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Abstract: Due to the complexity of surrounding environments, lidar point cloud data (PCD) are often
degraded by plane noise. In order to eliminate noise, this paper proposes a filtering scheme based
on the grid principal component analysis (PCA) technique and the ground splicing method. The
3D PCD is first projected onto a desired 2D plane, within which the ground and wall data are well
separated from the PCD via a prescribed index based on the statistics of points in all 2D mesh grids.
Then, a KD-tree is constructed for the ground data, and rough segmentation in an unsupervised
method is conducted to obtain the true ground data by using the normal vector as a distinctive
feature. To improve the performance of noise removal, we propose an elaborate K nearest neighbor
(KNN)-based segmentation method via an optimization strategy. Finally, the denoised data of the
wall and ground are spliced for further 3D reconstruction. The experimental results show that the
proposed method is efficient at noise removal and is superior to several traditional methods in terms
of both denoising performance and run speed.

Keywords: PCD filter; grid PCA; ground noise; KD-tree; normal vector; KNN

1. Introduction

With the development of three-dimensional (3D) technologies, lidar has gained in-
creasing attention due to its low price, small size, and high precision. In recent years, lidars
have been widely used in autonomous driving [1–3], aerospace [4], three-dimensional
modeling [5–8], and other fields. In these applications, lidars provide the range map
of the concerned object or environment, which can be further processed for geological
mapping [9–11], simultaneous localization and mapping (SLAM) [12–18], as well as 3D
modeling and reconstruction, even for the modeling of human organs, detection and posi-
tioning of necrotic tissues, and other aspects in medicine [19]. Generally, the 3D structure
of the concerned object is scanned by lidar and restored after point cloud scan registration,
segmentation, and reconstruction. Due to measurement errors, the raw point cloud data
(PCD) are necessarily polluted by various noises [20], which potentially undermine the
accuracy of 3D modeling. Consequently, denoising of PCD is the most important step in
3D point cloud processing before further applications.

In order to mitigate the impact of noise in PCD, researchers have developed many
filters to remove noisy data [21]. Actually, we should usually compromise the efficiency
and accuracy in the filter design, because more accurate filtering performance means more
computational cost as well as more time-consuming, while a more efficient algorithm
means more details of PCD have abandoned rendering loss of accuracy. Yao et al. [22]
proposed a filtering method based on kernel density estimation (KDE), and the threshold
was set according to the maximum probability density of points to accelerate the filtering
process. Han et al. [23] deduced a linear model of guidance point cloud such that PCD
can be filtered in a more efficient manner, which accompanied the decreased accuracy. In
order to improve the filtering accuracy, Li et al. [24] proposed an improved adaptive filter
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to generate a filter and high-precision point cloud that can effectively reduce the error.
In [25], PCD was first segmented before filtering to boost performance. How to effectively
remove ground noise is always a troublesome problem in environmental 3D modeling.
Therefore, many targeted filtering methods [26] exist to deal with this problem. Yuxiang
et al. [27] extracted the digital terrain model by using the spatial structure of terrain and the
spatial coherence between points thereby a good filter scheme for ground noise. Feichter
et al. [28] identified a plane from a PCD, and generalized a description of shape features
using triangulation of the boundary to remove noisy points. Liu et al. [29] proposed a
surface modeling method based on the mixed regression technique to determine the plane.
Quan et al. [30] proposed a method based on the filtering of adjacent triangular point
clouds in an irregular triangulation network to effectively remove ground noise, therefore
a noise-free ground model. However, this method will remove some useful features in
PCD in some scenarios, hence some manual restrictions are required to prevent the loss of
information. Leal et al. [31] proposed a filter based on the methods of median filtering and
sparse regularization to preserve the sharp noise while removing noise in a PCD. In [32],
the authors specially designed filter schemes for different regions of a PCD in order to
farthest preserve the useful information in the PCD, while reducing the universality of
the proposed filter. A more universal method based on spatial clustering was proposed
by Xu and Yue [33] to remove noise while preserving complex ground information. Zou
et al. [34] utilized the farthest point weighted mean down-sampling (FWD) technique
to search the feature lost due to filtering operation and to retain feature points while
denoising. Moreover, there exist other denoising filters based on deep learning [35,36],
morphology [37], F-transform [38], etc.

When outdoor environmental modeling [39] is carried out with lidar, point cloud noise
is generated at the stage of obtaining PCD. The aforementioned methods can effectively
remove discrete outlier points which are treated as a noisy target. However, by using
these methods, it is difficult to remove high-density noises, such as indoor environmental
noises, which are relatively dense. This paper proposes a new filter scheme based on the
distribution characteristics of indoor and outdoor point clouds for effectively handling
high-density noise. The 3D point cloud is preprocessed by principal component analysis
(PCA) [40] method therefore the reduced 2-dimensional point cloud toward the ground,
consequently, the feature points of the wall are separated by a carefully designed grid
threshold, which depends on the statistical difference between the pure ground points
and the wall points projecting on the mesh grid of ground. This process is called grid
principal component analysis (GPCA). Then, KD-tree [41] for the filtered point cloud
is established to estimate normal vector features, which then facilitate the further plane
segmentation. After the plane is segmented based on the angles between the normal vectors,
the ground model is further optimized by the K nearest neighbor (KNN) method. The
main idea of the proposed filter method is shown in Figure 1. Experimental comparisons
with other traditional filters show that the proposed method is significantly advantageous
over than other traditional methods, including statistical outlier removal (SOR) filter [42],
voxel grid statistical outlier removal (VGSOR), radius outlier removal (ROR) filter [43],
Gaussian filter [44], and difference of normals (DON) filter [45], for removing indoor point
cloud noise.

In general, point density, which is an important parameter of lidar data [46], dramat-
ically affects the performance of the denoising filter. Specifically, higher density means
more difficult and computational cost in noise removal [47]. SOR filter is a simple method
for eliminating noisy data by judging whether the average distance of the nearest points
is within the threshold, hence it is sensitive to the sparse noisy points and incapable of
high-density noises. To overcome this, down-sampling the data with voxel grids before
discretizing the block noise is used in the VGSOR filter for lowering point density, therefore
the SOR filter can be used. In this manner, the denoising performance for high-density PCD
can be improved, however, some useful features in the point cloud are taken as noise since
the down-sampling technique will render the loss of accuracy. In the ROR filter method,
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noises are determined by the specified number of points within a prescribed radius, and
the outliers can be well handled by utilizing ROR, however, the computational cost and
time consumptions of ROR are overlarge. The Gaussian filter is originally designed for
image smoothing, while for PCD filtering, it manipulates the distances of the nearest points
by a Gaussian distribution function, therefore the corresponding weight of each nearest
point. Thus, one can take the weighted sum of the nearest points after normalization as
a new point. In the DON filter, after time-consuming calculation of the included angle
between the small range and large range normal vectors of each point, one can determine
an appropriate threshold value for effectively eliminating noise.

Figure 1. The general idea of the filtering method is presented. Algorithm 1 is used to process the
initial data, and the wall point cloud and noise 1 are obtained. Noise 1 is composed of the ground
point cloud and noise. Then, Algorithm 2 is used to process noise 1, and the ground point cloud and
noise are separated. Finally, the wall and the ground are joined together.

The rest of this paper is organized as follows. Section 2.1 presents the principle
of GPCA and its usage for PCD processing, then the normal-vector K nearest neighbor
(NKNN) method is detailed in Section 2.2. In Section 3.1, the hardware equipment that we
used in the experiment, as well as the data acquisition details, are briefly introduced. In
Section 3.2, the proposed method is detailed step by step followed by a large number of
experimental validations, as well as comparative studies in Section 3.3. Section 4 discusses
the performance of the proposed method and concludes the advantages and disadvantages
in some aspects, while the causes of defects are analyzed. At last, the conclusions and some
future prospects are presented in Section 5.

2. Methods

In this section, we divide the proposed algorithm into two steps for detailed in-
troduction: (1) by using the GPCA method, the wall, and noisy ground are accurately
separated from the initial PCD; (2) by using NKNN, the normal vector segmentation, and
optimization are carried out for separate ground from noisy PCD.

2.1. Filtering Based on GPCA

PCA is mainly used for reducing the dimensionality of complex data sets. As for
3D PCD, PCA can be used to obtain the normal vector of a point cloud plane. In order
to reduce the complexity of 3D point cloud processing and to effectively remove noise,
we firstly project a 3D point cloud onto a two-dimensional plane. Then, a statistical grid
method is used to separate the ground and noise. The basic idea of GPCA is illustrated in
Figure 2, and its implementing procedure is shown in Algorithm 1.
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Figure 2. The filtering method based on grid principal component analysis (GPCA) is presented. The principal component
analysis (PCA) algorithm is used to reduce the dimension of the initial data. A grid is constructed for the dimensionality
reduction data. The number of points in the grid is counted. The data are divided into two parts by setting the threshold kσ.

Firstly, dimensionality reduction via PCA is carried out for PCD. Assuming the input
point cloud data S ∈ Rn×3, the covariance matrix Γ of S is performed a singular value
decomposition (SVD) decomposition, therefore the corresponding eigenvectors. The first
two eigenvectors are selected as dimensionality reduction matrix for the input S as follows:

Sq = S∆T (1)

where ∆T ∈ R3×2 transforms the 3D point set S into a 2D point set denoted by
Sq= {xi, yi

}
, i = 1, . . . , n, which represents the point set after dimensional reduction.

Then, we mesh the obtained two-dimensional data and set the number of mesh grids
to be l. The mesh resolutions bx and by respectively along the x and y directions are
given by: {

bx = xmax−xmin
l

by = ymax−ymin
l

(2)

{
hxi = round((xi − xmin)/bx)
hyi = round((yi − ymin)/by)

(3)

where (hxi, hyi) are the coded number for each point and constrained within 1 to l as follows:

h =

{
1, h = 0
l, h > l

(4)

The number of points projected via PCA into a grid (i, j) is denoted by kij. In order to
divide the point cloud into two parts, a threshold parameter kσ is set as

xij ∈
{

S f , kij < kσ

Sw, kij ≥ kσ
(5)

where xij represents the points in the grid (i, j), S f refers to the ground and noise points
set, and Sw refers to the wall points set. S f can be taken as the input of the subsequent
algorithm for further processing.
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Algorithm 1. GPCA outliers removed

Input: S(n× 3points)
Output: S f (n f × 3points), Sw(nw × 3points)
1: S = (xn, yn, zn)

2: µ =

(
1
n

n
∑

i=1
xi, 1

n

n
∑

i=1
yi, 1

n

n
∑

i=1
zi

)
3: for eachpoint pi = (xi, yi, zi) ∈ S do
4: pi = pi − µ

5: end for
6: C = S
7: Γ = 1

n CTC
8: UΣVT = Γ
9: V = (t1, t2, t3)
10: ∆T = (t1, t2)
11: Sq = S∆T
12: bx = (xmax − xmin)/l
13: by = (ymax − ymin)/l
14: for eachpointvi = (xi, yi) ∈ Sq do
15: hxi = round((xi − xmin)/bx)
16: hyi = round((yi − ymin)/by)

17: hi = (hxi, hyi)

18: end for
19: for eachgrid(i, j) do
20: Countthenumberkijo f pointsineachcell
21: if kij < kσ then
22: Noise f ← Pointsingrid(i, j)
23: else
24: Wallpointsw← Pointsingrid(i, j)
25: end if
26: end for
27: GetS f andSw

2.2. Filtering Based on NKNN

Since the obtained S f in the last subsection contain both the ground and the noisy
points, it is necessary to separate the ground point cloud from S f for facilitating the
final splicing of the ground and the wall in PCD. In this paper, the ground point cloud
is segmented by the included angle between the normal vectors of the points, and the
category is optimized and classified by the KNN algorithm.

In order to efficiently obtain characteristic information of the point cloud, KD-tree
for S f is constructed first, and then the K nearest neighbor pi of each point in the tree
are found out. Next, the minimum sum of the distance between a plane and its nearest
neighbors is calculated, then we take the normal vector of the plane as the characteristic of
the corresponding point. With the utilization of PCA, the normal vector of the PCD can be
rapidly obtained as follows.

For each group of the K nearest neighbor, the mean of the nearest neighbors and the
deviation error are given by:

µj =
1
k

k

∑
j=1

xj (6)

x̃j = xj − µj (7)

where µj is the mean of the nearest neighbors; x̃j is the difference between the point and
the mean value µj. The corresponding deviation matrix C is defined by:

C = [x̃1, x̃2, . . . , x̃k] (8)
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Performing an SVD decomposition for CCT yields:

UΣVT = CCT (9)

Then the eigenvector relating to the smallest eigenvalue in U is taken as the normal
vector vi of the corresponding point.

The resulted normal vector is used to extract the main components of the ground.
Since the point set S f to be processed contains the ground points, noisy points, and a small
number of wall points, the threshold angle between the normal vectors should be carefully
prescribed as a key index for the ground plane segmentation. The main steps of ground
segmentation are listed as follows:

• Pick a random point vi from the initial data set Ω. Compare the angle θ between the
normal vectors of vi and all the other points vj as follows:

θ =
vi·vj∣∣∣∣vi
∣∣∣∣∣∣∣∣vj

∣∣∣∣ (10)

• Set the threshold δ. If the angle θ of a vj is less than δ, then vj is classified as vi. Take
the remaining points as the new initial data Ω, and repeat the previous step until all points
are classified.

The above procedure is very efficient since only using the included angle of the normal
vector as the key index for classification, however, it may lead to errors for some complex
scenarios. To reduce the error of classification, an amendment method based on KNN is
used to perform further corrections.

As shown in Figure 3, the KNN method was used to search the K nearest neighbor of
the current point and to count the various categories of the nearest neighbor points. We
took the category with the largest number as the category of the current point. Then, the
class at that point was updated.

Finally, the point corresponding to the largest class in the classified data was taken
as the ground data. The data after filtering were obtained by splicing the ground and the
wall in the second section. In the process of testing, it is necessary to properly adjust the
four parameters of dimension reduction: the number l of grids, the threshold kσ of grid
points, the included angle δ of the normal vector, and the number k of adjacent points. The
purpose of this paper is to put forward a new method to solve the problem that point cloud
noise in buildings cannot be removed by traditional filtering. The basic idea is shown in
Figure 4 and Algorithm 2.

Figure 3. The classification results were corrected by K nearest neighbor (KNN). Each of these categories is represented by a
different color. The radius is set as the starting point A, and a circle is drawn, as shown in Process 1. The categories within
the statistical circle have the most dots in red. Therefore, the category A stays the same. In Process 2, it is found that the
circle centered on B has more red dots; therefore, B is updated to red. In Process 3, C is updated to redpoint in the same
manner. When each point is updated, points in the same plane are updated to the same class, as shown in Process n.
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Algorithm 2. Filtering based on NKNN

Input: S f (n f × 3points)
Output: So(no × 3points), Sg(ng × 3points)
1: ConstructtheK− Dtreeo f S f
2: for eachpoint do
3: Calculatetheknearestneighbors
4: pi = (x1, x2, . . . , xn)
5: end for
6: for neighborso f eachpoint do

7: µj =
1
k

k
∑

j=1
xj

8: x̃j = xj − µj
9: C = [x̃1, x̃2, . . . , x̃k]
10: ComputeSVD : UΣVT = CCT

11: vi ← Theeigenvectoro f theminimumeigenvalueinU
12: end for
13: for pickvi ∈ Ωatrandom do
14: for eachvj ∈ Ω do
15: θ =

vivj

||vi||||vj||
16: if θ < δ then
17: xi ∈ Sameclass
18: removeviinΩ
19: end if
20: end for
21: if Ωisnone then
22: break
23: end if
24: end for
25: for eachpointxi do
26: nclass← themostclassintheneighborhood
27: xi ∈ nclass
28: end for
29: if nclassismax then
30: GroundSg ← thepointso f nclass
31: else
32: NoiseSo ← othernclass
33: end if

Figure 4. Filtering based on the normals K nearest neighbor (NKNN) is presented. The data obtained consists of ground
and noise in the previous step. A KD-tree is built for the data. KD-tree is used to search for the KNN. Then, the PCA
algorithm is used to quickly solve the normal vector. The data are classified by setting the threshold δ of the angle between
the normal vectors. Then, the KNN algorithm is used for further optimization. Of all the categories, the category with the
most points is the ground point cloud, and the others are noise.

3. Experimental Process and Results

In order to verify the effectiveness of the algorithm, the corresponding data were
collected by lidar in this experiment. Finally, the algorithm was compared with traditional
algorithms to evaluate its merits and demerits.
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3.1. Hardware and Operating System

The experimental equipment was a backpack system integrating lidar, an inertial
measurement unit (IMU), and an upper computer. The 16-line lidar was used to scan the
environment and to return information about the position of the surface of the object. The
IMU describes the attitude of the backpack system and feeds back information on the
attitude change in the lidar. Each frame of the lidar and IMU data are matched using the
robotic operating system (ROS) and fused into a complete point cloud. Finally, the upper
computer uploads the PCD to a server through the wireless module and then transfers the
data from the server to the client to achieve real-time monitoring. In this experiment, the
system was used to model the community environment, as shown in Figure 5. The basic
structure of the backpack is shown in Figure 6a, and about 170,000 points were obtained
after system processing, as shown in Figure 6b.

Figure 5. The experimental subject was a neighborhood. The red line is the path of movement when we measured the data.
The A was the starting point from which we started the measurement, and the B was the endpoint.

Figure 6. Backpack system and collected point cloud data (PCD): (a) the equipment we used to measure the data consists of
a lidar, an inertial measurement unit (IMU), a wireless module, and a host. (b) After collection and scan registration, we
obtained the three-dimensional data.

During measurement, we moved along the red line to collect the data. In order to
ensure the integrity of the data, we planned the route so that everything could be scanned
by the lidar. We took the equipment in the middle of the road and moved about five meters
away from the wall. Then, we carried backpacks and moved on foot along the path. The
whole process lasted about three minutes. Finally, we got the complete data. The edge of
the data is the surface of the building. The point clouds outside the edges of the figure,
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and inside the two rectangular edges in the middle are indoor debris measured by lidar
through the glass of the building. The debris is the main PCD noise. Vehicles, trees, and
other objects on the ground can be considered sub-essential cloud noise depending on the
situation. Next, we took this data as an example to verify the algorithm.

3.2. Our Experiment Results in a One-by-One Step

In order to verify the effectiveness of the algorithm, we evaluated the algorithm on
indoor noise removal. In general, it was necessary to use a pass-through filter to crop the
main PCD of the set for the initial data. Then, PCA was used to reduce the dimension of
the point cloud. Generally, the first two columns of the dimensionality reduction matrix
were selected to map the three-dimensional data to a two-dimensional plane that was close
to the ground, as shown in Figure 7a. It can be seen that the number of information points
on the ground does not change significantly. The obvious increase in the number of points
is the regular wall mapping the two-dimensional formation of linear points. Therefore, a
grid is used to divide the points after dimensionality reduction based on the difference
in mapping points between the ground and wall. The number of meshes divided was
determined according to the size of the point cloud obtained. Usually, the mesh can contain
a part of the line segment of the wall map. In this experiment, the number of grids was
set to 400 and the whole two-dimensional map was divided into 160,000 rectangular grids.
Next, a threshold was set to eliminate all points in the grid where the number of points
was less than the threshold. According to the statistics of the number of points in all the
grids, the intersecting boundary of points in the grids is about 12. Therefore,12 was taken
as the segmentation threshold in this experiment, and all grid points in the grid for which
the number was less than 12 were separated to obtain the mapping points of the ground
and noise. The wall was made up of the remaining points. Then, the corresponding 3D
point cloud was restored through the label index of the point. The ground and noise were
used for further processing. The wall was retained and spliced into a complete point cloud
with the finally separated ground.

Figure 7. The process of the GPCA algorithm: (a) the initial 3D data are mapped to a 2D plane using the PCA algorithm
and (b) the GPCA algorithm is used to filter the noise of the wall two-dimensional points. The features of the walls are
well-preserved.

GPCA can effectively remove sparse noise points in Figure 7b. However, indoor noise
tends to be as dense as or even denser than ground point clouds. If traditional filtering is
used while increasing the intensity of filtering to remove high-density noise, some non-
noise, such as part of the plane, is removed. By using GPCA, the high-density noise is
removed by increasing the threshold value, and the point density of the wall is much
higher than that of the ground and the noisy points after dimension reduction; therefore,
the characteristics of the wall are better retained.

Since the ground point cloud and noise are eliminated simultaneously when GPCA
is used, it is necessary to quickly extract the ground and to finish the wall splicing. In
the remaining point clouds, only the ground has planarity and, thus, normal vector seg-
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mentation is used to quickly find the largest plane in the point cloud. In the algorithm,
a SOR filter is used for data optimization. Then, a KD-tree is constructed on the point
cloud to find the nearest neighbor points faster, and PCA is used to quickly fit the plane
to obtain the normal vector of the corresponding point. In order to reduce the influence
of edge noise when using a vector to segment the ground, the number of adjacent points
used in this experiment was less than 20, and the included angle threshold of the normal
vector was also smaller than 15 degrees. The results obtained only through normal vector
segmentation are not ideal. The segmentation speed is fast, but the segmentation effect is
very rough and even produces the phenomenon of overfitting. In order to improve the
segmentation accuracy, the K nearest neighbor method was introduced as a constraint
for further segmentation. We noted the category of the K nearest neighbor to the point,
updated the category of the point to the category with the most points, and updated the
next point. Thus, progressive point cloud fine segmentation was realized.

Before processing the noise, a SOR filter was used for preprocessing to facilitate
segmentation and to achieve better results. The processed data are shown in Figure 8a,b.
Figure 8a represents the wall point cloud after using GPCA, and Figure 8b represents point
clouds other than the wall. Then, the initial segmentation points and the remaining points
were randomly selected to calculate the included angle of the normal vector, and those less
than the threshold value were classified into one category. The same was performed for the
remaining points until all of the points were sorted. This is an unsupervised segmentation,
and the number of categories obtained depends on the size of the angle between the normal
vector set. In the end, we divided the noise into nine categories, and the results are shown
in Figure 8c. It can be seen that the classification effect is not ideal, that the ground is
roughly divided into two categories, and that the distribution of categories is disorderly.
However, it can be found from the figure that the points occupying most of the ground
are a class; therefore, the K nearest neighbor constraint was considered to centralize the
class. It was also necessary to construct a KD-tree for the noise point cloud to quickly
obtain the nearest neighbor points. The current point was updated based on the maximum
category of the nearest neighbor points, and the updated effect is shown in Figure 8d. It
can be seen that most points on the ground were classified into one category at this time,
while the ground points corresponded to the category with the largest number of points
after classification. This category was used as ground points and wall point clouds joined
together to obtain the final point cloud, shown in Figure 8e.

3.3. Comparison with Other Methods

In order to verify the effectiveness of the algorithm, the proposed algorithm was used
to compare the SOR filter, the VGSOR filter, the ROR filter, the Gaussian filter, and the
DON filter. The algorithm was evaluated by processing the same data. The raw data are
shown in Figure 9a. The main indoor noise was removed manually, as shown in Figure 9b.
Noise marks were used to compare the effects of the filters. The results of SOR filtering
are shown in Figure 9c. The results of VGSOR filtering are shown in Figure 9d. The
result of ROR filtering is shown in Figure 9e. The results of Gaussian filtering are shown
in Figure 9f. The results of DON filtering are shown in Figure 9g. The results obtained
from this experiment after the data were processed using the GPCA method are shown
in Figure 9h. The denoising degree and time complexity are very important to evaluate
the performance of filters. We calculated the noise elimination rate and time complexity
of these filters, as shown in Table 1. The higher the noise elimination rate and the lower
the time complexity, the better the filtering performance. Therefore, it can be seen that the
GPCA method has an excellent effect on the processing of edge noise and can effectively
remove block noise outside the plane. Based on the ratio of the edge noise removed by the
filter to the original noise, the denoising accuracy of GPCA is better than that of the other
filters. At the same time, our method also has low time complexity.
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Figure 8. Segmentation and splicing of ground point clouds: (a) the two-dimensional wall is restored to three-dimensional
point cloud data. (b) Other point clouds beside the wall: these point clouds are made up of ground and noise. (c) The data
in (b) are roughly segmented by using the included angle of the normal vector. Point clouds on the ground are mostly
grouped into the same category (the same color). However, many misclassified points still exist. (d) The classification results
of the previous step are further segmented by the KNN principle, and the complete plane point cloud is obtained. (e) The
ground and wall point clouds are joined together.

Table 1. Measurement parameters of several filters.

Filter Noise Elimination Rate Time Complexity σ σ¯
x

R

SOR filter 53.81% O(3n2) 0.0592 0.0472 0.4868
VGSOR filter 87.33% O(5n2) 0.0848 0.0656 0.8276

ROR filter 49.31% O(n) 0.0759 0.0553 0.6862
Gaussian filter 36.25% O(n2) 0.1005 0.0772 0.7860

DON filter 80.97% O(2n2) 0.1726 0.1192 1.3672
GPCA method 98.03% O(n2) 0.0674 0.0523 0.5790
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Figure 9. The results of several filtering processes, where the main noise is marked within the red shape: (a) the initial
data collected; (b) the data processed by artificial filtering on the initial data; (c) the data processed by the statistical outlier
removal (SOR) filter; (d) the data processed by the SOR filter on the basis of voxel grid filter processing (the voxel grid
statistical outlier removal (VGSOR) filter); (e) the data processed by the radius outlier removal (ROR) filter; (f) the data
processed by the Gaussian filter; (g) the data processed by the difference of normals (DON) method; and (h) the data
processed by the GPCA method.

According to the denoising principle of the SOR filter, the average distance of KNN is
used to determine whether it is an outlier. Therefore, the dispersion degree of a point cloud
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can be judged by the dispersion degree of the average distance of KNN. We calculated the
average distance of KNN at each point after filtering, and these mean distances are counted,
as shown in Figure 10. In the figure, we calculated the standard deviation σ, mean variation
σx, and range R as shown in Table 1. The smaller the value of these parameters, the lower
the degree of dispersion of the data. Therefore, these parameters can be used to evaluate
the filter’s performance in removing outliers. Then, the cumulative distribution function
of average distance was used to compare each filter intuitively, as shown in Figure 11.
According to these parameters, we determined that after the data were processed by our
method, the degree of dispersion of the data is slightly lower than the SOR filter and higher
than other filters.

Figure 10. Cont.
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Figure 10. A statistical graph of the average distance of KNN: this average distance is used to evaluate the degree of data
dispersion. We calculated three evaluation parameters for the initial and several filtered data. The standard deviation is
expressed as σ. The mean variation is expressed as σx. The range is expressed as R. (a) A statistical graph of the raw data,
(b) a statistical graph of the data filtered by the artificial filter, (c) a statistical graph of the data filtered by the SOR filter, (d)
a statistical graph of the data filtered by the VGSOR filter, (e) a statistical graph of the data filtered by the ROR filter, (f) a
statistical graph of the data filtered by the Gaussian filter, (g) a statistical graph of the data filtered by the DON filter, and (h)
a statistical graph of the data filtered by the GPCA method are presented.

Figure 11. Cumulative distribution function (CDF) of several filters: if F(x) is represented as a CDF,
then F(a) is the proportion of points for which the average distance is less than a. The faster the
value of cumulative probability increases, the higher the concentration of data. Therefore, it can be
used as an indicator to judge the degree of data dispersion.
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4. Discussion

In Figure 9, we took the data after manually removing most of the out-of-plane noise
as the standard. Through a comparison of several filtering results, we showed that our
method is better than other filtering methods at removing noise outside the plane. However,
while removing noise, features of objects outside the plane, such as cars and trees, can also
be lost. Therefore, our method is suitable for the three-dimensional modeling of buildings.
This method can reduce the modeling error caused by a block of trees and other objects in
3D modeling. At the same time, our method also has some advantages in terms of time
complexity.

The degree of dispersion of point cloud data can also be used as one of the indicators in
evaluating the quality of filtering. Therefore, we used the principle of the SOR filter to obtain
the statistics on the average distance of KNN. The dispersion degree of point cloud data
after filtering was judged by analyzing the dispersion degree of statistical data. As shown
in Figure 10, the statistical data of eight types of data were compared, and the indicators of
each type of data were calculated. The smaller the values of the three indicators, the lower the
degree of dispersion of the data. Figure 11 is the cumulative probability distribution of the
statistical data. When the value of the cumulative distribution function changes from 0 to 1,
the faster the abscissa changes, the lower the degree of dispersion of the data. The SOR filter
is designed based on the dispersion of data. Therefore, our method is slightly worse than the
SOR filter but higher than other filters in terms of the dispersion of the data.

Through an analysis of the degree of data dispersion, as shown in Table 1, it can be
seen that our method is slightly lower than the SOR filter in three indicators and higher
than other filters. The reason for this is that when the laser radar scans the upper end of the
building, the angle between the laser and the plane is too small and, thus, the points there
are very sparse. The SOR filter filters it, but our method preserves the point as a plane. If
we need to eliminate this point, we simply apply SOR filtering on the basis of our method.

Overall, from the point of view of the denoising degree, time complexity, and discrete
degree of processed data, our proposed method is superior to other types of filtering
in general.

5. Conclusions

The algorithm proposed in this paper can effectively remove noise outside of a plane.
The GPCA method was used to accurately extract the vertical plane of the wall and to
isolate the noise containing the ground. The NKNN method was used to extract the ground
point cloud from the noise obtained in the previous step. Finally, the filtered point cloud
was composed of the wall and ground. From the experimental results, it can be seen that the
denoising rate of our method is 98%, which is much higher than other filters. Therefore, the
proposed method is better than other filters at removing out-of-plane noise and has certain
advantages in operational efficiency. Therefore, for the three-dimensional reconstruction of
a building surface, our method is a very ideal filter. The disadvantage of this method is
that the appropriate parameters need to be adjusted to obtain the best effect; therefore, we
will try to improve upon this as adaptive filtering in future work.
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