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Abstract: Vehicle dynamic parameters are of vital importance to establish feasible vehicle models
which are used to provide active controls and automated driving control. However, most vehicle
dynamics parameters are difficult to obtain directly. In this paper, a new method, which requires only
conventional sensors, is proposed to estimate vehicle dynamic parameters. The influence of vehicle
dynamic parameters on vehicle dynamics often involves coupling. To solve the problem of coupling,
a two-stage estimation method, consisting of multiple-models and the Unscented Kalman Filter,
is proposed in this paper. During the first stage, the longitudinal vehicle dynamics model is used.
Through vehicle acceleration/deceleration, this model can be used to estimate the distance between
the vehicle centroid and vehicle front, the height of vehicle centroid and tire longitudinal stiffness.
The estimated parameter can be used in the second stage. During the second stage, a single-track
with roll dynamics vehicle model is adopted. By making vehicle continuous steering, this vehicle
model can be used to estimate tire cornering stiffness, the vehicle moment of inertia around the yaw
axis and the moment of inertia around the longitudinal axis. The simulation results show that the
proposed method is effective and vehicle dynamic parameters can be well estimated.

Keywords: vehicle dynamic parameters; Unscented Kalman Filter; multiple-model

1. Introduction

Nowadays, modern road vehicles are using an increasing number of active systems
to improve vehicle safety, passenger comfort, vehicle performance and energy efficiency.
Advanced Driver Assistance Systems (ADAS), as well as Automated Driving (AD) tech-
nologies, are being increasingly implemented in vehicles, aiming for improved driving
safety and passenger comfort [1,2]. In addition, the autonomous driving test rig is also an
important method to test autonomous driving control algorithms (as shown in Figure 1, it is
an autonomous driving test rig proposed by our research group) [3-5]. The implementation
of these fields greatly depends on accurate vehicle dynamic parameters. Vehicle dynamic
parameters are also important for vehicle modeling. Thus, vehicle dynamic parameters
are important for vehicle design and testing. The vehicle dynamic parameters (VDPs),
such as the vehicle mass, moment of inertia and position of the vehicle centroid, affect the
closed-loop behavior of active safety systems and play an important role [6]. It is necessary
to determine the VDPs to obtain real vehicle responses. Some of the VDPs can be easily
measured such as the mass, the track width or the wheelbase. However, other parame-
ters are unknown and difficult to be measured directly, such as the distance from vehicle
centroid to the front axis. The moment of inertia around each axis can be measured by
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special equipment which is extremely costly. In contrast, the estimation method is a less
intrusive and expensive way to obtain VDPs. The VDPs can be estimated by combining the
estimation algorithm with some cheap sensors such as Inertial Measurement Unit (IMU),
Global Positioning System (GPS), wheel speed sensors and steering angle sensor [7].
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Figure 1. Autonomous driving test rig.

To obtain VDPs, many different methods have been proposed. In [8], a novel model-
based parameter identification approach using optimized excitation trajectory is proposed
to identify the VDPs. However, this method needs test rigs, which is a huge cost. In ad-
dition, a variety of algorithms for VDPs estimation have been presented in works of
literature [9-39]. The influence of VDPs on vehicle dynamics often involves coupling.
Most of the papers only study the estimation part of some parameters and the other param-
eters are treated as being easily measured or obtained. In actual applications, this strategy
is not feasible. In real applications, all VDPs need to be obtained through simple sensors
and estimation strategies. Since the VDPs are always coupled with the vehicle states,
the state-parameter joint and dual estimation methods [9,10] have become increasingly
prevalent and have been studied by many researchers. Some researchers use the Dual
Kalman Filter (DKF) to identify the VDPs and the vehicle states simultaneously. Besides,
VDPs estimation is usually classified based on the parameters of interest and the vehicle
dynamics model used. In [11], common onboard sensors which are able to measure the
lateral acceleration and yaw rate and a non-linear vehicle model are used. Augmented
Extended Kalman Filtering is used to estimate motion states and tire cornering stiffness
based on a non-linear vehicle model and sensor. Sideslip and roll angles of electric are
estimated using lateral tire force sensors through RLS and the Kalman Filter based on the
Single-track model in [12]. Sprung mass, yaw moment of inertia and longitudinal position
of the center of gravity are identified through a dual unscented Kalman Filter in [13]. In [14],



Sensors 2021, 21, 3711

30f17

a four-wheel nonlinear vehicle model with roll dynamics and a correlation between the
inertial parameters is used for a dual Unscented Kalman Filter to simultaneously identify
the inertial parameters and the vehicle state. A local observability analysis on the nonlinear
vehicle model is used to activate and deactivate different modes of the proposed algorithm.
A Dual Extended Kalman Filter (DEKEF) is used to estimate both vehicle states and vehicle
parameters such as the vehicle mass, moment of inertia about the vertical axis and distance
between the center of gravity and the front axle [15]. An extended Kalman Filter-based
estimator adopting a dynamic vehicle model for determining the vehicle’s longitudinal
and lateral velocity as well as the yaw rate is proposed in [16]. In [17], a novel approach
based on combined Hy and extended Kalman Filter (He-EKF) is used to estimate the
center of gravity position of electric vehicles. To implement this estimation algorithm,
a simplified vehicle dynamics model is applied to the filter formulation. The He, estimator
is employed to filter states by means of minimizing the influence of unexpected noise,
whose statistics are unknown. Simultaneously, the other EKF estimator uses the states
derived by the former filter to identify the position of the vehicle centroid. A methodology
based on multiple-models and a switching method for real-time estimation of the position
of vehicle centroid is proposed in [13]. The method uses the well-known simple linear
vehicle models for lateral and roll dynamics and assumes the availability of lateral acceler-
ation, the yaw rate, velocity, and steering angle measurements. As mentioned in previous
research, the existing estimation methods are either expensive or only portions of the VDPs
can be estimated. However, vehicle dynamics modeling needs to completely determine the
completed VDPs, while the cost of VDPs acquisition should be as small as possible. Thus,
a method that can obtain completed VDPs at low cost urgently needs to be proposed.

In order to obtain completed VDPs at a low cost, we propose a two-stage estimation
method consisting of multiple-models and Unscented Kalman Filter to estimate VDPs.
In the first stage, the vehicle is set to accelerate/decelerate and the longitudinal vehicle
model is used. During this stage, the height of the vehicle centroid, tire longitudinal stiffness
and the longitudinal position of the vehicle centroid are estimated by the Unscented Kalman
Filter. After these parameters are estimated, these estimated parameters can be used in
the second stage. In the second stage, a Single-track with roll dynamics vehicle model is
adopted and the vehicle is set to continuous steering. Through vehicle steering, this model
can be used to estimate tire cornering stiffness, the vehicle moment of inertia around the
yaw axis and the moment of inertia around the longitudinal axis. After the two-stage
estimation, all VDPs are estimated. The rest of the paper is organized as follows: vehicle
dynamics model are shown in Section 2. The method used to estimate VDPs is provided in
Section 3. Section 4 shows and discusses the simulation results. Finally, Section 5 delivers
the conclusions and points towards future work.

2. Vehicle Model

The vehicle model used in this paper is a multiple-model approach which is based
on a longitudinal vehicle dynamics model (as shown in Figure 2a) and a single-track with
roll dynamics vehicle model (as shown in Figure 2b,c), which comprises: the motion in the
longitudinal direction x, the longitudinal velocity; the motion in the lateral direction y or
lateral velocity; the yaw around the vertical axis z, described by the yaw rate and roll with
regard to the longitudinal axis x; and the roll rate [13]. Figure 2 illustrates the vehicle model
adopted in this paper. The whole motion of the vehicle is a direct result of the forces (the
aerodynamic forces and rolling resistance are neglected in this paper) that are generated
between the road and tires. As shown in Figure 2b, the four-wheel vehicle dynamics model
can be simplified as a single-track model. Other states that depend directly on these states
can be derived, such as longitudinal and lateral accelerations. The tire states, such as the
wheel slip angle, slip ratio and rotational velocities are also important. Tire-road friction
force can be obtained based on tire states and tire stiffness. The vehicle states are also
largely dependent on VDPs. VDPs include vehicle mass, moments of inertia around each
axis and the position of the vehicle centroid.
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Figure 2. Vehicle model: (a) Longitudinal vehicle dynamics model; (b) Single-track vehicle model;
(c) Vehicle roll dynamics.
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The vehicle dynamic model can be described by differential equations. The vehicle
model implemented here can be obtained from [17,18]. When the vehicle was accelerating
or decelerating along the longitudinal direction, the longitudinal vehicle dynamics model
was adopted. As shown in Figure 2a, the longitudinal vehicle dynamics model was built
with the longitudinal motion, as well as the front and rear wheel rotations

Moy = Fxf + Eyr 1)
]wf = Tf_rFxf (2a)
Jwy =T, —rFy (2b)

where m is vehicle total mass, vy represents the longitudinal vehicle velocity Fyrand Fxr
represent the longitudinal forces of the front and rear tires. J is the wheel’s moment of
inertia. r is the equivalent radius of the front and rear tires. T;, w; (i = f,r) represent the
wheel torque and angular speed. The load distribution can be expressed by the vertical
forces that act on each of the four wheels. These can be calculated as follows:

I h

Fy= mgir - maxi (3a)
l h

F,, = mg% + maxi (3b)

where Fy and F, are vertical force of the front and rear wheels. ay is the longitudinal
accelerations, g is the gravitational constant, lf is the distance between the vehicle centroid
and vehicle front axis, I, is the distance between the vehicle centroid and vehicle rear axis
and & denotes the height of the vehicle centroid. L is the distance between the front axis
and rear axis.

When the vehicle was being steered, the single-track with roll dynamics vehicle model
was adopted. As shown in Figures 1c and 2b, the differential equations for the calculation
of longitudinal and lateral acceleration are as follows:

Uy = ax + vytﬁ 4)
vy =ay+ ) (5)
ay = %(Fxwa(F + Fyysind + Fy) (6)
ay = %(Fxfsin5 + Fypcosd + Fy;) 7)

Yaw and roll motion can be obtained from:

b= ®)

Lp = mh(ay +g¢p) — ko — cp¢p ©)

where l[) is the yaw rate, ([J is the roll rate, I is the moment of inertia around the yaw axis,
I, is the moment of inertia around the longitudinal axis, k¢ is the roll stiffness, cy is the
roll damping and a,, is lateral acceleration. I' can be calculated as follows:

I = I¢(Fycosd + Fygsind) — I,Fy, (10)

where J is the wheel steer angle while F,, represents the lateral forces of the rear tires.
There are many different approaches for achieving tire force, such as the so-called ‘Magic
Formula’ by Pacejka [19], the tire model by Fiala [20] or the ‘TMeasy’ tyre model [21].
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When the acceleration/deceleration strength of the vehicle is small and the steering angle
is small, the tire force can be calculated as follows:

Pxi = Cg'si (11&)

Fyi = Cuoci (11b)

where Fy;, Fy; (i = f,r) represent the longitudinal and lateral tire forces, C, denotes the tire
cornering stiffness, C, denotes the tire longitudinal stiffness, s; is the slip ratio and «; is
the slip angle. &; can be presented as follows:

vy —
= -9 12
&f o (12a)
— 1.4
=¥ (12b)
Ox
the slip ratio s; (i = f,r) can be presented as follows:
w;ir
= — 1
Si 0, (13)

When the acceleration/deceleration strength of the vehicle was small, the tire-road
friction coefficient was proportional to the slip ratio rate [21]. Then the longitudinal tire
force can also be presented as follows:

F,; = F;;Cks; (14)

where Ck is the slip ratio rate. It is a constant value related to the road surface. When the
road surface was different, Cx changed as well. From Equations (11a) and (14), it can be
seen that tire longitudinal stiffness can be calculated based on the slip ratio rate and vertical
force of the wheel. This means that the tire longitudinal stiffness can be obtained when the
slip ratio rate is estimated.

3. Estimation Method

To adapt to non-linear problems in vehicle dynamics estimation, EKF is widely used
for estimating different vehicle states. However, the accuracy of EKF-based estimation
cannot be guaranteed due to linearization errors with Jacobian matrices when approximat-
ing non-linear systems [20-26]. More recently, additional attention has been paid to UKF
estimation, which uses a set of sigma points to conduct non-linear transformation so that
it can deal with strong non-linear estimation problems for vehicle dynamics systems [31].
The UKF, developed by Julier et al. [32] and refined by Wan and van der Merwe et al. [33]
provides a new estimation approach. Unlike the EKF, the UKF approximates the probability
density function of system states by implementing the Unscented Transformation (UT)
instead of the system dynamics model. The UT captures the mean and covariance of the
Gaussian random vector (GRV) to at least second-order accuracy through the use of a set
of sample points. UKF is an effective method to estimate the states or the parameters of a
discrete dynamic system. In this paper, we use UKF to estimate VDPs through a two-stage
method. The frame diagram of the two-stage estimation method is shown in Figure 3.
In this paper, we assume that the velocity of the vehicle can be measured by GPS, and the
vehicle mass is known. The driving or braking torques of vehicle (T;) can be obtained.
Longitudinal acceleration ay, lateral acceleration a, and the yaw rate i can be measured by
IMU. Rolling stiffness ky and roll damping c are given by the manufacturer. The relevant
parameters are listed in Table 1.
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Table 1. Nomenclature.

First stage

Parameter Description
m Vehicle mass
g Gravitational constant
I, The moment of inertia around the longitudinal axis
L The moment of inertia around the yaw axis
b Vehicle width
ly Distance between the vehicle centroid and vehicle front axis
Iy Distance between the vehicle centroid and vehicle rear axis
r Effective tire radius
h Height of vehicle centroid
o Roll damping coefficient
kg Roll stiffness
Cy Tire cornering stiffness
Ck Slip ratio rate
] Wheel moment of inertia
Uy Longitudinal vehicle velocity
Fyf Longitudinal forces of the front tire
Fyr Longitudinal forces of the rear tire
Ty Front wheel torque
T, Rear wheel torque
Fyr Vertical force of front wheel
F,, Vertical force of rear wheel
ay Longitudinal accelerations
¢ Yaw rate
) Roll rate
ay Lateral acceleration
1) Wheel steer angle
Fy Lateral forces of the rear tires
Co Tire longitudinal stiffness
Si Slip ratio
K; Slip angle
/Tf ( z W 1 f\
115 s X F—" """"""""" Unscented Kalman
a, ,// As\‘-’ =5 7 ’“)' , h [ Filter ]
\ 4 \ —t
w f [ ,_l‘_l‘ £,
! . Ck |
Wy Longitudinal vehicle dynamics model |
| ™

Single-track with roll (l)'numiEs
vehicle model

Second stage

-

Figure 3. Two-stage estimation method.
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As shown in Figure 3, the longitudinal vehicle dynamics model was adopted during
the first stage. For the first stage, the longitudinal vehicle dynamics model could be
described by Equations (1)—(3), (11a) and (14). To make sure the longitudinal vehicle
dynamic model is able to reflect the real state of the vehicle, the absolute value of the front-
wheel steering angle needed to be smaller than 0.62 deg and the absolute value of yaw rate
needed to be smaller than 1 deg/s (as shown in Table 1). The inputs of the longitudinal
vehicle dynamics model were wheel torque T;(i = f,r). The states of the longitudinal
vehicle dynamics model included the angular speed w;(i = f, r) and longitudinal vehicle
velocity vy. The measurable outputs were the angular speed w;(i = f,r) and longitudinal
vehicle velocity vy. As shown in Figure 3, the distance between the vehicle centroid
and vehicle front I, the height of vehicle centroid k and the tire longitudinal stiffness
Ck are estimated parameters. To enable the VDPs to be estimated (persistent excitation
requirement), specific command signals needed to be given to activate the corresponding
parameters (As shown in Table 1).

When I, h and Ck were estimated during the first stage, these estimated VDPs could
be used in the second stage (as shown in Figure 3). During the second stage, a single-
track with roll dynamics vehicle model was used and is described by Equations (4)—-(12).
As shown in Figure 3, the inputs of the single-track with the roll dynamics vehicle model
the wheel steer angle 6, lateral accelerations a,, yaw rate ¢ and the roll rate ¢. The states
of this model include longitudinal vehicle velocity vy, lateral velocity vy, longitudinal
accelerations ay, lateral acceleration a,, yaw rate ¢ and the roll rate ¢. The estimated
parameters are the moment of inertia around the yaw axis I, the moment of inertia around
the longitudinal axis I, and the tire cornering stiffness C,. When the conditions of the
second stage in Table 2 are met, VDPs (I, Iy, C,) can be estimated.

Table 2. Two-stage estimation condition requirements.

First Stage: Linear Acceleration/Deceleration

e  Longitudinal vehicle dynamic model
. | Front Wheel steering angel | <0.62 deg
. | Yaw Rate | <1deg/s

e  Longitudinal acceleration/deceleration

Second stage: Continuous turn

e  Single-track with roll dynamics vehicle model
o  First stage estimation finished
e  Longitudinal speed remains constant

. Continuous turn

As shown in Figure 3, UKF was used in both the first stage and second stage. UT is
one of the most important parts of UKFE. First, we introduce UT here. UT is shown in
Table 2 [29].

When a system function is given as y = f(x), x is the state and the dimension of x is
L (as shown in Table 2). Given an L-dimensional GRV x with mean & and covariance P,,
the statistics of y = f(x) were approximated by the selection of 2L + 1 discrete sample points
{xi ?io = {&andz+ oj,j=1,..., L} where ojis the i column of the matrix /(L + A)Py.
A is a scaling parameter and depends on &, x and L. The constant & determines the spread
of sigma points about the mean %. The constant x is generally set to 3 — L. The constant
was used to incorporate prior knowledge of the distribution. In this paper, « = 0.01, § = 2.

As shown in Table 3, w represents VDPs; x represents the states of dynamics; d repre-
sents the measured vector; u represents the input vector of the dynamic system. Rj, is the
measurement noise covariance. R} is the processing noise covariance. The corresponding
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parameters are shown in Table 4 and Section 4. At different stages, these variables repre-
sented different parameters. The local observability was demonstrated by investigating
the rank of the observability matrix [20]. If the observability matrix had the full column
rank, it was said to be locally observable. Using the continuous state-space representation,
the discretized state-space representation was written by the Euler’s forward discretization
in (15).

Table 3. UT.

UT Setup

L i=1,...,2L

Table 4. UKF for VDPs estimation.

At
1: Initialize wy, P,

(Uo —E[w(O)]

P! =El(w(0)— wo)(w(O) wo)]

2: Prediction and sigma-point calculation:
A= At
Wk =Wk—1
+ r
P, —P +Ry,, '

Wi-1

. _
Wiik-1=l wy, wk +71/Pa, wk —71/Pg, 1
Dklk 1= G(xk,ka 1K)

dk ZW Djkix-1

3: Update after the measurement of d(k)
A T

P;k=X;M/§C) (Dj 1 k—1—d )(Di,klk—l_dk ) +Rj
A T
wk,gk‘EW (Wiktko1~@g ) Dyt —di )

Kk_P @)

wkdk
A

wk—wk +Kk[d(k) dk 1
P}, =P, —Ki.Py KI

d(xx) = Xg—1 + TsG(Xp—1, W1, Ux_1) (15)

where T is the sampling time. The observability matrix is the Jacobian of measurement
vector d, with respect to the parameter vector w. During the first stage, the Longitudi-
nal vehicle dynamics model was used. According to Equations (1)-(3), (11a) and (14),
the dynamic functions could be rewritten as:

l
Moy = (mgl — maxh>Cst + (mg f + maxg)CKsr (16)
) h
]wf:Tf—r< g——max )Cst (17)

Jw, =T, — (mgljj + maxh>CKs, (18)
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and the measurement vector d was written as:

(gL —axL)Cst—l— (gL —i—axL)CKsr

811 T—r(mg'f — C
- mg T may s ) st
d=Gi(x wy,u)=| g, | = z (19)
813 T,7r<mg%+max%> Cksy

where w1 represents a constant vector of the vehicle inertial parameters. During the first

stage, wy = [ It h Cx ]T. The observability matrix was defined as the Jacobian of G1
with respect to the parameter vector wy. The Jacobian matrix, C; = V, G1, was repre-

sented as:
g1 9811 981
%wn aawlz E3«713
= - 812 812 812
€=V, G1= dwyp  dwppy  dwiz (20)
9813 9813 9813
dwyp  dwpp  dwiz
where 3 3
o811 _ 8 C 811
S+ C s C s + * Cxs
3(011 f K r/a K5f KSrr
og l h 1 h
11 f f
=gs Sf— Ay —Sf+g =Sty —S
aw13gfgLf xfgLr X Sr
981 _rmg 081y _maxCksr gy
Bwn CKSf’ awu IL ’aw13
=—rmg75f+rmg]—Lsf+maer£Lsf
9813 __ rmgCksy 9813 __ rmayCys, 9813
dwyy JL ’alwlz JL  7dwi
=—r(mg]—i+mux]—L)s,
Then Cq could be written as:
Ci1=Vu,G1=
1 1
—§Cxsp+§Csy  —F Csp+ P Cise gsf—g{sf—ax%s +g L srtaxls, ’1
rmgCKsy rmuchSf —rmglsermg L sermayrts @1)
L ]LC 8T Sf g]Lf+ <L Sf
rm S.
— T —rlmg i +mafp)s,

As shown in the above equation, the observability matrix was able to meet the require-

ment of the full column rank as long as the acceleration a, was properly selected.
During the second stage, the measurement vector consisted of the longitudinal vehicle

velocity, yaw rate and roll rate. According to Equations (4)—(14), the dynamic functions
could be rewritten as:

by = % (Cgsfcosé + Cattysind + Cg‘sr) + o, (22)

B lf (Cgsfcosé + CaocfsimS) — L,Cyaty
y= i (23)
Z

h (Cgsfsiné + Canpeosd + C,thr) +mgh¢ — kpp — c¢gb

¢ = i (24)




Sensors 2021, 21, 3711 11 of 17

then the measurement vector d was written as:

821
d=G;(x,wy)= E90)
823

%(Cgsfc055+caa sin§+C05f)+vy¢
[ lf(C,TSfcos¢5+C“afsim5 —L,Cyar ‘|

(25)

z .
h(Cyspsind+Cuapcosd+Conr)tmghp—kyp—cy P
L

where w, represents a constant vector of the vehicle inertial parameters. During the second
stage, wo=[ I; I, Cy ]T. The observability matrix was defined as the Jacobian of G, with
respect to the parameter vector wy. The Jacobian matrix, C,=V, G2, was represented as:

981 9851 981

%wzl %wzz %wza
— = 822 822 822
Cz_v“'l Go= dwy Odwy  dwyz ] (26)
9853 9853 9853
aw21 szz a(U23
where .
981 _ %821 _ %21 _%ysind
o, oI, '9C, m
09 _ I{Cqyspcosé+Coassind)—1,Coter 9gy, 0 092, _ lassind — Loy
oL, 2 oL, 3G, I,
9853 =0 083 _ h(CUstin(5+Cuafc055+C,xar)+mhg¢7k¢¢7c¢¢ 9875
oL, T oL~ 2 79C,
_ hlecos§+hlxr
=71
Then C; could be written as:
C=V,Go
0 0 af:;nd
lf(C,fsfcos§+C,xzxfsin§)—eruzxr 0 lfafsind—lrar (27)
= - Ig I,
0 h(Cgs]csin§+Caafc055+Caar)+mhg¢—k¢¢—c¢¢ hogcosd+ha,
N B L

As shown in the above equation, the observability matrix was able to meet the require-
ment of full column rank as long as the steering angle § was properly selected. Based on
the above analysis, the VDPs can be estimated when the acceleration ay and steering angle
¢ are designed according to Table 2.

In order to compare the estimation performance of the method proposed in this paper,
we used the commonly used extended Kalman algorithm for comparison. The extended
Kalman algorithm is shown in Table 5.
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Table 5. EKF for VDPs estimation.

EKF Algorithm

1. Initialize & , P,

@ —Ew®]”

P, = E[(w(0) — @) (w(0) — &g ) ]
2. Prediction before the measurement of d(k)
@y = @;F
_ k N k—1 .

) Pwk = P‘Uk—l + Rk—l

d; = G(a;,;l,s(k —1),u(k— 1))

3. Update after the measurement of d(k)
Ky = P5 G T(Co Py Cr T+ R
o = op +Kq [dk —d¢|
P} =P, — K Cp Py,

The meanings of relevant parameters in the Table 5 are same as the meanings of
relevant parameters in Table 4.

4. Simulation Results

The parameters of the vehicle model are shown in Table 6.

Table 6. Model parameters and definitions.

Parameter Description Value Unit

m Vehicle mass 1600 kg

g Gravitational constant 9.8 m/s?
Iy The moment of inertia around the longitudinal axis 4175 kg m?
I, The moment of inertia around the yaw axis 2000 kg m?
b Vehicle width 1.53 m

I f Distance between the vehicle centroid and vehicle front axis 1.4 m

Iy Distance between the vehicle centroid and vehicle rear axis 1.1 m

r Effective tire radius 0.3 m

h Height of vehicle centroid 0.637 m

Cp Roll damping coefficient 5737 Nms/deg
kg Roll stiffness 36,000 Nm/deg
Cy Tire cornering stiffness 66,900 N/rad
Ck Slip ratio rate 10 -

] Wheel moment of inertia 0.6 kg m?

As shown in Figure 3, the whole parameter estimation process was divided into
two parts. The second stage of the estimation could only start after the first stage of
the estimation was completed. Due to space limitations, the control of the vehicle is not
discussed here. The vehicle control can refer to reference [36-39]. First, we estimated
I;, I, Cy. As shown in Table 1, the vehicle needed to be continuously accelerated and
braked for VDPs estimation. For this paper, the vehicle speed command signal was set as
shown in Figure 4. It is a sinusoidal signal with a period of 12.5 s and an amplitude of 10.
It includes acceleration/deceleration and can meet the requirements of the first stage (as
shown in Table 1).
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Figure 4. Vehicle longitudinal speed command.

VDPs can be estimated by making the car follow the command signal (as shown in

Figure 4) to run for 4 cycles and 50 s. The simulation results are shown in Figure 5.
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Figure 5. First stage VDPs estimation: (a) slip ratio rate estimation; (b) the height of vehicle centroid

estimation; (c) estimation of the distance between the vehicle centroid and vehicle front axis.
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As shown in Figure 5, the slip ratio rate C,,the height of vehicle centroid  and the
distance between the vehicle centroid and vehicle front axis Iy were estimated and the
estimated values approximated the real values in a short time (about 10 s) through the
proposed method in this paper. Compared with the UKF used in this paper, the estimation
error of EKF was larger (as shown in Figure 5). When C, h and [ were estimated, they were
used in the second stage. To meet the requirement of the second stage (as shown in Table 2),
the vehicle steering angle command signal was set as Figure 6.

Steer angle (degree)

0 5 10 16 20 _ 25 30 35 40 45 50
Time (s)

Figure 6. Vehicle steering angle command signal.
As shown in Figure 6, the vehicle steering angle command signal is a sawtooth wave

with a period of 10 s and an amplitude of 5. Additionally, the vehicle operated at a speed
of 10 m/s. The simulation results are shown in Figure 7.
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Figure 7. Second stage VDPs estimation. (a) the tire cornering stiffness estimation (b) the mo-
ment of inertia around the longitudinal axis estimation (c) the moment of inertia around the yaw
axis estimation.

As shown in Figure 7, tire cornering stiffness C,, the moment of inertia around
the longitudinal axis Iy and the moment of inertia around the yaw axis I, can be well
estimated and the estimated error is small through the method proposed by us. However,
the estimation error by EKF becomes larger compared with the first stage (as shown
in Figure 7). The simulation results show that the proposed method is very capable of
estimating the VDPs, and thus proves the effectiveness of the proposed method. This is
mainly caused by two reasons. First, the estimated parameters with larger errors in the first
stage are used in the second stage. Second, the parameter estimation in the second stage
is a non-linear estimation (This can be seen in Equation (27)). The two simulation results
prove that the method proposed in this paper can more accurately estimate the VDPs.

5. Discussion and Conclusions

In this paper, a new method is proposed to estimate VDPs. Different from other
studies that only estimated portions of VDPs, the proposed two-stage estimation method
which combines multiple-models and the Unscented Kalman Filter is able to estimate more
VDPs. Because the states of a vehicle are affected by the tire stiffness, the tire stiffness
is difficult to measure. The proposed estimation method is able to estimate VDPs and
tire stiffness. The proposed two-stage estimation method also solves the problem that
VDPs have a coupling effect on vehicle motion, which makes the VDPs difficult to estimate.
For comparison, EKF is used. The simulation results prove that the proposed method not
only can estimate VDPs but also that the estimation errors are small.

The proposed two-stage estimation method in this paper can obtain all the VDPs
needed for vehicle dynamics modeling at one time. It is useful for vehicle modeling,
control and autonomous driving control algorithm tests on a test rig. More and more
artificial intelligence technologies are being widely used in autonomous driving. However,
most intelligent control algorithms are trained using vehicle kinematics models. An intel-
ligent control algorithm trained with the kinematics model cannot accurately reflect the
state of a real vehicle on the road. In order to ensure the effectiveness of the intelligent
control algorithm, the vehicle dynamics model needs to be used in the algorithm training
process. However, VDPs provided by most vehicle and devices manufacturers are not
complete. The method proposed in this paper can estimate most of the VDPs required for
vehicle dynamics modeling. Then it can be used to develop intelligent control algorithms
for autonomous vehicles.

Our current research work verifies the effectiveness of the method proposed in this
paper from the simulation. It verifies the program in advance for the next step of real
vehicle test verification. In addition, it is assumed that some vehicle states can be measured
directly in this paper. However, they are difficult to obtain in real scenarios. In the future
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work, we will use a Dual Unscented Kalman Filter to estimate the unmeasurable states and
VDPs simultaneously.
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