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Abstract: For the laser treatment of vascular dermatosis, the blood vessel morphology and depth in
skin tissue is essential to achieve personalized intelligent therapy. The morphology can be obtained
from the laser speckle imaging, and vessel depth was extracted by an inverse methodology based on
diffuse reflectance spectrum. With optimized spot size of 0.5 mm and known optical properties, the
proposed method was experimentally validated via the spectral measurement of microcapillary with
known size and depth embedded in an epoxy resin-based skin phantom. Results prove that vessel
depth can be extracted with an average relative error of 5%, thereby providing the foundation for a
personalized, precise, and intelligent laser treatment of vascular dermatosis.

Keywords: diffuse reflectance spectroscopy; inverse methodology; vascular dermatosis; skin phan-
tom; laser speckle imaging

1. Introduction

As a typical congenital vascular dermatosis, port wine stain (PWS) birthmarks can
negatively affect the physical and mental well-being of individuals because 90% of these
marks appear on the face and neck [1]. PWS has been demonstrated to be curable via laser-
mediated therapies based on selective photothermolysis [2]. However, the therapeutic effect
of the laser on PWS is still far from satisfactory due to the complexity of the malformed
capillaries [3], and the cure rate has remained below 20% for nearly 10 years via pulsed dye
laser (585/595 nm) [4]. Recently, multipulse Nd:YAG laser (1064 nm) has demonstrated
a preferable potential even for resistant PWS [5]. Nevertheless, the selection of laser
parameters (e.g., frequency, fluence, and pulse number) lacks quantitative guidance. Similar
problems exist in nearly all types of vascular dermatosis primarily due to experience-
dependent treatments.

In the clinical laser treatment of PWS, non-invasive, fast and simple evaluation is
required to improve the therapy efficacy. There are related non-invasive diagnostic tech-
nologies, including video microscopes and other imaging technologies based on charge
coupled device (CCD) [6] and perfusion imaging technologies, such as laser Doppler imag-
ing (LDI) [7], laser speckle imaging (LSI) [8], optical coherence tomography (OCT) [9],
optical Doppler tomography (ODT) [10], photothermal radiometry (PTR) [11], photoa-
coustic (PA) [12], etc. Although we have investigated the influence of laser parameters
(wavelength, pulse width, laser energy) [13] on the treatment effect, the monitoring and
extraction of the structural features of the lesion still needs to be solved urgently.

Skin tissue consists of epidermis and dermis, with PWS vessels buried in dermis
with diameter of 30~300 µm and depth of 200~800 µm [14]. During the exposure of
multi-pulse laser irradiation, thrombus could be formed. According to our previous study,
thrombus formation that completely occludes the vessel lumen has been proven as the
prerequisite to achieve a desirable clinical end point (i.e., thread-like appearance) [15].
Based on our in-house integral moving particle semi-implicit (MPS) model to simulate
the laser-induced blood coagulation [16], the optimal parameters of multi-pulse Nd:YAG
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laser can be theoretically recommended for different blood vessel size and depth, as shown
in Figure 1. In other words, once blood vessel size and depth are known, personalized,
precise, and intelligent laser treatment of vascular dermatosis can be achieved.

However, a problem still lies in detecting the subtle structure of skin tissue by available
imaging techniques [17,18]. Ultrasound, computed tomography imaging, and magnetic
resonance imaging systems can only locate large blood vessels with diameters ranging
from 300 µm to 1000 µm (or more) [19–21]. The latest optical coherence tomography
technology is effective [22], but it is expensive and cannot reflect information about blood
flow and thrombosis, which is critical for the treatment of PWS. Laser speckle imaging
(LSI) [5] can get blood vessel morphology and blood flow, but the depth of micro vessel
cannot be extracted. Bjorgan et al. [23] used hyperspectral real-time processing and wavelet
processing to enhance the contrast of the blood vessels in the tissue image, and they are
the first to obtain the oxygen content and depth in the blood vessels through the inverse
diffusion model.

Recently, considerable effort has been devoted to spectrometry-based imaging tech-
niques, particularly diffuse reflectance spectroscopy (DRS) in the ultraviolet–visible (UV–
VIS) spectrum [24]. This technique is advantageous because it is cost-effective, fast, non-
destructive, and quantitative. The optical properties of biological tissues are the natural
reflection of their geometric structure and physiological state. When a light beam with
a certain wavelength irradiates onto biological tissues, the reflectance and transmittance
spectra are formed by a portion of the scattered light escaping from the tissues. The optical
properties of tissues can be obtained by measuring the reflectance spectrum. Then, tissue
structure and physiological characteristics can be further deduced, which can provide
guidance for evaluating medical effects, implementing histopathological and physiological
diagnoses, and even for detecting the morphological changes of pathological tissues [25].
Potential and existing clinical applications of DRS rely on tissue diagnostics, including the
monitoring of tissue oxygenation, tissue structure, cancer detection, and tissue response
to laser therapies [25,26]. In the laser dermatology (e.g., PWS), the thickness of target
tissues typically has the same order of magnitude as the detection depth of DRS, which
may potentially facilitate the extraction of the structural parameters of the target blood
vessels through the DRS analysis of skin tissues.

As mentioned earlier, the diameter and depth of the target PWS blood vessel are the
key factors that determine the laser treatment parameters. One-to-one correspondence
exists between the DRS and the combination of vessel depth and diameter, which can be
proved by the Monte Carlo (MC) simulations of light propagation in a typical PWS tissue
model [19]. Therefore, a unique combination of vessel depth and diameter can be ideally
determined based on a known tissue reflectance by using the inverse radiation method.
If blood vessel diameter can be obtained using laser speckle imaging [20], the inverse
extraction of vessel depth will become a definite solution.

Available inverse approaches for detecting structure properties from a spectrum with
known optical properties include the inverse adding–doubling (IAD) method [27,28] and
inverse MC (IMC) method [29,30]. On the basis of the adding–doubling method, in which
reflectance and transmittance are calculated by repeatedly doubling the initial tissue layer
until the real thickness of the tissue domain is reached, Prahl et al. [28] developed the famous
IAD method, which can provide a good prediction of the optical properties of bio-tissue
model. However, IAD can only be implemented on a simple structure (i.e., 1D tissue model),
in which the illumination diameter (spot size of laser) should be sufficiently small compared
with the sample size (the influence of the spot size will be discussed in Section 3.2). Moreover,
IAD can only provide a rough estimation of optical properties. By contrast, IMC is applicable
to 3D cases over wide spectral bands due to the flexibility and powerful convergence of
the MC method. However, numerous photons and multiple iterations restrict the real-time
application of IMC. Taking the IAD result as the initial value for FMC simulation, computation
can be accelerated with the reservation of 3D applicability.
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The motivation of the current work is to gain an intuitive understanding of the
relationship between DRS and the structure skin tissues, thereby determining blood vessel
depth from the measured spectroscopic data with known vessel size from the laser speckle
imaging. This methodology can be called the DRS-based inverse method. To achieve this
objective, a theoretical model for extracting tissue structure was presented by integrating
the measured reflectance spectrum and the inverse method within a wavelength range of
300 nm to 800 nm, which covered the window of laser therapy for PWS [31]. Quantitative
in vivo experiment is difficult to conduct due to the inhomogeneity, uncertainty, and
individual differences of biological tissues. Thus, a skin phantom with given blood vessel
diameter and depth for characterizing PWS skin tissues was prepared to validate the
theoretical model through the measurement of diffuse reflectance and transmittance via
a high-precision integrating sphere. Section 2 describes the mathematical model of the
DRS-based inverse method, along with the preparation and validation of the skin phantom.
Section 3 presents the experimental and numerical studies of depth-related spectral signals.
Conclusions are drawn in Section 4.

2. Method and Materials
2.1. Estimation of Blood Vessel Diameter Via LSCI

The ability to monitor blood flow and vessel diameter by LSCI was proved by in vivo
animal experiment. A schematic of the LSCI experimental setup is shown in Figure 1. A
collimated beam from a coherent laser emitted diode (Lambda Beam, RGB Photonics, Kelheim,
Germany) with a wavelength of 808 nm, and maximum output power of 150 mW was
expanded by the lens group to illuminate the dorsal skin chamber model. The illuminated
region was recorded by a CCD camera (INFINITY3-1, Lumenera, Ottawa, ON, Canada)
with a resolution of 1392 × 1040 pixels and a frame rate of 15 fps and was attached to a
stereo microscope (M205A, Leica, Germany) with a maximum magnification of ×7.8 and a
resolution of 2 mm. The CCD exposure time was set according to the diode laser power.
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Figure 1. Schematic of laser speckle imaging experimental system.

Via the above LSCI system, diameter of blood vessel can be obtained from the speckle
image, as shown in Figure 2. Through the speckle contrast method, blood flow velocity
can be obtained. The lower the contrast value, the faster the flow velocity. Therefore, the
blood vessel area and the tissue area can be distinguished, and next we will focus on the
extraction of blood vessel depth.
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2.2. Skin Phantom Preparation and Spectral Measurement

For real skin tissues, depth of blood vessel is difficult to control for the quantitative
analysis of DRS. By contrast, skin phantoms with a measurable structure and optical
properties, which typically consist of the base material, scatterers, and absorbers, can
ensure a controllable DRS analysis to prove the validity of the proposed inverse method.

To prepare a stable, nontoxic phantom with similar optical characteristics to skin
tissues—a type of crystal glue—the actual ingredient was epoxy resin (CY186, HUNTS-
MAN, McIntosh, AL, USA) and medical intralipid (Huarui Pharmaceutical Co., Ltd., Wuxi,
China) with 20% concentration were mixed and solidified in a customized mold. The epoxy
resin-based material serves as the base media, whereas the fat granule in the intralipid
plays the role of light scatterer. Both materials have a limited intrinsic light absorption
ability, which is confirmed in the following part. The initial phantom sample was a vis-
cous and milky white liquid titrated with the intralipid until approximately 4% mass
fraction was reached. This sample was placed in a thermostatic water bath (approximately
40 ◦C) and was slowly stirred in one direction for 2 min. Afterward, the homogeneous
and bubble-free sample can be finally prepared. Then, the sample was injected into a
mold (a quartz glass ring with two U-shaped square holes drilled by laser, as shown in
Figure 3a, and the homogeneous skin phantom with controlled thickness (15 mm) and
diameter (2 mm) was obtained to measure its optical properties. This cylindrical hole is
used to simulate a blood vessel with diameter of 300 µm and depth of 200 µm~1800µm.

To simulate blood vessel, a thin metal wire with a specific depth and diameter was
buried into the homogeneous phantom, as indicated by the red line shown in Figure 3a.
During the fabrication of the phantom, the wire was ensured to be straight and clinging to
the bottom of the U-shaped hole (with a specific diameter and depth), and the machining
error was smaller than 20 µm. After injecting the phantom sample, two glass plates were
used to clamp the ring tightly to the top and bottom surfaces. After the mold is fixed,
the metal wire is unreeved to form a hole and blood is injected to simulate the blood
vessel. After approximately 30 h of solidification, the metal wire was slowly pulled out,
and a model that contained a tubular channel with a specified diameter was obtained. The
discrete vessel skin phantom with known vessel depth and diameter can be obtained by
injecting blood into the channel to validate the DRS-based inverse method, as shown in
Figure 3b,c.

As illustrated in Figure 4, the spectroscopic data were measured via UV–VIS spectropho-
tometer (Carry 5000, Agilent Technologies Inc., Santa Clara, CA, USA) that can record data
from 190 nm to 3300 nm, with the sample placed in the sample port on the integrating sphere
to measure reflectance (at the front port) and transmittance (at the back port).
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2.3. Overview of the DRS-Based Inverse Method

The DRS-based inverse method comprises two steps to obtain the optical and struc-
tural parameters of turbid media. The first is to obtain the spectroscopy information,
and the second is to construct the relationship between DRS and the optical or structural
parameters to be resolved. Figure 5 schematically presents how light escapes from a tissue
and forms a spectrum, where particles with various colors indicate different light scatterers,
e.g., red blood cells (red), melanin (black), and cell nuclei (blue).
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During the interaction between light and tissues, light energy conservation can be
expressed by:

R + Abs + Tt + Es = 1 (1)

When the total amount of laser energy is 1; R and Abs represent the total reflection and
total energy deposition within the tissue domain, reflection R includes specular scattering
and diffuse scattering, and T and E denote the transmittance and side escape of scattered
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light, respectively. A schematic of DRS is provided in Figure 6. For a certain wavelength
(e.g., the 585 nm pulsed dye laser), the target area, such as a blood vessel, may selectively
absorb laser energy. Thus, vessel location (vessel depth) and size (diameter) not only
directly influence Abs but also exert a strong influence on photon migration within the
entire tissue domain and further affect R. In general, R exhibits a positive correlation with
vessel depth (d) and a negative correlation with vessel diameter (D). The measured DRS is
physically equivalent to RD, which motivates the verification of the theoretical model by
comparing the results of the experiments and the numerical simulations.
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In terms of the interaction between laser and skin tissues, the forward problem (to get
light distribution within the tissues and the spectral information of the tissue surface with
known optical and structural parameters of the laser source and biological tissues) and the
inverse problem (to extract optical or structural parameters of the sample medium with
known laser sources and surface spectroscopic data) can be described as follows:

[ f1(r), f2(r)] = F(S, G, p(r)) Forward
[G, p(r)] = F−1(S, f1(r)) Inverse

(2)

where S and G depict the parameters of the laser source and tissue medium, respectively;
f 1 is the spectroscopic data and f 2 is the light distribution within tissues; p is the optical
properties of the tissue, including µa, µs, and g; and r is the space vector. r indicates the
photon’s position vector, with the origin at the laser spot center on the tissue surface. F
is the general model function, which refers to the theoretical model of light propagation
or the experimental model to determine optical properties. As mentioned earlier, the
primary dilemma of inverse problems is ill-posedness, i.e., G and p cannot be obtained
simultaneously in Equation (2). Structural parameters can be extracted with the knowledge
of optical properties, or vice versa.

In the PWS tissue model, the diffuse reflectance depends on the reflection spectrum
collection method, the skin geometry and physiological/morphological characteristics consid-
ered. This article simplified the model, as shown in Ref. [32]. For blood vessels parallel to the
skin surface with known optical parameters, the reflection spectrum can be expressed as a
function of blood vessel diameter and depth: R = f (D, d). In the current study, we assume that
D is known (e.g., via LSI). Thus, the main task in skin tissue detection is to acquire vessel depth
d, the extraction of which can follow the technical route in Figure 7. First, the vessel diameter
D and diffused reflectance R0 in the tissue region of interest can be obtained through LSI and
spectrometry, respectively. Then, MC simulation can be conducted to calculate reflectance Rc
with an assumed vessel depth d. The real blood vessel depth can be obtained by adjusting d
when R0 is consistent with Rc.
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2.4. Integrated IAD–FMC Method

In this section, the integrated IAD–FMC method was introduced to extract the optical
properties of the sample. The basic concept is to use the preliminary optical properties
estimated through IAD by iterating the adding-doubling method with given reflection and
transmission as the initial value of FMC to obtain an accurate estimation of the real optical
properties. The FMC program used in this study directly complies with our previous
work [32].

The procedures of the integrated IAD–FMC method are illustrated in Figure 8. The
reflection and transmittance of tissue phantom with known geometric parameters are mea-
sured through ultraviolet–visible (UV–VIS) spectroscopy within a wavelength (λ) ranging
from 300 nm to 1200 nm. Taking the measured diffuse reflectivity MR and transmissivity
MT as inputs of IAD, the corresponding µa and µs can be obtained through IAD, and
anisotropic factor g can be obtained on the basis of Mie theory. Reflectivity CR and transmis-
sivity CT can be calculated through FMC. An accurate estimation of the optical properties
can be obtained when the calculation matches the measurement.
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Good agreement between CR/CT and MR/MT is usually difficult to achieve. Repeti-
tive iterations through FMC are required to optimize the combination of optical properties.
µa, µs, and g cannot be simultaneously obtained because excessively many unknowns
make the reverse problem to remain unsolved. In IAD, µa and µs are the outputs, and g is
set to zero by default. Mie theory can be used to estimate g when particle concentration I,
diameter (dp), refractive index of the particle (np), and ambient medium are known be-
cause the prepared skin phantom with known optical properties to confirm the validation
of the inverse method is a suspension of intralipid granules in an epoxy resin background
media. C can be calculated on the basis of the composition proportion of the phantom.
dp is roughly estimated to be 0.5 µm. Refractive indexes were measured using an Abbe
refractometer. Under these conditions, the calculated g through Mie theory is close to zero
(approximately 10−5) and exhibits a decreasing trend from visible light to infrared. Thus,
the default value of zero is acceptable.
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The skin phantom with measurable structure and optical properties can be used in the
quantitative verification of IAD–FMC method. A stable, nontoxic phantom with similar
optical characteristics to skin tissue was prepared. According to Section 2.2, we make a
phantom without blood vessels inside. The initial phantom sample became a viscous and
milky white liquid titrated with the intralipid through mixing until approximately 4% mass
fraction was reached. This sample was placed in a thermostatic water bath (approximately
40 ◦C) and slowly stirred in one direction for 2 min. The bubble-free sample was prepared
and injected into a mold (quartz glass ring), and the homogeneous skin phantom with
controlled thickness (15 mm) and diameter (2 mm) was obtained to measure its optical
properties through UV–VIS spectroscopy.

Figure 9 shows the extracted reflection and transmittance of the phantom using IAD
and IAD–FMC methods. The maximum error between the calculated and measured
spectroscopic data reduces from 10% (IAD only, Figure 9a) to less than 1% using the IAD–
FMC method (Figure 9b). The absorption and scattering coefficients are obtained through
IAD–FMC method, as shown in Figure 10.
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Figure 9. Measured and calculated reflection and transmittance.
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Figure 10. Optical parameters of phantom.

3. Extraction of Vessel Depth

We have described the process of obtaining basal tissue optical parameters through the
IAD–FMC method in Section 2.4. With known optical properties, the structural information
of skin tissues can be estimated via the DRS-based inverse method. When vessel diameter
is obtained via LSI, only the depth of the target PWS vessel needs to be estimated, thereby
overcoming the ill-posedness of the inverse problem. In this section, we extract the depth of
the PWS vessel with controllable optical properties and vessel diameter. The validation of
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this inverse extraction procedure can be demonstrated by the discrete vessel skin phantom
in Figure 3, and the technical route is shown in Figure 11. After acquiring the optical prop-
erties of the homogeneous phantom material and fresh blood from volunteers (informed
consent was obtained), vessel depth can be extracted by comparing the calculated and
measured spectroscopic data.
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3.1. Depth-Related Spectral Signal and Error Propagation

This section presents the spectral measurement of the discrete vessel skin phantom
with different vessel depths (d) (0.25 mm~1.65 mm) and known diameter (D = 300 µm).
Figure 12 shows the measured reflectance and transmittance within the range of 300 nm to
800 nm. Figure 13 indicates the energy absorption induced by the blood vessel, which was
obtained by subtracting the energy absorption by the homogeneous skin phantom without
blood vessel. Apparently, the blood vessel can reduce reflectance and transmittance,
but only reflectance demonstrates a relatively sensitive dependence on vessel depth (the
resolution is approximately 0.7% per 0.1 mm for the current phantom medium). The
characteristic reflected by the depth of different blood vessels is the difference in reflectivity.
After being scattered and absorbed by the tissue, the transmitted photons are less, and
more photons are reflected.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 15 
 

 

  
(a) Reflectance (b) Transmittance 

Figure 12. Vessel depth-related spectral signal. 

 
Figure 13. Light absorption induced by the blood vessel with different depths. 

3.2. Reconstruction of the Spectral Signal 
The reconstruction of the spectral signal via MC simulation can facilitate the investi-

gation of spectral–depth relation in a controllable and accurate manner. First, we checked 
the effect of beam spot on the simulation results within the 300–600 nm band, where blood 
shows strong hump-like absorption. As shown in Figure 14a, the homogenous skin phan-
tom without blood vessel (dotted lines) will not be affected by the size of beam spot. If a 
blood vessel exists, however, spot size will seriously influence energy deposition (solid 
lines in Figure 14a) and spectral signal (Figure 14b). The spectral signal becomes stronger 
with increasing the spot size, which is beneficial for signal detection but not for the repre-
sentation of the target blood vessel, because its characteristics are fading away. As shown 
in Figure 14, the classical hump profile cannot be observed clearly for a spot larger than 
2.5 mm. To guarantee a strong signal and distinguished characteristic, an optimal beam 
spot of 0.5 mm is recommended for the spectral measurement during DRS analysis, which 
will make the spectral measurement easy to detect and sensitive to vessel distribution. 
The program used in this study directly complies with our previous work [32]. 

300 400 500 600 700 800
5

10
15
20
25
30
35
40
45
50
55

Re
fle

ct
an

ce
 (%

)

Wavelength (nm)

 d = 0.25 mm
 d = 0.45 mm
 d = 0.65 mm
 d = 0.85 mm
 d = 1.15 mm
 d = 1.65 mm
 Homogeneous phantom

300 400 500 600 700 800
0
5

10
15
20
25
30
35
40
45

Tr
an

sm
itt

an
ce

 (%
)

Wavelength (nm)

 d = 0.25 mm
 d = 0.45 mm
 d = 0.65 mm
 d = 0.85 mm
 d = 1.15 mm
 d = 1.65 mm
 Homogeneous phantom

300 400 500 600 700 800
0

3

6

9

12

15

18

A
bs

or
pt

io
n 

in
du

ce
d 

by
 b

lo
od

 v
es

se
l (

%
)

Wavelength (nm)

 d = 0.25 mm
 d = 0.45 mm
 d = 0.65 mm
 d = 0.85 mm
 d = 1.15 mm
 d = 1.65 mm

Figure 12. Vessel depth-related spectral signal.
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Figure 13. Light absorption induced by the blood vessel with different depths.

3.2. Reconstruction of the Spectral Signal

The reconstruction of the spectral signal via MC simulation can facilitate the investiga-
tion of spectral–depth relation in a controllable and accurate manner. First, we checked
the effect of beam spot on the simulation results within the 300–600 nm band, where
blood shows strong hump-like absorption. As shown in Figure 14a, the homogenous skin
phantom without blood vessel (dotted lines) will not be affected by the size of beam spot.
If a blood vessel exists, however, spot size will seriously influence energy deposition (solid
lines in Figure 14a) and spectral signal (Figure 14b). The spectral signal becomes stronger
with increasing the spot size, which is beneficial for signal detection but not for the repre-
sentation of the target blood vessel, because its characteristics are fading away. As shown
in Figure 14, the classical hump profile cannot be observed clearly for a spot larger than
2.5 mm. To guarantee a strong signal and distinguished characteristic, an optimal beam
spot of 0.5 mm is recommended for the spectral measurement during DRS analysis, which
will make the spectral measurement easy to detect and sensitive to vessel distribution. The
program used in this study directly complies with our previous work [32].
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Figure 14. Beam spot-affected spectral signal.

With the optimal spot size, the reflectance and transmittance in the blood vessel-
embedded skin phantom were measured and compared with the spectral signal recon-
structed by MC simulation, as presented in Figure 15. The blood vessel is buried at a depth
of 0.65 mm, and the depth of 1.35 mm can also be evaluated by the flip of the phantom.
As shown in Figure 16, the reconstructed spectral signal based on MC simulation can
accurately characterize the measured signal with an absolute error smaller than 5%.
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Figure 15. Comparison between the measured and calculated spectroscopic data in the discrete vessel skin phantom with
different depths.
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Figure 16. Extraction of vessel depth within the discrete vessel skin phantom and correspondence
between blood vessel depth and reflectance spectrum.

In Figure 11, vessel depth is the input and spectroscopic data represents the output.
To estimate the vessel depth, the input will be the measured spectroscopic data. We can
infer that the two processes are interlinked and equivalent, and the extraction procedure
is as follows. With the measured reflectance MR and the unknown vessel depth (d), two
predicted values, d1 and d2, can be introduced, which ensures that the real vessel depth
d satisfies d1 < d < d2 (equivalently, the corresponding calculated reflectance CR1 and
CR2 satisfy CR2 < MR < CR1). The accurate vessel depth can be quickly located via the
dichotomization of d1 and d2. To demonstrate the aforementioned procedure, a discrete
vessel skin phantom with a vessel depth of 1.35 mm and a diameter of 0.3 mm was verified.
As illustrated in Figure 16, the average relative error of the estimated vessel depth is less
than 5%, which verified the extraction of the blood vessel depth in skin tissue via DRS.

Afterwards, the spectra of tissue phantom containing blood vessel with diameter of
100 µm and depth of 200 µm, 650 µm, 1350 µm, and 1800 µm were measured to test the
inversed method, as illustrated in Figure 17. Here, we chose a spectral range of 400–600
nm, because it is the absorption peak of hemoglobin and sensitive to vessel depth. The
reconstructed spectrum signal based on MC simulation can accurately characterize the
measurement signal. Comparing the calculated blood vessel depth with the known depth,
the inversion error is less than 5%. The error in calculating the spectrum comes from
two aspects: one is the light propagation process, the other is the acquisition of optical
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parameters. It further verifies the versatility and accuracy of this method in obtaining
subcutaneous vascular microstructure information.
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Figure 17. Verification of blood vessel depth extraction (400–460 nm).

4. Discussion

This work developed an inverse methodology based on the IAD–FMC method, and
diffuse reflectance spectroscopy was established to extract the structural properties of skin
tissue, which was experimentally verified by constructing tissue phantom with known
blood vessel depth and diameter. Compared with the previous methods of spectral inver-
sion of tissue parameters, the process is complete and systematic. Compared with other
methods of blood vessel depth measurement, such as anatomical method [33], diffusion
approximation [34], and isobaric wavelength method [35], the present method is more
accurate and non-invasive, which is suitable for a blood vessel with depth of 200~1800 µm
and high absorption chromophores (red blood cells).

However, when the aforementioned method is applied to real skin, it requires accurate
optical parameters of the skin tissue including melanin content, epidermis thickness,
absorption, and scattering coefficient. Together with the development of instant acquisition
technology of melanin content and other parameters, this study can be applicable to
humans in the future.

5. Conclusions

In this study, a DRS-based inverse method was developed to extract the structural
parameters of skin tissues. The model was experimentally validated by constructing a skin
phantom and conducting spectral measurements, which demonstrated consistency between
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the measured and calculated spectroscopic data. The FMC iteration was accelerated by
using the IAD result as initial input.

Taking laser therapy of PWS as an example, blood vessel depth can be extracted by
obtaining vessel diameter from LSI. For this case, the optimal spot size is 0.5 mm. Vessel
depth extraction was demonstrated in a skin phantom with a single discrete vessel buried
in a known depth, where the average relative error is less than 5%. The depth inversion
can reach 1800 µm to solve the problem of skin tissue structure detection under a more
economical equipment. The theoretical model in this paper realizes the process of retrieving
tissue structure, optical information through spectral information, and provides effective
theoretical guidance for the clinical diagnosis of PWS and other vascular skin diseases,
especially the retrieval of focal microvessel depth information.

6. Patents
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