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Abstract: To monitor airborne nano-sized particles (NPs), a single-chip differential mobility particle
sizer (DMPS) based on resonant micro cantilevers in defined micro-fluidic channels (µFCs) is intro-
duced. A size bin of the positive-charged fraction of particles herein is separated from the air stream
by aligning their trajectories onto the cantilever under the action of a perpendicular electrostatic field
of variable strength. We use previously described µFCs and piezoresistive micro cantilevers (PMCs)
of 16 ng mass fabricated using micro electro mechanical system (MEMS) technology, which offer a
limit of detection of captured particle mass of 0.26 pg and a minimum detectable particulate mass
concentration in air of 0.75 µg/m3. Mobility sizing in 4 bins of a nebulized carbon aerosol NPs is
demonstrated based on finite element modelling (FEM) combined with a-priori knowledge of particle
charge state. Good agreement of better than 14% of mass concentration is observed in a chamber
test for the novel MEMS-DMPS vs. a simultaneously operated standard fast mobility particle sizer
(FMPS) as reference instrument. Refreshing of polluted cantilevers is feasible without de-mounting
the sensor chip from its package by multiply purging them alternately in acetone steam and clean air.

Keywords: differential mobility particle sizer; micro electro mechanical system; micro-fluidic channel;
piezoresistive micro cantilever; picogram balance; ultrafine particles; carbon aerosol

1. Introduction

Air quality is a most important factor of a healthy life with high current relevance.
For example, long-term exposure to a polluted ambient can be a similar hazard to life
expectancy as inhaling tobacco smoke and about 15% of the worldwide deaths from
the current coronavirus disease 2019 (COVID-19) pandemic might be related to a long-
lasting exposure to air polluted by anthropogenic sources (e.g., particulate matter (PM)
from combustion sources) [1,2]. Air-polluting PM is categorized according to its size, i.e.,
the commonly monitored PM10, PM2.5 and PM1 fractions denoting PM of aerodynamic
diameter less than 10 µm, 2.5 µm and 1 µm, respectively. Moreover, ultrafine particles
(UFPs) or PM0.1 of a diameter of less than 100 nm have been recognized, which are in
large amounts generated by traffic, e.g., through combustion by diesel (20 to 130 nm) and
gasoline engines (40 to 80 nm) [3]. In air, PM0.1 is more persistent than larger particulates
and can penetrate lungs deeper with the ability to translocate into the circulatory system.
Oxidative stress associated with exposure to UFPs comprising hazardous components can
cause inflammatory processes, which can lead to significant consequences to the respiratory
conditions as well as genotoxic, mutagenic, and carcinogenic activity in human beings
depending on the additives’ toxicity [3]. For example, cerium dioxide and titanium dioxide
instilled on lung epithelial cells and macrophages can either trigger moderate effects or
initiate cytotoxicity, pro-inflammatory gene expression and genotoxicity [4]. On blood cell
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surfaces UFPs may activate angiotensin-converting enzyme 2 (ACE-2) receptors, which are
known to be involved in the infection process of cells by COVID-19 [2].

A most practicable way to protect people from excessive exposure to UFP pollution
is to provide them with lightweight and battery-powered personal monitors. For indoor
personal exposure monitoring, low-cost optical particle counters based on light scattering
are commercially available, which, however, cannot accurately measure particles smaller
than 0.3 µm [3,5,6]. A minimum particle size of 140 nm was reported for a Fresnel ring
lens-based optical particle counter, while counters based on complementary metal-oxide-
semiconductor (CMOS) image sensing or holographic detection combined with extensive
image processing are limited to the particle size range above 3 µm [7].

Gravimetric methods using resonant sensors, e.g., based on micro or nano electro
mechanical systems (M/NEMS) can provide a sufficiently high sensitivity to detect nano-
sized particles (NPs) [8]. For example, TiO2 NPs were sampled on an array of tiny Si
nanowire resonators and detected by a down-shift of resonance frequency in a scanning
electron microscope [9]. The reported mass resolution of 31.6 fg corresponds to limit of
detection (LOD) of 5 to 6 NPs of a mean diameter of 125 nm. A direct mass-reading device
was demonstrated by a weakly coupled piezoelectric MEMS-resonator sensor showing an
LOD of 2.6 pg with 100 nm soot particles [10]. Unfortunately, particle size distributions
have not been measured so far using such M/NEMS resonant sensors, which would
nevertheless be necessary for a more comprehensive evaluation of air quality.

Owing to their sensitive dynamic response, micro cantilevers have attracted consider-
able interest for high-resolution mass sensing [11]. Correspondingly, we report in this study
on a piezoresistive micro cantilever (PMC) for NP size distribution measurement, which
is integrated in a micro-fluidic channel (µFC). Based on mobility separation of charged
particles flowing in the µFC, we describe a procedure for analyzing the size distribution
of polydisperse aerosols at different sampling voltages, i.e., the MEMS device is operated
as a differential mobility particle sizer (MEMS-DMPS). For validating this concept we use
carbon engineered NPs, which can be considered as a model aerosol for environmental
PM0.1, whose mass is largely composed of carbonaceous material (elemental, organic or
black carbon).

In the following paper, we first briefly review and evaluate in Section 2 a selection of
recently reported portable gravimetric airborne particle sensors [12–25]. In Section 3, we
describe design, fabrication and test of a recently proposed highly sensitive MEMS-based
NP sensor containing a µFC with an integrated PMC [26,27]. As the essential outcome of
the present work, a novel procedure is then described in Section 4 for retrieving particle-
size distributions of a carbon NP aerosol from the sensor output. Finally, regeneration of a
NP-loaded cantilever is addressed in Section 5.

2. Portable Gravimetric Aerosol Monitors with Particle-Size Separation

Size-selective gravimetric PM sensing is based on particle sampling on a resonant
device using aerodynamic (filter, impactor), electrostatic (mobility analyzer), or ther-
mophoretic techniques. Numerous sampling-and-separation techniques have been re-
ported for direct-reading/real-time PM monitoring based on micro filter (µF), impactor
filter (IF), virtual impactor (VI), cascade impactor (CI), differential mobility analyzer (DMA),
etc. [12]. A selection of recently published wearable devices and their characteristics is pre-
sented in Table 1. Such gravimetric sensors can monitor PM1 and PM2.5 of concentrations
as low as 0.7 µg/m3 to 50 µg/m3 and are based on MEMS electrothermal-piezoresistive
cantilever (MEMS-EPC), thermal-piezoresistive resonator/oscillator MEMS-TPR/O, on
micro quartz tuning fork (MQTF), surface acoustic wave resonator (SAW), or film bulk
acoustic resonator (FBAR) devices. Particle-size separation is realized by filters and/or
impactors, which remove particles from the air flow above a certain size limit set by the
particle range to be captured on the resonator.
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Table 1. Gravimetric aerosol particle detectors for personal air-quality monitoring. For comparison, three electrometer-based
(EM) setups are included offering the capability of particle separation into several size bins. Abbreviations are given below 1.

Detection Method LOD
(µg/m3) Sampling Method Separating Method No of Bins Particle Size Ref.

MEMS-EPC
15

EP
µF/IF - PM2.5/PM1 [13]

1.4/0.7 - - NPs [14]
2 µF µF - PM2.5 [15]

MEMS-TPO 50
I

- - PM2.5 [16]
MQTF 2 IF - PM2.5 [17]
SAW -

VI
- PM1 [18]

FBAR - TP - PM2.5 [19]
MEMS-TPoS 10

I 2-stage CI 1 1.03 to 2.54 µm [20]
MEMS-TPR - 1 40 to 140 nm [21]

EM
- EP

DMA
7 50 to 200 nm [22]

- DF 20 50 to 200 nm [23]
- EP and I and µF DMA and IF continuous 20 to 400 nm [24]

1 Limit of detection (LOD), particulate matter of aerodynamic diameter of less than 2.5 µm and 1 µm, respectively (PM2.5 and PM1), micro
electro mechanical system (MEMS), electrothermal-piezoresistive cantilever (EPC), thermal-piezoresistive oscillator/resonator (TPO/R),
micro quartz tuning fork (MQTF), surface acoustic wave (SAW), film bulk acoustic resonator (FBAR), thin-film piezoelectric-on-silicon
(TPoS) oscillator, electrometer (EM), electrophoresis (EP), thermophoresis (TP), micro filter (µF), Impact (I), disc filter (DF), impactor filter
(IF), virtual impactor (VI), cascade impactor (CI), differential mobility analyzer (DMA).

The portable (0.4 kg) and battery-powered (1.25 W) particle monitor Cantor (Figure 1)
has a micro filter (µF) or an impactor filter (IF) at its inlet for separating coarse particles of
2.5 µm and 1 µm, respectively, from a sucked-in air flow and was shown to sample carbon,
titanium, silica and silver NPs on an electrothermal-piezoresistive cantilever (MEMS-
EPC) [13,25]. Recently, its limit of detection of LOD = 3 × δf /S = 15 µg/m3 (with the
minimum detectable frequency shift rate δf /δt and the mass-concentration sensitivity S)
could be improved to 1.4 µg/m3 by reducing a parasitic feedthrough between the thermal
actuator and the piezoresistive Wheatstone bridge [13]. In this report, furthermore, using a
tiny commercial piezoresistive atomic-force-microscopy cantilever (mass of ~31 µg, i.e., by
a factor 20 lower than the Cantor cantilever) with thermal bimorph actuator, the LOD was
further reduced to 0.7 µg/m3.
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Figure 1. Pocket-size, battery-powered NP monitor “Cantor” with a weight of 0.4 kg and a power
consumption of 1.25 W.

For micro-particle separation and detection, a µFC with micro filter (µF) was proposed
for collecting particles larger than the filter spacing of 1.1 µm [15]. The µFC was integrated
in a MEMS-EPC for resonant gravimetric detection. Alternatively, a gated CMOS thermal-
piezoresistive oscillator (MEMS-TPO) with an impactor for PM2.5 was reported for cigarette
smoke detection [16].

A micro quartz tuning fork (MQTF) with impact sampling was reported to yield an
LOD of 2 µg/m3 with PM2.5 [17]. Using a 3-D printed virtual impactor (VI) particles smaller



Sensors 2021, 21, 3731 4 of 19

than 1.05 µm are separated into a major flow channel and impacted onto a surface acoustic
wave (SAW) detector, where a layer of glycerol film served to enhance surface adhesion for
capturing them [18]. This way, the PM1 fraction of silicon dioxide particles with diameters
in the range of 0.1–4 µm was measured. In another approach, a VI was combined with an
FBAR for PM2.5 detection [19]. In this case instead of impact, thermophoresis (TP) was used
for sampling monodisperse polystyrene latex beads. Nevertheless, in these approaches a
further separation of the sampled particle fraction into size bins was lacking.

For separating particles of a defined size bin from a polydisperse aerosol, a cascaded
arrangement of two impactors (CI) connected in series in the air flow was proposed for
PM2.5 [20] and PM0.1 [21]. For detection, either a thin-film piezoelectric-on-silicon (TPoS)
oscillator or a thermal-piezoresistive lateral resonator (TPR) was used, offering fixed bin
sizes of 1.03 to 2.54 µm and 40 to 140 nm, respectively.

Sizing using an impactor or a filter, by which particles of a specific size are separated
from the total flow according to their aerodynamic and geometric diameters, respectively,
suffers from certain drawbacks. The impactor-based approaches require noisy and power-
consumptive pumps for achieving sufficiently high particle velocities and flow rates.
Furthermore, to reduce re-bouncing of particles from the mass-detecting resonator body,
it should be coated with silicone oil or its surface should be roughened. Separation of
particles with a micro filter (µF) in a µFC in the resonator is limited by the surface of µFC
wall, which has to be hydrophobic to let particles pass through without excessive wall loss.

Instead of its inertia as in the case of impactors, differential mobility of charged parti-
cles in an electrostatic field is considered in the remainder, which can separate polydisperse
particles into several size bins in the diameter range from 50 to 200 nm (Table 1). This way,
a more comprehensive characterization of air quality based on portable DMPS instruments
was shown to be feasible [22,23]. Remaining drawbacks of the reported designs are supply
voltages in the kV range needed for both a charging unit and the DMA, a micro pump for
air-flow generation, and a sensitive electrometer for particle detection. Furthermore, these
instruments are still rather bulky with DMA channel dimensions of 1 × 5 × 50 mm3 [22]
and a total weight of 1.0 kg (without battery) and 0.95 kg of standalone miniature UFP
sizers, respectively [22,24].

3. Microfluidic Channel-Based Mobility-Selective Particle Sizer

To face the limitations of current portable DMAs, we developed a single-chip MEMS,
which consists of a µFC for conducting a particle-laden air flow and an electrostatic field
for mobility-selective sampling of the positive-charged fraction on a PMC for gravimetric
sensing, which is described in the following.

3.1. Particle Size Separation Using a Differential Mobility Analyzer

A DMA is a size-selective charged particle filter, which separates particles of a given
mobility from an aerosol flow depending on particle mobility and a tunable applied voltage.
If combined with a particle-concentration detector, it is called a DMPS [ISO 15900].

When force on a charged particle in an electrostatic field equals Stokes drag force, its
electrical mobility Zp depends on particle radius dp according to [28]:

Zp =
nqCc

3πηdp
(1)

with the number of electrical charges per particle n and the Cunningham slip correction
factor Cc which both depend on dp, the elementary charge q = 1.6 × 10−19 C, and the
dynamic viscosity of air η = 1.8205 × 10−5 kg/m/s. For NPs of dp = 50 nm we can
approximate n ≈ 1 and Cc ≈ 5 and calculate a mobility of Zp ≈ 10−7 Cs/kg.

Conventionally, a DMA is arranged in a coaxial tube-wire configuration, i.e., a wire
(of radius r1) in a channel (of radius R), between which an electrostatic voltage Ves is
applied. Along the channel axis, herein, electrically charged particles are carried at a rate Q
in a laminar air flow and drift towards the wire or the wall, depending on their electrical
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polarity. Positive-charged particles of diameter dp and mobility ZP, that enter the channel
at a distance r2 from the wire axis, can reach a negative-polarized wire after propagating
over the length of the tube Lch, if a voltage Ves:

Ves =
Q ln

(
r2
r1

)
2πLchZP

(2)

is applied.
The separation/sampling efficiency ξ of particles, which enter the tube with uniform

size distribution, is given by the ratio of capture cross section to total area of air flow: The
capture cross section is the annular area π(rp

2 − r1
2) defined by the maximum distance rp

from the wire, at which a propagating particle is captured, and the wire radius r1. The total
area of particle flow can be approximated by the tube cross-sectional area (πR2 >> πr1

2).
We thus yield [28]:

ξ
(
Ves, dp

)
≈

r2
p − r2

1

R2 =
2

3ηQ
Lch

ln
(

R
r1

)n
(
dp
)
qCc

(
dp
)Ves

dp
(3)

In the size range of dp = 20 nm to 300 nm, the parameters n and Cc depend on
dp whereby Cc decreases with dp while n increases with it. Therefore in total, separa-
tion/sampling efficiency will increase with decreasing particle size.

3.2. Micro-Fluidic Channel with Integrated Piezoresistive Micro Cantilever

Figure 2 shows a schematic of a µFC with an integrated low-mass PMC resonator
for electrostatic separation and sampling of NPs. Charged particles sucked-in at the
bottom of the µFC and propagating from different lateral positions of its cross-sectional
area can be directed towards the small surface area of the cantilever depending on the
acting electrostatic drag force. Owing to the small mass of NPs and the constrictions of air
flow in the µFC, the device can be operated at low values of separating/sampling voltage
(<150 V), flow rate (tens of mL/min) and velocities (tens of mm/s). A small-mass cantilever
(16.3 ng) is designed at the top end of the µFC for gravimetric sensing and read-out using a
piezoresistive half bridge with resistors represented by released struts extending from the
cantilever to the µFC wall. PMC and µFC dimensions are given in Table 2.
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Figure 2. (a) Schematic of a micro cantilever with released piezoresistive struts (as strain gauge
supplied by Vdd) located in a micro-fluidic channel (µFC) guiding a particle-laden air flow. The
cantilever is negatively polarized using a variable direct current (dc)-voltage (HV) with respect to the
µFC walls, which are on ground potential (GND). In (b) a schematic of the complete µFC is displayed
with the air-flow inlet at the bottom of the MEMS die.
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Table 2. Parameters of the piezoresistive micro cantilever (PMC)-µFC (l, w, h: length, width, height
of the PMC; Lch, Hch and Wch: length, height and width of the µFC).

Micro Cantilever Micro Channel

l (µm) w (µm) h (µm) m0 (ng) Lch (µm) Hch (µm) Wch (µm)

171 ± 1 10.5 ± 0.4 3.0 ± 0.5 16.3 ± 2.9 270 ± 15 191 ± 1 72.4 ± 0.5

In this design the cantilever resonator acts as the particle-sampling electrode, which is
arranged perpendicular to the axis of a rectangular µFC guiding a sucked-in aerosol flow.
Finite element modelling (FEM) confirmed that the trajectories of positive-charged particles
in a laminar air stream are bent towards the negatively polarized cantilever depending on
particle mobility (Zp), air-flow rate (Q) and sampling voltage (Ves).

Fabrication of the PMCs including cantilever, piezoresistive strain gauge, micro-fluidic
channel and electrodes for electrostatic particle sampling is based on a novel micromachin-
ing process. Its key issue is the underetching of the cantilever without interrupting the
cryogenic deep reactive ion etching (cryo DRIE) process. As a consequence, standard bulk
silicon wafer material (n-doped, 1–10 Ω × cm, <100>) could be used instead of silicon-on-
insulator (SOI) wafers, which provides a larger degree of freedom for the design and is
less costly. First, thermal diffusion steps are performed for contact formation of the bulk
(n+) as well as doping (p) with contact formation (p+) to the piezoresistive struts. Then, a
metallization (gold-chromium) is deposited by e-beam evaporation and patterned using
lift-off. Finally, the PMC-µFC is fabricated by sequential front-side and back-side cryo DRIE
with SF6 and O2 as etch gases. Hereby, the front-side process is further divided into two
steps: First, anisotropic etching is performed at an O2 flow rate of 9 sccm to create vertical
cantilever and struts sidewalls. Under these conditions a passivation layer is deposited on
the sidewalls which remains stable there at the selected cryogenic temperature. Without
interrupting the process, i.e., without warming up the wafer, we then lower the O2 flow
rate to 4.5 sccm thereby initiating a transition from anisotropy to isotropic etching. After
complete release of the cantilever the µFC is then etched from the back side, again under
anisotropic etching conditions. Before, photoresist is deposited on the bottom surface of
the front-side-etched hole, which then serves as a stop layer for the back-side etching and
effectively protects the already released cantilever. Details of the design and fabrication
process are available elsewhere [26,27].

In Figure 3a a schematic of the MEMS-based differential mobility particle sizer (MEMS-
DMPS) is displayed. Here, the MEMS die is mounted upright on a printed circuit board
(PCB), which is screwed to a 3D-printed socket with a miniature fan (10 × 10 × 2 mm3,
HY10A03A, SEPA Europe GmbH, Eschbach, Germany) for intake and flow of air forced
through 4 × 8 parallel micro-fluidic channels (µFCs) in the MEMS die. This sensor PCB
is vertically plugged on the main board by pressing it between two mounting brackets.
Furthermore, two miniature multilayer piezo linear actuators (PL055.3, PI Ceramic GmbH,
Lederhose, Germany) are arranged under force-closure between the PCB and the mounting
brackets. The piezo actuators are operated in differential mode for resonant excitation of
the sensor PCB with a voltage Vac. The resulting in-plane oscillation of the cantilevers
leads to tensile/compressive deformation of the piezoresistive struts (R+/R−), which is
read out via an instrumentational amplifier. Figure 3b shows a photograph of the sensor
PCB with the MEMS die (8 × 8 mm2) comprising the 4 × 8 arrays of piezoresistive-
micro-cantilevers in micro-fluidic-channels (PMC-µFC), which is glued upright onto the
sensor PCB (40 × 40 mm2). The MEMS die is connected to the PCB via soldered Cu
wires. Figure 3c shows a scanning electron microscopy (SEM) photograph of one PMC-
µFC array including a reference structure, whose electric block diagram is displayed in
Figure 3d. Furthermore, the instrumental amplifier (INA217, TI, USA) followed by a Lock-
in amplifier (MFLI, Zurich Instruments, Zurich, Switzerland) are displayed for read-out
of the frequency-dependent amplitude and phase signals as well as the supply ports of
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the excitation voltage (Vac) of the piezo actuators, the supply voltage of the piezoresistive
strain gauge (Vdd) and the HV supply.
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Figure 3. (a) Micro electro mechanical system-differential mobility particle sizer (MEMS-DMPS) with sensor printed
circuit board (PCB) vertically plugged between the main board and a 3D-printed air-intake socket with a miniature fan
(10 × 10 × 2 mm3, HY10A03A, SEPA Europe GmbH, Eschbach, Germany), which provides a bottom-to-top airflow in
parallel through 4 × 8 µFCs in the MEMS die. The (replaceable) sensor PCB is horizontally pressed in between two miniature
multilayer piezo linear actuators (PL055.3, PI Ceramic GmbH, Lederhose, Germany) using mounting brackets connected
to the main board. The piezo actuators are operated in differential mode with an excitation voltage Vac. (b) Photograph
of the sensor PCB with the MEMS die (8 × 8 mm2) glued on a carrier PCB (40 × 40 mm2) and connected via soldered
Cu wires. (c) Scanning electron microscopy (SEM) photograph of an array of 8 PMC-µFCs sensors of identical design, a
reference structure and its contact lines to the bridge (Vdd) and sampling voltage (HV) and ground (GND). (d) Electric block
diagram of the sensor PCB with further read-out components and their interconnections on the main board including an
instrumental amplifier (INA217, TI, USA) followed by a Lock-in amplifier (MFLI, Zurich Instruments) and BNC connectors
for read-out of the measurement signal, the excitation voltage (Vac) and Vdd as well as the HV supply pin and GND.

3.3. Carbon Aerosol Mass-Concentration Measurement

For sensor testing, a stable test aerosol was generated using a 6-Jet Nebulizer (BGI Inc.,
Butler, NJ, USA) with a suspension of carbon NPs (<50 nm, Sigma-Aldrich, Taufkirchen,
Germany) in isobutanol and deionized (DI) water. The resulting droplets, dried using a
diffusion dryer (TSI Inc., Model 3062, Shoreview, MN, USA), were sprayed into a sealed,
temperature- and humidity-controlled chamber (23 ◦C, 40% relative humidity (RH)) and
circulated therein using a ventilation fan. A laboratory fast mobility particle sizer (FMPS)
(5.6–560 nm, 32 size bins, TSI Inc., Model 3091, Shoreview, MN, USA) was used as a
reference particle sizing instrument. Figure 4 shows a typical mean size distribution
(number and mass concentration) of the nebulized polydisperse carbon aerosol of constant
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mass concentration of 10 µg/m3 measured with FMPS over 1 h, which is within the typical
range of 4.7 to 19.8 µg/m3 of PM0.1 pollution to be monitored and controlled in workplace
environments [29].
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Figure 4. Average size distribution of a nebulized polydisperse carbon aerosol measured with fast
mobility particle sizer (FMPS).

The size distribution of average particle number concentration cn of the nebulized
poly-disperse carbon aerosol in Figure 4 shows a single-size mode with a maximum at
dp ≈ 30 nm, from which mass concentrations cm were calculated assuming spherical shape
and uniform density of ρcarbon = 2.26 g/cm3 of the particles:

cm

(
in

µg
m3

)
= 109 × π

6
ρcarbon

(
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kg
m3

)
× d3

p

(
in cm3

)
× cn

(
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#
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)
. (4)

Here, the maximum of the size distribution has shifted towards a larger diameter of
dp ≈ 150 nm due to the cubic dependence of particle mass on the diameter (~dp

3), which
leads to a larger contribution of the bigger particle fraction to cm compared to cn.

Synchronized with the FMPS, one of the PMC-µFCs of the MEMS-DMPS (see Figure 3)
was operated in the aerosol chamber. The selected operating parameters are given in
Table 3.

Table 3. Operating parameters of the PMC-µFC with carbon NPs (cm: particle mass concentration; Q:
air-flow rate; f 0: cantilever resonance frequency; m0: cantilever mass; ts: sampling time).

cm (µg/m3) Q (µL/min); (10−9 m3/s) f 0 (kHz) Ves (V) ts (min)

10 ± 1 306 ± 30; 5.1 ± 0.5 400 ± 5 −5 to −30 9.5

Figure 5 shows SEM images of a PMC with µFC and a reference structure represented
by a not-released cantilever without µFC. Particle separation/sampling and sensing was
undertaken simultaneously, i.e., the PMC was connected to the HV supply for setting-up
the electrostatic field while resonance frequency of cantilever was measured by frequency
sweeps [27]. Carbon NPs captured during separation/sampling are clearly visible in the
SEM images of the PMC in Figure 5 taken at the end of the measurement run, whereas they
do not appear on the reference structure.

The measured frequency shift rate at cm = 10 µg/m3 and Ves = −30 V amounts to
4.7 ± 0.5 Hz/min. The LOD is 0.75 µg/m3. Inherent fluctuations of particle size distribu-
tion in small sample volumes may have caused the measured uncertainty of frequency shift
rate of ~10%. At our sampling time of ts = 9.5 min and an air flow rate of Q = 0.3 mL/min,
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we have a sample volume of vs. ~3 mL, which at the measured concentration of 10 µg/m3

corresponds to a total particle mass in the sample of ~30 pg. In agreement with our finding,
a 10% uncertainty can be expected at a total sample mass of 30 pg according to model
calculations for PM1 [30].
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Figure 5. Scanning electron micrograph (SEM) of a PMC-µFC after carbon aerosol particles sampling using Ves = −30 V
at a mass concentration in the chamber of 10 µg/m3 for 1 h. Sampled carbon NPs are visible only on the cantilever in a
free-etched µFC (upper), while the reference structure without µFC does not show any precipitated particle (lower).

4. Aerosol Particle Sizing Using the Micro Electro Mechanical System-Differential
Mobility Particle Sizer (MEMS-DMPS)
4.1. Electrostatic Particle Separation

The PMC-µFC device in Figure 2 can be operated as a DMA for which according to
Equation (3), the number of captured particles increases with the sampling voltage and
via its size with electrical particle mobility. For confirmation, we performed FEM using
COMSOL Multiphysics showing that at sampling/separation voltages of −4 V, −26 V
and −140 V positive-charged NPs of diameters of 5 nm, 50 nm and 2.5 µm, respectively,
selectively precipitate on the cantilever with maximum efficiencies of nearly 60% to 80% [26].
With its ability to detect sampled particle size bins on a cantilever balance, we can consider
this device as a MEMS-DMPS with the resonance-frequency shift rate of the PMC as
output signal.

The sampling efficiency ξ(Ves, dp), which is necessary for retrieving the size-distribution
of mass concentration of an aerosol from a measured voltage dependence of frequency-shift
rate can be determined if the distribution of the number of electrical charges per particle
n is known [31]. Conventionally, for this purpose aerosol samples with Boltzmann and
unipolar charge distributions are prepared. A radioactive source as diffusion neutralizer or
a unipolar corona charger are used [32] which, however, are accompanied by a possible
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excessive mobility overlap between different size bins due to multiple charging in case of
unipolar diffusion charging [31].

Instead, in this study, we dispense with an additional charging unit and sample only
the naturally positive-charged aerosol fraction. As a quantitative measure of the charging
state of a naturally charged aerosol we adopt the size and charge distributions measured
in the range of dp = 20 nm to 400 nm with a NaCl aerosol [33], which we consider as
a model system for aerosol charge distributions generated by a nebulizer. We assume
that this non-equilibrium charge distribution can describe not only NaCl but also other
nebulized aerosols with sufficient accuracy even if, in general, the charge distribution may
be dependent on the specific aerosol nebulizer configuration and the chemical composition
of the nebulized solution. In the following, we describe a method based on ξ(Ves, dp)
determined accordingly (cf. Appendices A and B), which we propose for retrieving the
size-distribution of nebulized aerosols from measurements with the MEMS-DPMS.

Particle sampling on a cantilever resonator yields a resonance-frequency shift rate
of [13,25]:

∆ f
∆t
(
Ves, dp

)
=

f0

2m0

∆m
∆t

=
f0

2m0

∆t
∆V

∆V
∆t

∆m
∆t

=
f0

2m0

Vs

ts

∆m
∆V

=
f0

2m0
Qξ
(
Ves, dp

)
cm (5)

with the particle mass concentration cm, the air flow rate Q = Vs/ts, the sample volume Vs,
the sampling time ts, the resonance frequency f 0 and the resonator mass m0. The frequency
shift rate depends via the separation/sampling efficiency ξ(Ves, dp) on the applied voltage
Ves between the cantilever and the µFC wall as well as on the particle’s diameter dp (cf.
Equation (3)). Here we consider ranges of particle size and sampling voltage separated
in u size bins, i.e., l = 1, . . . , u and voltage steps, i.e., k = 1, . . . , v with v ≥ u, respectively,
define ξkl

(
Ves,k, dp,l

)
as the efficiency for capturing particles of the l-th size bin at the k-th

sampling voltage and replace Equation (5) by a matrix equation: [∆ f /∆t]1
...

[∆ f /∆t]v

 =
f0

2m0
Q

 ξ11 · · · ξ1u
...

. . .
...

ξv1 · · · ξvu


 cm,1

...
cm,u

 (6)

The vector of mass concentrations (cm,l) (represented by the u size bins of l = 1, . . . , u)

is multiplied by the efficiency matrix ξkl

(
Ves,k, dp,l

)
and thus is transformed to a vector of

frequency-shift rates ([∆f /∆t]k) (represented by the v voltage values of k = 1, . . . , v with
v ≥ u).

We use FEM to determine ξkl

(
Ves,k, dp,l

)
assuming a uniform distribution of particle

size across the µFC cross-section area at the position, where the air flow enters the µFC (cf.
Appendix B). For the size range of the polydisperse aerosol we take 20 to 500 nm [23] and
separate it into u = 6 size bins, which we set according to the 24 bins of a standard FMPS
reference instrument as defined in Table A4, and represent them by mean diameters of
dp,l = 24.1 nm, 43.2 nm, 77.3 nm, 138.0 nm, 245.9 nm, 437.7 nm for l = 1, . . . , 6. The elements
of the 6 × 6 efficiency matrix in Equation (6) are obtained by averaging the respective
elements of the 6 × 24 efficiency matrix in Equation (A1):

 ξ11 · · · ξ16
...

. . .
...

ξ61 · · · ξ66

 =



0.021 0.028 0.033 0.025 0.021 0.015
0.034 0.5 0.047 0.042 0.033 0.021
0.061 0.08 0.093 0.077 0.049 0.028

0.1 0.161 0.175 0.147 0.099 0.052
0.109 0.225 0.299 0.273 0.186 0.085
0.111 0.227 0.325 0.365 0.307 0.162

 (7)

As expected from Equation (3) the values of the efficiency matrix in Equation (7) show
a trend towards larger values with increasing applied voltage for all size bins (i.e., each
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column). For each voltage, maximum efficiencies are found for a medium bin size of around
100 nm. The maximum value of ξ = 36.5% nearly corresponds to the expected fraction
of positive-charged particles of ≈ 40% in a nebulized NaCl aerosol (see Appendix A)
indicating that almost all positive-charged particles of dp = 100 nm were sampled at the
highest Ves. The decrease of efficiency with increasing particle size above 100 nm can be
expected according to Equation (3). Due their larger inertia, the trajectories of such larger
particles will not be sufficiently bent towards the cantilever to be captured there. The visible
efficiency drop for small-size particles reflects the remarkably smaller positive-charged
fraction of particles of dp < 100 nm and can also be related to particle loss by diffusion or
Brownian motion to the channel wall.

4.2. Carbon Particle Sizing Using the MEMS-DMPS

We measured the frequency shift rate ∆f /∆t of our MEMS-DMPS at sampling voltages
Ves that varied from –30 V to 0 and from 0 to −25 V with carbon UFPs of a constant mass
concentration of 10 µg/m3 and polydisperse size distribution (see Figure 4). With the
MEMS-DMPS, each ∆f /∆t value was determined from the frequency-shift measured after
sampling times of ts = 9.5 min by averaging over 15 times repeated frequency sweeps. In
Figure 6 these measured values are compared with ∆ f

∆t (Ves) according to Equation (A8) from
FEM. Reasonable agreement is visible for small sampling voltages Ves ≤ |−15 V|. Above
this range, FEM shows a flatter dependence on Ves than expected from the experiment. As
a possible reason for this, differences in charge distribution between the reference aerosol
(NaCl) and carbon may be considered. Furthermore, the capture cross-section, i.e., the
maximum distance rp at which a propagating particle will be captured on the wire, depends
on the electrical field around the wire, which is not considered in the modelling. An increase
of rp can be expected at increasing voltage Ves, which corresponds to a larger cross-section
than expected and may lead to the larger frequency-shift rate visible in the experiment.
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Figure 6. Frequency-shift rate and calculated curve using Equation (A8) from finite element modelling
(FEM) measured at different sampling voltages.

For retrieving the size distribution of the considered carbon aerosol, Equation (6) was
used to transform the given vector of frequency shift rates ([∆f /∆t]k) (with k = 1, . . . , v)
at Ves = −5 V, −10 V, −15 V, −20 V, −25 V, and −30 V (FEM values in Figure A2) back
into a vector of mass concentrations cm,l (l = 1, . . . , u) at dp,l = 24.1 nm, 43.2 nm, 77.3 nm,
138.0 nm, 245.9 nm, and 437.7 nm. For this, the system of six equations (corresponding to
Equation (6)): [

∆ f
∆t

]
k
=

f0

2m0
Q

∆m
∆t

u

∑
l=1

ξklcm,l; k = 1, . . . , v (8)

was solved using the approximation method of the non-negative least squares in MatLab
(Isqnonneg()). The results are plotted in Figure 7 superimposed to the size distribution
measured using FMPS in the original 24 size bins as well as after compression into the
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6 bins of the MEMS-DMPS. The corresponding number concentrations were recalculated
from the mass concentrations according to Equation (4). We find good agreement within
the entire size range except the smallest bin of dp,1 = 24.1 nm, where a zero concentration
value was obtained with the FEM data of the MEMS-DMPS. Here, a mass concentration
of 0.16 µg/m3 (cn,1 = 8.6 × 103 cm−3) was found by FMPS, which is far below the LOD of
the MEMS-DMPS of 0.73 µg/m3. For the next bin of dp,2 = 43.2 nm, where we have a mass
concentration of 0.84 µg/m3 (cn,2 = 9.0 × 103 cm−3) according to the FMPS, the MEMS-DMPS
yields 0.97 µg/m3 (cn,2 = 10.1 × 103 cm−3), which is in quite good agreement of 12% (15%).
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Figure 7. Size distributions of mass (a) and number (b) concentrations of a nebulized polydisperse carbon aerosol determined
for the novel MEMS-DMPS vs. the values measured by FMPS.

From the number concentrations, we can calculate the amount of sampled NPs by
the MEMS-DMPS for each considered diameter bin from the sucked-in air volume of
vs. ≈3 µL at an air flow rate Q ≈ 0.3 µL/min and a sampling time ts = 9.5 min. We
find total particle numbers ranging from ≈ 30,000 particles for the bin of the smallest
diameters (l = 2, dp = 43.2 nm) to 366 particles for the bin of the largest diameters (l = 5,
dp = 249.9 nm), which cause statistical errors ranging from 0.6% to 5.2%, respectively.

Figure 8 shows a correlation plot of the mass and number concentrations obtained by
FEM with the MEMS-DMPS vs. the values measured by FMPS, indicating small maximum
deviations of less than 13.6% and 11.1% for mass and number concentration, respectively.
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5. Regeneration of the MEMS-DMPS

For continuous use, sampling-based particle monitors/sizers need periodical refresh-
ing by removing the deposited particles from the sampling body or exchanging it for a
clean one. In the case of gravimetric detection, the chip containing the resonant device
would have to be discarded, which in our case was the MEMS-DMPS chip. To avoid this,
cleaning methods of the PMC were proposed and investigated. For removing NPs from a
surface, the strong adhesive force acting on the particle has to be surmounted. This can be
accomplished with an efficiency of nearly 100% in liquid solvent under the assistance of
ultrasonic agitation [34]. Alternatively, a carbon dioxide snow jet can be used to dislodge
particles by the impact of solid ice sprayed to the resonator surface under small angle of
incidence [35]. Since these methods usually require de-mounting of the sensing chip from
its package, it will not be practicable for an unskilled end user.

Adhesion force increases linearly with diameter, while drag force acting on particles
in an air flow is proportional to dp

2. Therefore, NPs are much more difficult to remove
than large particulates. However, strong adhesion may cause NPs to agglomerate into
larger deposits (Figure 5). For daily cleaning, it might thus be sufficient to remove those
excessive deposits of large agglomerates by purging clean air through the sampling head,
for which the drag force by the air flow can overcome adhesion. In addition, adhesive
forces on the NPs can be considerably lowered by a solvent condensed onto the cantilever
surface, e.g., from an acetone steam, as shown recently with the PMC of the portable Cantor
instrument [25].

To check this approach, we investigated a PMC loaded with excessive particulate
deposits. We only unplugged the sampling unit from the main board, without de-mounting
the sensor PCB from the air-intake socket. Then, we fixed it air-tight on a box containing a
reservoir of acetone and switched the fan on to let the acetone steam purge around the PMC
and condense there for 10 min. After separating the sensor PCB from the acetone steam,
we allowed particles to be removed with the evaporating acetone within a further 5 min in
a forced clean-air flow, i.e., with the fan switched on. For confirmation of the refreshing,
we re-mounted the sensor PCB to the main board and measured resonance-frequency
shift and corresponding mass loss. By repeating this procedure four times, we observed a
regeneration of the cantilever indicated by a positive frequency shift rate of 8.7 Hz/min
corresponding to a mass removal rate of ≈0.7 pg/min. An extension of the purging time in
acetone did not further accelerate particle removal. Thus, about 43 min will be necessary
to remove a total of 30 pg deposited mass from a 1 h operation in 10 µg/m3 aerosol (see
Figure 5). Nevertheless, further experiments, e.g., with other solvents and varied times and
flow rates of clean-air purging, will be necessary to improve the refreshing characteristics
of cantilevers.

6. Conclusions

A differential mobility ultrafine particle (UFP) sizer was described based on a res-
onant piezoresistive micro cantilever (PMC) in a micro-fluidic channel (µFC) integrated
as a differential mobility particle sizer in a single-chip microelectromechanical system
(MEMS-DMPS). Sizing of a carbon nanoparticles aerosol was shown by electrostatic mo-
bility separation of the positive-charged fraction in the µFC and capturing them on the
PMC. An inversion method was described based on a priori known charge distribution of
the nebulized carbon aerosol combined with finite element modelling (FEM) for retrieving
particle size in four bins between ~40 nm and ~250 nm. Mass concentrations in the range of
0–5 µg/cm3 showed good agreement of better than 14% of the novel MEMS-DMPS and was
found with a simultaneously operated standard reference instrument. The new device of-
fers some advantages vs. electrometer-based micro-fluidic UFP sizers for mobile operation,
e.g., an order of magnitude lower separation/sampling voltage and a noiseless miniature
fan for air suction. One-chip integration of separating/sampling/detecting components in
a standard bulk silicon wafer is a further benefit with respect to reliability and high-volume
manufacturing. Polluted cantilevers can be refreshed without de-mounting from a package
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by purging them alternately in acetone steam and clean air. For a MEMS-based fast mobility
particle sizer (MEMS-FMPS) an array of 8 micro channels and cantilever resonators can be
operated in parallel at a different fixed sampling voltage for each element in the range of
−20 V to −160 V, which will be addressed in a future work.
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Appendix A. Positive-Charged Fraction of Nebulized Aerosol

Measured fractions n+
p
(
dp, n

)
of n-times (n = 1, 2, 3, 4, 5, 6) positive-charged particles

with diameters of dp = 20 nm, 30 nm, 70 nm, 100 nm, 200 nm, and 400 nm are given in
reference [33] for a NaCl aerosol generated by a nebuliser (Table A1). Values for n = 5, 6 are
determined by extrapolation.

Table A1. Fraction n+
p
(
dp
)

of n-times positive-charged particles of a nebulized NaCl aerosol (data of
Simones et al. [33], Figure 4) for particle diameters dp (values for n = 5 und n = 6 were estimated by
extrapolation of the charge distribution).

n
n+

p(dp,n)

dp (nm) = 20 30 40 70 100 200 400

1 0.08 0.16 0.19 0.21 0.185 0.12 0.05
2 0.004 0.019 0.042 0.097 0.12 0.092 0.06
3 0.0014 0.0066 0.034 0.056 0.076 0.06
4 0.0013 0.012 0.027 0.052 0.048
5 0.0035 0.014 0.0353 0.033
6 0.0189 0.0214

From this we then calculate the average number of elementary charges of the positive-
charged particle fraction for each particle diameter:

q+p
(
dp
)
=

∑6
n=1 n × n+

p
(
dp, n

)
n+

p
(
dp, n

) (A1)

with the corresponding normalized number of positive-charged particles (positive-charged
fraction of the particles of the aerosol):

n+
p
(
dp
)
=

6

∑
n=1

n+
p
(
dp, n

)
(A2)
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The values of n+
p and q+p for particle diameters dp from 20 nm to 400 nm are given in

Table A2.

Table A2. From the values in Table A1 calculated average normalized fraction of positive-charged
particles n+

p
(
dp
)

and their average charge number q+p
(
dp
)
.

dp (nm) 20 30 40 70 100 200 400

n+
p 0.084 0.1804 0.2399 0.3565 0.402 0.3942 0.2724

q+
p 1.04 1.12 1.25 1.6 1.92 2.61 3.07

In Figure A1 the values of n+
p and q+p given in Table A2 are plotted vs. dp and

superimposed with curves respectively fitted using a polynomial function:

y1
(
dp
)
=

a1d2
p + a2dp + a3

d2
p + b1dp + b2

(A3)

We find average charge numbers between about 1 and 3 and positive-charged fraction
between about 0.1 and 0.4. The fitting parameters a1, a2, a3, b1 and b2 are shown in Table A3.
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Table A3. Fitted values using Equation (A3) for the average normalized fraction (open squares,
broken line) and for the average charge number (open circles, full line), respectively, of the positive-
charged particles shown in Figure A1.

y1 a1 (nm−2) a2 (nm−1) a3 b1 (nm−1) b1

q+p −0.281 355.2 −4546 398.4 20,350

n+
p 3.402 92.28 13690 47.97 14,790

Appendix B. Electrostatic Particle Separation/Sampling Using a MEMS-DMPS

Here we calculate the expected frequency-shift rate of a MEMS-DMPS depending on
the applied sampling voltage. We follow the common practice and investigate air-fluidic
components for separation of particles in flow channels by computational fluid dynamics
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(CFD) modelling, e.g., using COMSOL Multiphysics [18,19]. Its electrostatic and laminar
flow modules are appropriate for electrical-field and air-flow modelling and the “particle
tracing for fluid flow module” for computing particle motion under electrical and air-flow
fields, where electrical, drag, gravity, and Brownian forces are embedded [32].

We assume smooth and spherical particles carried by a fluid (air) showing no inter-
particle interactions (collisions) and having a uniform distribution across the inlet of the
micro channel (µFC). Wall deposition is considered, which may be more probable for
small particles due to strong Brownian motion and low particle velocity corresponding
to long particle residence in the µFC and can amount up to ≈25% of the total number of
nanoparticles (10 nm) at the outlet a µFC (LC = 12 µm, HC = 0.6 µm, LC/HC = 20) [36].
However, in our case the µFC has a much lower length to width ratio of LC/HC = 3.73, and
a correspondingly much lower wall deposition efficiency of ≈5% may be expected.

We then calculate the frequency-shift rate vs. sampling voltage ∆f /∆t = f(Ves) with a
geometrical model of our single-chip MEMS-DMPS comprising the µFC and the cantilever,
which was previously described in detail [27]. We use a number of 1000 × n+

p
(
dp
)

particles

with average charge numbers q+p
(
dp
)

and set dp corresponding to the average values of
j = 1, . . . , 24 size bins of the FMPS from 19.1 nm to 523.3 nm in Table A4. Here, the
bins from 6.04 nm to 16.3 nm of the FMPS were not considered, since the expected mass
concentrations were below the LOD of the MEMS-DMPS of 0.73 µg/m3 [27].

Using FEM, the number of particles ∆n+
p,j of the j-th size bin with average particle

diameter dp,j (j = 1, . . . , 24) is determined which are sampled from the initial ensemble

of 1000 × n+
p,j at Ves,i (i = 1, . . . , 6), whereby n+

p,j is the normalized count of positive-

charged particles with an average total charge number q+p,j (see Appendix A). For particle
separation/sampling we select voltages of Ves,i = −5 V, −10 V, −20 V, −40 V, −80 V, −160 V
(i = 1, . . . , 6).

Table A4. Numbering of size bins of FEM/FMPS and MEMS-DMPS (j, l: Number of particle size bin,
dp,I,k: average particle diameter in bin no. j, l).

FEM/FMPS MEMS-DMPS

j dp,j (nm) l dp,l (nm)

1 19.1

1 24.1
2 22.1
3 25.5
4 29.4
5 34.0

2 43.2
6 39.2
7 45.3
8 52.3
9 60.4

3 77.3
10 69.8
11 80.6
12 93.1
13 107.5

4 138.0
14 124.1
15 143.3
16 165.5
17 191.1

5 245.9
18 220.7
19 254.8
20 294,3
21 339.8

6 437.7
22 392.4
23 453.2
24 523.3
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The resulting sampling efficiencies ξij
(
Ves,i, dp,j

)
at each of the 6 voltage values (Ves,i)

for each of the 24 size bins (dp,j) can be written as a 6 × 24 matrix: ξ11 · · · ξ1 24
...

. . .
...

ξ61 · · · ξ6 24

 (A4)

Using this efficiency matrix we can now transform the vector of particle number
concentration (cn,j) (j = 1, . . . , 24) given by the measured size distribution (see Figure 4)

into a vector of the number of positive-charged particles
(

∆n+
p,i

)
(i = 1, . . . , 6) sampled on

the cantilever: 
∆n+

p,1
...

∆n+
p,6

 = 103

 ξ11 · · · ξ1 24
...

. . .
...

ξ61 · · · ξ6 24


 cn,1

...
cn,24

 (A5)

Assuming spherical shape of the model particles and uniform density
(ρcarbon = 2.26 g/cm3) the sampled particle mass vector (∆mi) can be calculated from(

∆n+
p,i

)
(i = 1, . . . , 6):  ∆m1

...
∆m6

 =
π

6
d3

j


∆n+

p,1
...

∆n+
p,6

 (A6)

and then the related vector of frequency shift rate
([

∆ f
∆t

]
i

)
(i = 1, . . . , 6) is:


[

∆ f
∆t

]
1

...[
∆ f
∆t

]
6

 =
f0

2m0∆t

 ∆m1
...

∆m6

 (A7)

which are calculated using the values for f 0, m0 and ∆t given in Table 3. In Table A5, the
components of the resulting frequency-shift-rate vector are given in dependence of the
sampling voltage.

Table A5. Numbering and values of sampling voltage for determination of sampling efficiency of the
MEMS-DMPS using FEM and for experimental particle sizing using the inversion method.

i Ves,i (V) [ ∆f
∆t ]i(

Hz
min )

1 −5 0.92
2 −10 1.48
3 −20 2.64
4 −40 5.12
5 −80 9.10
6 −160 11.90

These values are plotted in Figure A2 and then fitted using an analytical formula:

∆ f
∆t

(Ves) = a + b exp(cVes) (A8)

with coefficients of a = 14.1 Hz/min, b = −14.2 Hz/min, and c = −0.012 V−1.
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