, KNN 

Best SOC predic-

tion: RF: RMSE = 

0.35%, R2 = 0.6 

[391] Soil moisture 
In situ soil moisture, satellite 

data 

Estimation of sur-

face soil moisture 

SVM, RF, ANN, 

EN 
RF: NSE = 0.73 

[392] SOC 
Composite surface soil, satel-

lite, weather data 
Prediction of SOC 

SVM, ANN, RT, 

RF, XGBoost, 

DNN 

DNN: MAE = 

0.59%, RMSE = 

0.75%, R2 = 0.65, 

CCC = 0.83 

[393] Gully erosion 
Topographic, weather, soil 

data 

Mapping of gully 

erosion susceptibil-

ity 

LMT, NBTree, 

ADTree 
LMT: AUC = 0.944 

[394] Gully erosion Satellite spectral data 
Identification of 

gully erosion 
LDA, SVM, RF 

Best overall acc: RF: 

98.7% 
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[395] Gully erosion 
Satellite, weather, land type 

maps data 

Gully erosion map-

ping 
LGR 

Acc = 68%, Kappa = 

0.42 

ACCA: Aminoyclopropane-1-carboxylate; AUC: Area Under Curve; BP: Bacterial Population; CC: Coefficient of Correla-

tion; CCC: Concordance Correlation Coefficient; CCE: Calcium Carbonate Equivalent; ET: EvaporoTransporation; MIR: 

Mid InfraRed; NSE: Nash-Sutcliffe model efficiency Coefficient; NIR: Near-InfraRed; PS: Phosphate Solubilization; PWP: 

Permanent Wilting Point; RPIQ: Ratio of Performance to Interquartile Range; RPD: Relative Percent Deviation; SOC: Soil 

Organic Carbon; WI: Willmott’s Index. 

Table A8. Livestock Management: Animal Welfare. 

Ref Animal Input Data Functionality 
Models/Algo-

rithms 
Best Output 

[396] Swine 3D, 2D video images 
Detection of pigs tail posture as a 

sign of tail biting 
LMM 

Low vs. not low 

tails: Acc = 73.9%, 

Sensitivity = 88.4%, 

Specificity = 66.8% 

[397] Sheep 

Accelerometer and 

gyroscope attached to 

the ear and collar of 

sheep 

Classification of Grazing 

and Rumination Behavior in Sheep 

RF, SVM, KNN, 

Adaboost 

RF: Highest overall 

acc: collar: 92%; ear: 

91% 

[398] Sheep 
Accelerometer, gyro-

scope data 

Classification of sheep behavior (ly-

ing, standing and walking) 
RF 

Acc = 95%, F1-score 

= 91–97% for: ear : 32 

Hz, 7 s, collar: 32 

Hz, 5 s 

[399] Swine RGB images 
Recognition of pigs feeding behav-

ior 
CNN 

Faster R-CNN: Pre-

cision = 99.6%, recall 

= 86.93% 

[400] Swine 
RGB images, depth 

images 

Recognition of lactating sow pos-

tures 
CNN 

Faster R-CNN: Sow 

posture: 

(1) Recumbency: 

night: 92.9%, day-

time: 84.1%; 

(2) Standing: at 

night: 0.4%, day-

time: 10.5% 

(3) Sitting: night : 

0.55%, daytime: 

3.4% 

[401] 

Cattle, 

Sheep, 

sheepdog 

Audio field record-

ings data 

Classification of animals’ vocaliza-

tion 
SVM 

Acc: cattle: 95.78%, 

sheep: 99.29%, dogs: 

99.67% 

[402] Cattle Accelerometer data Detection of sheep rumination. SVM Acc = 86.1% 

[403] Sheep 

Ear-borne accelerome-

ter data, observation 

recordings 

Classification of grazed sheep be-

havior Scenario A: walking, stand-

ing, lying, grazing 

Scenario B: active/inactive 

Scenario C: body posture 

CART, SVM, 

LDA, QDA 

(1) Scenario A: SVM 

Acc: 76.9%; 

(2) Scenario B: 

CART 

Acc: 98.1%; 

(3) Scenario C: 

Acc: LDA 90.6% 

[404] Goat 
On-farm videos, 

weather data 

Classification of goats behavior 

(1) Anomaly detection (2) Feed-

ing/non-feeding 

KNN, SVR, CNN 

(1) Most accurate: 

KNN: Acc = 95.02–

96.5%; (2) Faster R-
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CNN: Eating: 55.91–

61.33 %, Non-feed-

ing (Resting): 79.91–

81.53 % 

[405] 
Cattle, 

sheep  
UAV Video data 

Counting and classification of cat-

tle, sheep 
CNN 

Mask R-CNN: Cat-

tle: Acc = 96%; 

Sheep: Acc = 92% 

[406] Cattle Accelerometer data 
Prediction of dairy cows behavior 

at pasture 

XGBoost, SVM, 

AdaBoost, RF 

Best predictions for 

most behaviours: 

XGBoost: sensitivity 

= 0.78 

[407] Cattle Pedometers 
Detection of early lameness in dairy 

cattle 
RF, KNN RF: acc = 91% 

[408] Cattle 
Environmental heat 

stressors data 

Evaluation of heat stressors influ-

ence in dairy cows physiological re-

sponses 

RF, GBM, ANN, 

PLR 

RF: (1) RR: RMSE = 

9.695 respmin−1; (2) 

ST: RMSE = 0.334 °C 

[409] Cattle 
Diets nutrient levels 

data 

Prediction of dairy cows diet en-

ergy digestion 

ELM, LR, ANN, 

SVM 

Best performance: 

kernel-ELM: (1) DE: 

R2 = 08879, MAE = 

4.0606; (2) ED: R2 = 

0899, MAE = 2.3272 

[410] Cattle Routine herd data 
Detection of lameness in dairy 

herds 

GLM, RF, GBM, 

XGBoost, CART 

GBM: AUC = 0.75, 

Sensitivity = 0.58, 

Specificity = 0.83 

[411] Poultry Air quality data 
Early prediction of Coccidiosis in 

poultry farms 
KNN AUC = 0.897–0.967 

[412] Cattle 

On-farm question-

naires, clinical and 

milk records 

Prediction of mastitis infection in 

dairy herds 
RF 

CONT vs. ENV: Acc 

= 95%, PPV = 100%, 

NPV = 95% 

[413] Cattle 

Location (transceiver) 

and accelerometer 

data 

Detection of dairy cows in estrus 

KNN, LDA, 

CART, BPNN, 

KNN 

BPNN: specificity = 

85.71% 

[414] Cattle 
Mid-NIR spectral data 

using spectrometer 

Prediction of bovine tuberculosis in 

dairy cows 
CNN 

Accuracy = 71%, 

sensitivity = 0.79, 

specificity = 0.65 

[415] Cattle 
Metabolomics data 

from serum samples 

Evaluation of metabotypes exist-

ence in overconditioned dairy cows 

RF, NB, SMO, 

ADT 
ADT: acc = 84.2% 

[416] Cattle Accelerometer data Classification of cows’ behavior  
GBDT, SVM, RF, 

KNN 

GBDT: acc = 86.3%, 

sensitivity = 80.6% 

[417] Sheep 
Gyroscope and accel-

erometer ear sensors 

Detection of lame and non-lame 

sheep in three activities 

RF, SVM, MLP, 

AdaBoost 

RF: overall acc = 

80% 

[418] Cattle 
Activity and rumina-

tion data 
Prediction of calving day in cattle 

RNN, RF, LDA, 

KNN, SVM 

RNN/LSTM: Sensi-

tivity = 0.72, Speci-

ficity = 0.98 

AUC: Area Under Curve; Cont: Contagious; DE: Digestible Energy; ED: Energy Digestibility; ENV: Environmental; DWT: 

Discrete Wavelet Transform; MFCCs: Mel-Frequency Cepstral Coefficients; NIR: Near InfraRed; NPV: Negative Predictive 

Value; PTZ: Pan-Tilt-Zoom; PPV: Positive Predictive Value; RGB: Red-Green-Blue; RR: Respiration Rate; ST: Skin Tem-

perature. 
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Table A9. Livestock Management: Livestock Production. 

Ref Animal Input Data Functionality 
Models/Algo-

rithms 
Best Output 

[419] Cattle 
Depth images in situ 

BCS evaluation data 

Estimation of BCS, Scenario A: HER = 

0.25; Scenario B: HER = 0.5 
CNN 

Scenario A: Acc = 

78%; Scenario B: 

Acc = 94% 

[420] Swine 
Weather, physiologi-

cal data 

Prediction of piglets temperature 

Scenario A: skin-surface; Scenario B: 

hair-coat; Scenario C: core 

DNN, GBR, RF, 

GLR 

Best prediction: 

Scenario C: DNN: 

error = 0.36% 

[421] Poultry 
Depth, RGB images 

data 

Classification of flock of chickens’ be-

havior 
CNN Acc = 99.17% 

[422] Cattle 

Accelerometer, ob-

servations recordings 

data 

Classification of cattle behaviour 

Scenario A: grazing; Scenario B: stand-

ing; Scenario C: ruminating 

RF 

Highest F-scores: 

RF: Scenario A: 

0.914; Scenario B: 

0.89; Scenario C: 

0.932 

[423] Sheep 
Phenotypic, weather 

data 

Prediction of on-farm water and elec-

tricity consumption on pasture based 

Irish dairy farms 

BAG, ANN, MT 

Scenario 3: MT: R = 

0.95, MAE = 0.88 

μm, RMSE = 1.19 

[424] Cattle 
Milk production, 

environmental data 

Prediction of on-farm water and 

electricity consumption on pasture 

based Irish dairy farms 

CART, RF, 

ANN, SVM 

Electricity 

consumption 

prediction: SVM: 

relative prediction 

error = 12% 

[425] Goat RGB data 
Detection of dairy goats from 

surveillance video 
CNN 

Faster R-CNN: Acc 

= 92.49 % 

[426] Cattle 

Animal feed, 

machinery, milk 

yield data 

Estimation of energy use targets for 

buffalo farms 
ANN 

30.5 % of total 

energy input can 

be saved if targeted 

inputs are followed 

[427] Cattle 3D images data 
Prediction of liveweight and carcass 

characteristics 
ANN, SLR 

ANN: Liveweight: 

R2 = 0.7, RMSE = 42; 

CCW: 

R2 = 0.88, RMSE = 

14; SMY: R2 = 0.72, 

RMSE = 14 

[428] Swine RGB images 
Detection and pig counting on farms 

 
CNN 

MAE = 1.67, RMSE 

= 2.13, detection 

speed = 42 ms per 

image 

[429] Sheep 
Biometric traits, body 

condition score data 

Prediction of commercial meat cuts 

and carcass traits 

MLR, ANN, 

SVR, BN 

SVM: Neck weight: 

R2 = 0.63, RMSE = 

0.09 kg; HCW: R2 = 

0.84, RMSE = 0.64 

[430] Cattle 
Data produced by 

REIMS 

Prediction of beef attributes (muscle 

tenderness, production background, 

breed type and quality grade) 

SVM, RF, KNN, 

LDA, PDA, 

XGBoost, 

LogitBoost, PLS-

DA 

Best Acc: SVM: 

99% 
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[431] Sheep 

Carcass, live weight 

and environmental 

records 

Estimation of sheep carcass traits (IMF, 

HCW, CTLEAN,  

GRFAT, LW) 

DL, GBT, KNN, 

MT, RF 

Highest prediction 

of all traits: RF: (1) 

IMF: R = 0.56, MAE 

= 0.74; (2) HCW: R 

= 0.88, MAE = 1.19; 

(3) CTLEAN: R = 

0.88, MAE = 0.76 

[432] Swine 
ADG, breed, MT, 

gender and BBFT 
Identification of pigs’ limb condition 

RF, KNN, ANN, 

SVM, NB, GLM, 

Boost, LDA 

RF: Acc = 0.8846, 

Kappa = 0.7693 

[433] Cattle 
Activity, weather 

data 

Prediction of cows protein and fat 

content, milk yield and actual 

concentrate feed intake, Scenario (1) 

only cows with similar heat tolerance; 

Scenario (2) all cows 

ANN 

 

(1) Scenario A: n = 

116, 456; R = 0.87; 

slope = 0.76; 

(2) Scenario B: n = 

665, 836; R = 0.86;  

slope = 0.74 

[434] Cattle 

Animal behavior, 

feed intake, estrus 

events data 

Detection of estrus in dairy heifers GLM, ANN, RF 
RF: Acc = 76.3–

96.5% 

[435] Cattle 
Infrared thermal 

images 
Estimation of deep body temperature LRM, QRM 

Higher correlation: 

QRM: R2 = 0.922 

[436] Cattle 

Liveweight, 

biophysical 

measurements data 

Prediction of Carcass traits and 

marbling score in beef cattle 

LR, MLP, MT, 

RF, SVM 

SVM: carcass 

weight: R = 0.945, 

MAE = 0.139; EMA: 

R = 0.676, MAE = 

4.793; MS: R = 

0.631, MAE = 1.11 

ACFW: Adult Clean Fleece Weight; ADG: Average Daily Gain; AFD: Adult Fibre Diameter; AGFW: Adult Greasy Fleece 

Weight; ASL: Adult Staple Length; ASS: Adult Staple Strength; BBFT: Bacon/BackFat Thickness; BCS: Body Condition 

Score; CCW: Cold Carcass Weights; CTLEAN: Computed Tomography Lean Meat Yield; DBT: Deep Body Temperature; 

EMA: Eye Muscle Area; GWAS: Genome-Wide Association Studies; GRFAT: Greville Rule Fat Depth; HER: Human Error 

Range; IMF: IntraMuscular Fat; HCW: Hot Carcass Weight; LW: Loin Weight; MS: Marbling Score; MT: Muscle Thickness; 

REIMS: Rapid Evaporative Ionization Mass Spectrometry; RGB: Red-Green-Blue; SMY: Saleable Meat Yield. 

Table A10. Abbreviations for machine learning models. 

Abbreviation Model 

ANN Artificial Neural Network 

BM Bayesian Models 

DL Deep Learning 

DR Dimensionality Reduction 

DT Decision Trees 

EL Ensemble Learning 

IBM Instance Based Models 

SVM Support Vector Machine 

Table A11. Abbreviations for machine learning algorithms. 

Abbreviation Model Model 

AdaBoost EL Adaptive Boosting 

ADT DT Alternating Decision Trees 

ANFIS ANN Adaptive-Neuro Fuzzy Inference Systems 

ARD BM Automatic Relevance Determination 
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Bayesian-ANN ANN Bayesian Artificial Neural Network 

BAG EL Bagging Algorithm 

BDT DT Bagging Decision Trees 

BDL BM,ANN Bayesian Deep Learning 

BET EL Bagged Ensemble Tree 

BGLM BM, Regression Bayesian Generalized Linear Model 

BLR Regression Binary Logistic Regression 

BN BM Bayesian Network 

BPNN ANN Back-Propagation Neural Networks 

BRT DT,EL Boosted Regression Trees 

BTC EL Boosted Trees Classifiers 

CART DT Classification And Regression Trees 

CCNN ANN Cascade Correlation Neural Networks 

CDTree DT Credal Decision Trees 

CNN ANN Convolutional Neural Networks 

Cu Regression Cubist 

DBN ANN Deep Belief Networks 

DF EL,SVM Decision Fusion 

DLS Regression Damped Least Squares 

DNN ANN Deep Neural Networks 

DTR DT, Regression Decision Tree Regression 

EBT DT,EL Ensemble Bagged Trees 

ERT DT Extremely Randomized Trees 

ELM ANN Extreme Learning Machines 

EN Regression Elastic Net 

FCN ANN Fully Convolutional Networks 

FIS ANN Fuzzy Inference System 

FFNN ANN Feed Forward Neural Networks 

GBM EL Gradient Boosting Model 

GBT DT Gradient Tree Boosting 

GBR Regression Gradient Boosted Regression 

GBRT DT, Regression Gradient Boosted Regression Trees 

GBDT DT,EL Gradient Boosted Decision Trees 

GLM Regression General Linear Model 

GMDH DR Group Method of Data Handling 

GNB BM Gaussian Naive Bayes 

GP ΒΜ Gaussian Processes 

GPR ΒΜ Gaussian Process Regression 

GRNN ANN Generalized Regression Neural Networks 

GWR Regression Geographically Weighted Regression 

KM IBM K-Means 

KNN IBM K-Nearest Neighbors 

LASSO Regression Least Absolute Shrinkage and Selection Operator 

LDA DR Linear Discriminant Analysis 

LightGBM EL Light Gradient Boosting Machine 

LMT Regression, DT Logistic Model Trees 

LGR Regression LoGistic Regression 

LMM Regression Linear Mixed Model 

LR Regression Linear Regression 

LSTM ANN Long-Short Term Memory 

LogitBoost EL Logistic Boosting 
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M5Tree DT M5 model Trees 

MANN ANN Modular Artificial Neural Networks 

MARS Regression Multivariate Adaptive Regression Splines 

MCS EL Multiple Classifier System 

MKL DR Multiple Kernel Learning 

MLP ANN Multi-Layer Perceptron 

MLR Regression Multiple Linear Regression 

MT DT Model Trees 

NB BM Naïve Bayes 

NBTree BM, DT Naïve Bayes Trees 

NNL IBM Nearest Neighbor Learner 

OLS Regression Ordinary Least Squares 

PLSR Regression Partial Least Squares Regression 

PLS-DA Regression, DR Partial Least Squares Discriminant Analysis 

QC Regression Quadratic Classifier 

QDA DR Quadratic Discriminant Analysis 

QRM Regression Quadratic Regression Model 

RBFN ANN Radial Basis Function Networks 

REPTree DT Reduced Error Pruning Tree 

RFC EL Randomizable Filtered Classifier 

RFR EL, Regression Random Forest Regression 

RNN ANN Recurrent Neural Network 

RQL Regression Regression Quantile LASSO 

RF EL Random Forest 

Ross-IES EL Ross Iterative Ensemble Smoother 

RotFor EL Rotation Forest 

RVMR Regression Relevance Vector Machine Regression 

SCFIS ANN Subtractive Clustering Fuzzy Inference System 

STDA DR Stepwise Discriminant Analysis 

SMO SVM Sequential Minimal Optimization 

SMLR Regression Stepwise Multiple Linear Regression 

SOM DR Self-Organising Maps 

StoGB EL Stochastic Gradient Boosting 

SVR SVM Support Vector Regression 

TS-FNN ANN Takagi-Sugeno Fuzzy Neural Networks 

XGBoost EL Extreme Gradient Boosting 

WANN ANN Wavelet Artificial Neural Networks 

WEL EL Weighted Ensemble Learning 

WNN IBM Weighted Nearest Neighbors 

WSL EL Weakly Supervised Learning 
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