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Abstract: With the majority of research, in relation to 3D object reconstruction, focusing on single
static synthetic object reconstruction, there is a need for a method capable of reconstructing morphing
objects in dynamic scenes without external influence. However, such research requires a time-
consuming creation of real world object ground truths. To solve this, we propose a novel three-staged
deep adversarial neural network architecture capable of denoising and refining real-world depth
sensor input for full human body posture reconstruction. The proposed network has achieved Earth
Mover and Chamfer distances of 0.059 and 0.079 on synthetic datasets, respectively, which indicates
on-par experimental results with other approaches, in addition to the ability of reconstructing from
maskless real world depth frames. Additional visual inspection to the reconstructed pointclouds has
shown that the suggested approach manages to deal with the majority of the real world depth sensor
noise, with the exception of large deformities to the depth field.

Keywords: pointcloud reconstruction; adversarial auto-refinement; human shape reconstruction

1. Introduction

One of the most rapidly expanding scientific research fields, thanks in part to the
advancements in artificial intelligence and, specifically, Deep Neural Networks (DNNs), is
computer vision. Whereas regular cameras have already been widely adopted in various
object detection tasks, however, depth sensors still have narrow range of research dedicated
to them. This can be attributed to them not being easily available for personal use until
relatively recently with the introduction of the original Kinect sensor [1]. Unfortunately,
while the Kinect technology made the depth sensors affordable they have not had wide
consumer adoption outside of entertainment [2,3], although health-related applications
were also considered [4–6]. This is, however, likely a rapidly shifting trend with more
consumer grade sensors, such as Intel Realsense [7], being released and depth scanning
systems being integrated as part of mobile devices. With rapidly evolving field of three-
dimensional object reconstruction, such depth sensing systems [8,9] may be the key to
boosting object reconstruction quality.

Quite a few real world applications would benefit greatly from depth sensors and/or
real-time object reconstruction, starting with collision avoidance in autonomous vehi-
cles [10,11], robotics [12,13], or posture recognition [14,15]. Other object reconstruction
applications may involve interactive medium, like obstacle avoidance in virtual real-
ity [16,17], augmented reality [18], extended reality [19], and more. Even though 3D object
reconstruction opens up a lot of possibilities to various fields, the main issue with object
reconstruction is that it generally requires either intricate camera setups or moving the
camera around the object in order to scan the entirety of the object and to build its full
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profile from all sides. This makes the reconstruction have a high accessibility barrier, as
daily users cannot be expected to have professional filming setups containing laser sensors
arrays capable of single-shot scanning entire object from all perspectives, nor expected to
bother carefully scanning an object from all of its sides to reconstruct the object iteratively.
This is in conjunction with potentially requiring a lot of computing power to perform high
fidelity pointcloud fusion, which greatly impacts end-user experience.

Therefore, there is a strong desire for a solution that is able of performing object
reconstruction task by using only a single camera view. There already are existing solutions
that attempt to solve the previously mentioned problems with multi-view perspective
reconstruction by using a priori knowledge. These methods usually involve using artificial
intelligence, specifically deep neural networks which are able to approximate the occluded
object information leveraging reinforcement learning. This type of learning is reminiscent
of how a person is able to generally infer the objects shape based on the mental object model
they had built from their life experience. There already exist methods capable of performing
object reconstruction from a single perspective, one of the most popular solutions due
to its simple implementation is volumetric pixel (voxel)-based reconstruction. However,
high fidelity models using voxel-based models require large amounts of operative memory
to represent.

To mitigate this, certain reconstruction solutions instead of attempting to reconstruct
voxels try to predict pointclouds. Unlike voxel-based solutions, pointclouds require very
little memory overhead for their representation. However, their comparison functions are
much more complex, making them a lot harder to train due to vertices being able to occupy
any coordinate in three-dimensional space. One of the first of such type of solutions being
PointOutnet [20], which has shown the capability of predicting and generating plausible
3D shapes of objects. Although the solution has shown good prediction results, it relies on
hand drawn object segmentation masks, which makes this solution not really applicable to
real world applications. Additionally, this solution worked on flat 2D images, which lose
a lot of important depth information. Nevertheless, there are already existing solutions
capable of leveraging pointcloud information in order to improve generalization and
prediction quality [21]. However, these solutions generally are only applicable to either
synthetic or manually pre-processed real world data, which makes them unsuitable for
real-time applications.

To solve this, we propose a novel unsupervised adversarial auto-refiner capable of
full human body pointcloud reconstruction using only a single self-occluding depth view
capable of reconstructing real depth sensor data with no masking nor any other direct
interference. Our contribution to the field of reconstruction is the three-stage (cleanup,
course, and fine) adversarial network capable of cleaning up the noise from real world
input, without losing the underlying shape or position of the body posture.

The structure of the remaining parts of the paper is as follows. Section 2 discusses
the related work. Section 3 describes our synthetic dataset and the proposed methodology.
Section 4 presents the results. Section 5 discusses the results of this study. Section 6 presents
the conclusions.

2. Related Work

Thanks to advancements in artificial intelligence and deep neural networks, object
reconstruction is a rapidly expanding computer vision field. Currently, there are two
main approaches in order to reconstruct a 3D, voxel-based and pointcloud-based. One
of the most well known voxel-based solutions is 3D-R2N2 [22] that uses Sanford Online
Products [23] and ShapeNet [24] datasets as a priori knowledge in order to predict objects
shape using both either single or multi-perspective reconstruction. It uses deep recurrent
neural networks with Long Short Term Memory [25,26] (LSTM) to learn objects features using
multiple views as training input, while still being capable of predicting objects shape from
a single perspective when performing predictions. Unfortunately, the method requires
additional masks that need to be provided separately in order to make a prediction. One of
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the solutions that attempted to resolve this drawback has extended YoloV3 [27] network
by merging the reconstruction and object prediction tasks (YoloExt) [28]. Unlike 3D-R2N2,
it was capable of detecting and performing Region of Interest (RoI) segmentation indepen-
dently before passing the mask to the object reconstruction branches. This solution allowed
it to be independent of outside interference and could work with real world input. Some
other attempts were made using hybridized neural network models [29] which are sepa-
rately trained on groups of objects for faster model convergence and ability to reconstruct
in real-time due to reduced network complexity. Despite voxel-based approaches being
easy to represent and train due to low mathematical complexity of loss function, they suffer
from a major flaw: the exponential memory requirements in order to train high granularity
model, which would be required in order to reconstruct complex models containing a lot
of details. While there have been attempts to solve this issue of ever-increasing memory
requirements by using more compact data representation styles, such as octrees [30,31],
thus greatly reducing the amount of required data to represent the same model, these still
suffer from overheads.

However, a much better solution of representing 3D volumes than voxels is point-
clouds. Unlike voxel-based solution, pointclouds have much lower memory footprint
both during training and prediction stages, this allows for much higher fidelity recon-
struction to be performed. Unfortunately, due to their very nature training pointclouds is
difficult, due to the high complexity of loss function that is required to compare ground
truth and prediction. One of the first solutions being PointOutNet. Same as with 3D-R2N2,
it requires an external mask to be provided with the input in order for the network to
properly reconstruct from an RGB image. However, unlike its voxel-based predecessor,
it is able to reconstruct the shape using unstructured pointcloud. The approach suggests
both Chamfer [32] and Earth Mover’s [33] distances (CD and EMD, respectively) as loss
metrics. Subsequent research in pointcloud reconstruction instead of using RGB frame
that loses depth information attempted to use pointclouds as inputs [34,35]. One of the
main drawbacks when using unstructured pointclouds is that it is not possible to use
well-known feature extracting convolutional neural networks, as due to unstructured
nature of the pointcloud data both 2D and 3D convolutional kernels are not applicable to
the input. To resolve this issue, PointNet attempts in learning symmetric functions and
local features. When PointNet is matched with a fully-connected auto-encoder branch, it
was able to fill in missing chunks in malformed pointclouds. Other research proposes the
addition of a fine-grained pointcloud completion method; this way PCN [36] manages to
maintain only a few parameters during training due to its course-to-fine approach. How-
ever, AtlasNet [37] suggests the addition of patch-based reconstruction that is capable of
mapping 2D information into parametric 3D object groups, while others generally focus on
Chamfer distance as a loss metric and only use Earth Mover’s distance as an accuracy metric.
Moreover, EMD is less sensitive to density distribution, and it also has high computational
complexity of O(n2) for its calculation. An EMD approximation [38], in addition to evenly
distributed point sub-sampling method, is proposed for application in MSN, which has
shown state-of-the-art reconstruction performance.

Table 1 compares different reconstruction solution implementations. As we can see,
our solution is capable of performing sensor-to-screen prediction; due to the use of EMD as
loss function, we are also able to maintain sensitivity to high density distributions.
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Table 1. Comparison between different implementations. Networks capable of performing sensor-to-
screen prediction where no additional external help is required are marked as Standalone.

Name Voxels Pointcloud Input EMD CD Standalone

3D-R2N2 3 7 RGB — — 7

YoloExt 3 7 RGB-D — — 3

PointOutNet 7 3 RGB 3 3 7

PointNet w/ FCAE 7 3 Pointcloud 7 3 7

PCN 7 3 Pointcloud 7 3 7

AtlasNet 7 3 Pointcloud 7 3 7

MSN 7 3 Pointcloud 3 7 7

Ours 7 3 Depth 3 7 3

3. Materials and Methods
3.1. Dataset

There are multiple datasets for object detection which contain image data, such as
COCO [39] and Pascal VOC [40], 3D object datasets, such as ShapeNet, and even labeled
voxel data [41]. Our task requires human meshes that contain ground truth information,
in addition to depth camera information which would match positions. Only a few such
datasets exist publicly, like ITOP [42] and EVAL [43]; unfortunately, in both cases, they use
Kinect sensors, which have been discontinued by Microsoft. Thus, any solutions developed
for it are obsolete as generally different manufacturer depth sensors have different types
depth errors. Therefore, it is up to us to create dataset that matches our specifications.
Because creating a dataset that would have real world ground truths is prohibitively
time-consuming, as in creating ground truths for each of the frame of a recorded person
manually, we have devised two datasets: dataset containing synthetic data and dataset
containing real world data. Synthetic dataset contains data frame samples generated using
Blender [44], while real dataset contains data pre-recorded human poses using two Intel
Realsense devices.

3.1.1. Synthetic Dataset

To create synthetic dataset, we use MoVi [45] dataset as a base as it contains a large
library containing motion capture data from multiple camera perspectives. Unfortunately,
dataset contains no depth information; to solve this, we bind the motion capture data
provided to the AMASS [46] triangle meshes. An example of AMASS dataset can be seen
in Figure 1.

In order to create the synthetic dataset from the motion captured models, we render
the depth maps from various angles by rotating the camera and the human model itself.
This is done to create multiple views of the same event from a single motion capture file.
The human model is rotated from [0◦, 360◦) in 45◦ increments on Up (z) axis, whereas the
camera itself is rotated in ranges of [−35◦, 35◦] in the increments of 15◦on Up (z) axis. The
camera is placed 1.8 m away from person and 1.4 m above ground. This done so that the
human position relative to the frame is more in alignment with the real world depth sensor
data. The positioned model is then captured using raytracing, and the exported depth
frame is saved using OpenEXR [47]. This file format is chosen as it does not have any type
of compression and is linear and lossless; therefore, it does not lose any depth information
that a standard 8-bit channel image format would provide. In addition to the rendered
depth frame, we uniformly sample 2048 points of the surface mesh to create ground-truth
pointclouds. An example of resampled pointcloud can be seen in Figure 2.
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Figure 1. MoVi dataset example. Motion capture pose applied to models provided by AMASS. Same
pose is applied to female and male body type.

Figure 2. An example of depth frame generated by Blender converted into pointcloud using cameras
intrinsic parameter matrix K.

In order to convert a pinhole typed depth camera frame into pointcloud, we use
intrinsic parameter matrix K (see Equation (1)), whereby, applying camera intrinsic to each
of the pixels in the depth map, we are able to recreate an undistorted pointcloud. The
fx and fy denotes the image focal points, while cx and cy is the sensor center point. The
intrinsic parameters are applied to the 640× 480 depth frame using Algorithm 1, which
maps each of the depth pixels to one point in pointcloud. Points with zero depth can be
filtered out, while the rest can be resampled using Farthest Point Sampling [48] (FPS) to
desired resolution pointcloud.

K =

 fx 0 cx
0 fy cy
0 0 1

. (1)
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Algorithm 1 Convert depth image to pointcloud

1: procedure TO_POINTS(w, h, fx, fy, cx, cy, D) . Converts depth D to vertices
2: x ← 0
3: y← 0
4: V ← {∅} . Create empty output vertex list
5: for x < w do
6: for y < h do
7: zi ← D(x, y) . Get depth value from depth frame
8: xi ← (x− cx) · zi/ fx
9: yi ← (y− cy) · zi/ fy

10: insert (xi, yi, zi) into V
11: end for
12: end for
13: return V
14: end procedure

3.1.2. Real World Dataset

For our real world dataset, we have captured multiple subjects performing various
tasks using two Intel Realsense devices. The first depth sensor (Intel Realsense L515) is
positioned in, while the second depth sensor (Intel Realsense D435i) is positioned to 90◦ side
of the subject. The subjects are asked to perform these gestures while being filmed from
both angles simultaneously: standing in front camera raise the hand forward, place on top
of the head, touch the nose, move the hand to the side, raise the hand above the head, or
facing camera with the back raise the hand to the back. No additional preprocessing of the
camera depth frames is done outside of cutting off anything further than 2.5 m away from
the subject. The depth frame is then converted into pointcloud using each of the sensors
intrinsic parameters and resampled using FPS to 2048 points. An example of resampled
depth frames from each of the devices can be seen below in Figure 3. As we can see, the
depth tends to be quite noisy when compared to synthetic, and this makes the existing
approaches fail completely or have very poor results when trained on synthetic data.

Figure 3. An example of real world depth frame converted into pointcloud using cameras intrinsic
parameter matrix K.

3.2. Proposed Adversarial Auto-Refiner Network Architecture

Our proposed adversarial auto-refiner network architecture has three main stages
used for object reconstruction. Encoder/Refiner contains the first: cleaning up and refining
stage, it is responsible for cleaning out the noise from the original input and capturing the
most important features of the pointcloud. The decoder contains two subsequent stages:
course reconstruction and fine reconstruction. These three stages are our deliverables and
responsible for the pointcloud reconstruction. In addition to these three stages, we also
have an additional discriminator network attached at the end of reconstruction that acts as
a guide to clean up the noise from the real world depth sensor data and make it synthetic-like
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without losing any of the input features. Overview of the entire network architecture can
be seen in Figure 4.

Figure 4. An overview of our adversarial auto-refiner network architecture. It uses captured depth frame and camera
intrinsic matrix to convert depth information into a pointcloud. Pointcloud is then fed into encoder stage. Extracted
and cleaned up features are sent to decoder where course and fine reconstruction stages take place. The resulting fine
reconstruction is then evaluated by the discriminator.

Once we have trained our artificial adversarial neural network, we are able to perform
sensor-to-screen reconstruction; see Figure 5 for full UML activity diagram. To perform
a reconstruction, firstly, we initialize the system by loading the trained model weights
and initialize the depth sensor; in our case, this is an Intel Realsense depth camera sensor.
Once the system is ready, we retrieve a single depth frame, as we are not interested in
the color information of the captured frame. Afterwards, we filter out invalid pixels by
setting all pixels with depth over 2.5 m to zero. This is done to avoid irrelevant background
noise. Once we have the filtered depth frame, we convert it to pointcloud using intrinsic
camera parameters, and the resulting pointcloud is then filtered again by discarding any
of the vertices, in which distance is zero, and flattening the input to a single dimension
as the pointcloud itself is not an unstructured data structure. The filtered pointcloud is
thereafter downsampled to 2048 points using FPS and used as an input in the refiner stage.
Refiner outputs input pointcloud features along with cleaned up pointcloud that is then
passed through the decoder network for object reconstruction. This gives the final output
of reconstructed human mesh with the density of 2048 points.

Figure 5. Activity diagram of the proposed method for human posture reconstruction.

3.2.1. Refiner

The refiner architecture is our main contribution to the field of object reconstruction.
While the majority of the applications of adversarial neural networks involve generation of
new samples [49–52], this can be done either from random noise, hand drawn-input, etc.
Very little research has focused on refining the initial input without distorting the input.
While there have been attempts at refining the synthetic data in order to make it similar to
synthetic [53], they still require some sort of knowledge of the given input, as in the case of
Reference [53], and it is the pupil direction. Our approach, however, involves of refining
real world data to make it more akin to synthetic without knowing any correlation between
synthetic and real world data. The refiner network architecture can be seen in Figure 6.
Our refiner architecture uses the suggested PointNetFeat [21] pointcloud feature extraction
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architecture directly connected to a fully-connected bottleneck layer of size 256, followed by
batch normalization in order to improve generalization and reduce training times [54,55],
connected to non-linearity function. For our non-linearity, we use Rectified Linear units [56]
(ReLU) for they have fast computation times and have been shown to achieve better results
when compared to other non-linearity functions, such as sigmoid. Output feature vector
is then connected a modified random grid (RandGrid) decoder architecture, as suggested
by Liu et al. [38], using 8 primitives for reconstruction. The output pointcloud is them
resampled using Minimum Density Sampling (MDS) in order to more evenly distribute
the subset pointclouds. Our main modification to the random grid decoder consists of
having the uniform distribution for initial random positions be in range of [−0.5, 0.5] with
the offset of input pointcloud center of mass, in addition to the points being on all three
axis instead of two. This has improved the convergence by having the initial points more
likely to be distributed around the reconstructed object. Resampled pointcloud is part
of the two outputs provided by the refiner/encoder network. It acts as the comparison
output for our discriminator network and as part of feature vectors that are used for the
decoder. To obtain feature vectors from the refined pointcloud, we apply additional feature
extraction block as we did with original input. This gives us two feature vectors of shape
256 that we combine into final feature vector of shape 512 that is then used in the decoders’
reconstruction phases. For full refiner architecture, see Figure 7.

Figure 6. Refiner network architecture. For a given pointcloud, it outputs a cleaned up pointcloud, in addition to a feature
vector containing a combination of both cleaned up and original feature vectors.

Figure 7. Full refiner network architecture.

3.2.2. Decoder

Our decoder network resembles Liu et al. [38] decoder architecture, with the main
modifications being in the random grid (RandGrid) decoder. Unlike the paper suggested
architecture, we have modified the random pointcloud to be generated on all three axes, in
the range of [−0.5, 0.5] with the offset of refined pointcloud center of mass. The overview
of the architecture can be seen in Figure 8. The refiner output feature vector is passed to
RandGrid decoder using 8 primitives for reconstruction, giving the reconstruction of course
points. The output course pointcloud is then merged with refined pointcloud instead
of the input pointcloud and resampled using minimum density sampling. Resampled
pointcloud is then passed through residual decoder (PointNetRes) giving the final output of
fine pointcloud reconstruction. For full decoder architecture, see Figure 9.
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Figure 8. Decoder architecture. Refiner feature vectors are used in order to reconstruct the course human pointcloud.
Course features along with cleaned up features are then resampled and passed through residual block, of which output is
fine-grained point reconstruction.

Figure 9. Full decoder network architecture.

3.2.3. Discriminator

The main job of discriminator is to evaluate whether given input is either synthetic
or real input. Our discriminator is shown in Figure 10 below. We take the output of the
decoders fine pointcloud reconstruction and use that as an input in the discriminator. The
inputs are passed through feature extraction block (PointNetFeat), which is subsequently
connected to fully-connected layer. Our fully connected layer only has an output of a single
neuron that is then passed through sigmoid function. The output of the sigmoid function
indicates if the generated pointcloud is synthetic (1) or if it is real (0). This is done in order
to make the input pointcloud as close to synthetic samples as possible as we only have
ground-truths for synthetic pointclouds, thus our only being able to train the decoder on
synthetic examples.

Figure 10. Discriminator architecture. Decoder fine pointcloud reconstruction is used as discriminator
input. It is passed through feature extraction block. Extracted features are then connected to fully-
connected layer, followed by sigmoidal function.
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3.3. Training Procedure

To train our neural network, we have chosen a four phase approach: encoder training,
decoder training, discriminator training, and refiner training. We have chosen four phased
training approach as we have found the network to be much easier to train this way,
in addition to having much better prediction results. Additionally, while training, we
introduce augmentations to the synthetic input in order to try and produce Realsense-like
depth deformities. This is done in two ways: either removing random patches from
the pointcloud or by adding wavelet disturbances to the pointcloud (see Equation (2)).
Wavelets have the period of ω = [2π, 32π] and the amplitude of A = (0, 0.03]. There is
a 75% chance of pointcloud having small patches removed and 50% chance of it having
wavelet deformities. These two types of augmentations are expected to be cleaned up
during the cleanup stage in the refiner/encoder branch. In addition to these augmentations,
there is a third type of augmentation which involves adding random scale factor to the
model. This is done because real world people are different heights, while the synthetic
models only have single height subjects. Height augmentation also has a 50% chance of
applying height scaling in the range of [0.8, 1.8].

p(x, y, z) = (x + A · cos(ω · x), y + A · sin(ω · y), z). (2)

3.3.1. Phase I

During first phase, we focus on passing the best weights to the encoder to do this,
in this phase we completely ignore the discriminator and ignore its outputs. Instead, we
train all three of the reconstruction stages (cleanup, course and fine) to try and act as a
regular auto-encoder by passing through input values to output with. To compare the
auto-encoder result, we need a loss function capable of comparing unstructured point-
cloud data. One of the most popular ones for this task is Chamfer distance due to its low
memory impact and fast computation. However, what we found is that the use of Chamfer
produces improper features by causing vertices to congregate close to each other instead
of spreading around the desired mesh properly. Therefore, we have instead opted to use
Earth Mover’s distance (see Equation (3)) along with suggested penalization criteria (see
Equation (4)) in Liu et al. [38], where d(u, v) is Euclidean distance between two vertices in
three-dimensional space; 1 is the indicator function used to filter which shorter than λli
with λ = 1.5 as per suggested value.

EMD(S, Ŝ) = min
φ:S→Ŝ

1
|S| ∑

x∈S
||x− φ(x)||2, (3)

EXP(S, Ŝ) =
1

KN ∑
1≤i≤K

∑
(u,v∈τi)

1{d(u, v) ≥ λli}d(u, v). (4)

During the Phase I training, our final loss function looks like Equation (5), where
Ŝclean is the result of the cleaning stage, Ŝcourse is the result of course stage, Ŝ f ine is the
result of fine point reconstruction, and Sclean is ground truth for cleaned pointcloud, as
the input pointcloud can have additional noise added to it during augmentation. As per
previous research, we kept γ = 0.1 for the expansion penalty factor. The network stays
in Phase I training until εΦ1 > 0.13; this training value was chosen during experiments
as a good value to start training next phase. Once this condition is triggered, Phase II of
training starts.

εΦ1 = EMD(Sclean, Ŝclean) + EMD(Sclean, Ŝcourse) + EMD(Sclean, Ŝ f ine)+

γ · (EXP(Sclean, Ŝclean) + EXP(Sclean, Ŝ f ine))
. (5)
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3.3.2. Phase II

During this training phase, we focus on training the decoder itself; therefore, during
this stage, no modifications to the network weights are applied to the refiner or discrimina-
tor branches. In addition, unlike in the previous phase, we only train on synthetic dataset.
When Phase II condition is triggered for the first time, we need to apply some weight
re-initialization to the network in order to clean up previous training phases potential
falls into local minimums. This is done to clear all the decoder weights acquired during
Phase I training. To drop the weights, we re-initialize all the decoder weights using Xavier
initialization [57] and biases with uniform distribution. In addition, we drop any optimizer
state that has been built up to this point for both encoder and decoder optimizers. During
Phase II, only decoder weights are being modified in order to build a viable profile for
both real and synthetic pointcloud reconstructions during Phase III training. Because only
decoder weights are being trained during this phase, our loss equation can be simplified
to Equation (6), where Sgt is the synthetic ground truth for the synthetic input. Phase II
is trained while εΦ2 > 0.08; once loss drops below the threshold, Phase III training starts.
Like with Phase I, the threshold value has been chosen experimentally.

εΦ2 = EMD(Sgt, Ŝcourse) + EMD(Sgt, Ŝ f ine) + γ · EXP(Sclean, Ŝ f ine). (6)

3.3.3. Phase III

During this phase, we are concerned with training the discriminator to differentiate
between real and synthetic input predicted pointclouds. Training discriminator up until
this point makes the weights very unstable; for this reason, training it was relegated to its
own phase. The discriminator is fed output of the decoder branch fine pointcloud and the
output is either 1 for synthetic dataset element or 0 for real dataset element. Therefore, as
loss function, we are able to use binary cross entropy; see Equation (7) below. Discriminator
is trained until εΦ3 < 0.05, then the final training phase can begin.

εΦ3 = BCE(y, ŷ) =
N

∑
i=1

ŷi · log(yi) + (1− ŷi) · log(1− yi). (7)

3.3.4. Phase IV

During the fourth and final phase, the actual adversarial training is performed for
pointcloud refinement. Because we want our training to start afresh, we drop all previous
optimizer states. This helps to kick-start the training in case optimizers have built up local
minima states. During the adversarial training phase, we train on both synthetic and real
datasets. Synthetic dataset is used to further enforce the decoder state and to reinforce
discriminator, while real data is used to update the refiner/encoder weights and to reinforce
discriminator. Phase IV consists of three different steps for each batch that is being trained
with the weights being updated separately. The first step of Phase IV reinforces the entire
network using the synthetic dataset, for loss function for step one see Equation (8). The
second step of the phase involves training refiner using adversarial loss, where the network
attempts to predict such a pointcloud for real world data that the discriminator would be
fooled into thinking that this is a synthetic data sample. During this step, only the refiner
weights are being updated; the discriminator is left untouched, and only its loss function
is used (see Equation (9)). In addition, we do not want the refiner to lose the shape of the
point cloud, and, for this reason, we constrain it with pointcloud loss in relation to the
input frame with a factor of α = 0.4, the value of which was chosen experimentally. This
allows the pointcloud to gain adversarial properties and actually refine the model without
losing the underlying shape. And, finally, we reinforce the discriminator to recognize the
real dataset pointclouds from synthetic (see Equation (10)).

εΦ4a = EMD(Sclean, Ŝclean) + εΦ2 + εΦ3, (8)
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εΦ4b = α · EMD(Sclean, Ŝclean) + γ · EXP(Sclean, Ŝ f ine) + BCE(1− y, ŷ), (9)

εΦ4c = εΦ3. (10)

4. Results

The main purpose of our approach is to reconstruct self-occluded human body shapes
using real world depth sensor data. However, it is not possible to objectively measure the
achieved results for real world data as we have no way of comparing ground truth with
prediction, no such ground truth pointclouds exist. For this reason, we will only objectively
measure the reconstruction quality using synthetic dataset, while the evaluation of the real
world data will be evaluated using expert knowledge. For evaluating synthetic dataset, we
will use two quality metrics Chamfer (see Equation (11)) and Earth Mover’s distance. Results
for synthetic dataset reconstruction are shown in Figure 11.

εcd(S, Ŝ) =
1
2

(
1
|S| ∑

x∈S
min
y∈Ŝ
||x− y||22 +

1
Ŝ ∑

y∈Ŝ

min
x∈S
||x− y||2

2

)
. (11)

Figure 11. Reconstruction similarity using both Earth Movers Distance and Chamfer Distance. Lower
values are better.

To compare our approach to other state-of-the-art research using both Earth Mover’s
and Chamfer distance metrics, from Table 2, we can see that the other approaches, without
modifications, completely fail when attempting to deal with our AMASS dataset, despite
having comparable results (Liu et al. [38]) when applied ShapeNet dataset to our results
with AMASS dataset. Unfortunately, we cannot compare our approach against ShapeNet
dataset as our suggested approach is meant for the synthesis of real-world object data for
reconstruction. Comparing against it would require collection of a real world ShapeNet-like
dataset using depth sensors, in addition to generation of synthetic frames.

Table 2. Comparison of different reconstruction method metrics for different reconstruction methods
and ours. Our approach when applied to AMASS dataset has very similar metrics to state-of-the-
art approaches on ShapeNet datasets, whereas other methods completely fail when reconstructing
AMASS dataset. Our method is not applicable to ShapeNet as our data collection and training process
is more complicated.

Method
ShapeNet AMASS

EMD CD EMD CD

PointNet w/FCAE [21] 0.0832 0.0182 3.3806 4.9042
PCN [36] 0.0734 0.0121 3.0456 4.0955
AtlasNet [37] 0.0653 0.0182 2.0875 6.4343
MSN [38] 0.0378 0.0114 1.1525 0.8016

Our method (Cleanup) N/A N/A 0.0603 0.0292
Our method (Reconstruction) N/A N/A 0.0590 0.0790



Sensors 2021, 21, 3702 13 of 17

Additionally, we inspect synthetic and real world data results visually using expert
knowledge. Figure 12 depicts synthetic models input (orange) being compared side by side.
As we can see, the majority of the reconstruction flaws occur at the ends of the limbs (both
hands and feet) due to those features requiring much finer granularity. Alongside ground-
truth to prediction side by side comparisons, we perform input-to-prediction overlap visual
inspection as it helps us see to better compartmentalize what features were given as the
input to neural network and what it had to make a guess.

Figure 12. Comparison of ground truth (left/orange) and prediction (right/teal) from different
viewpoints.

From Figure 13, we can see that, despite being given very little input (orange) about
legs, our network has managed to predict (teal) the entirety of its orientation. As we can see,
the network has managed to predict and reconstruct the entire human posture, while being
given less than half of the body features. Finally, we compare real world data reconstruct
in comparison to the input depth (see Figure 14).

Figure 13. Stacked views for synthetic input (orange) and its prediction (teal).

As we can see, the network has had no issue in reconstructing the human posture
and cleaning out the majority of deformations. The biggest defects for real world data
reconstruction are where the depth has large deformities; for example, in the top row,
we can see that, at the end of the hand, there is an extra lump that was captured by the
depth sensor. This has caused the reconstruction prediction to fail cut off part of the hand.
Additionally, there visually seem to be small scaling discrepancies between input and
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reconstruction, although these discrepancies are somewhat hard to evaluate, even with
expert knowledge; regardless of that, we can safely assert that the addition of adversarial
refinement to the network has allowed the network to understand and reconstruct real
world depth sensor data, whereas other approaches have failed without. Finally, we have
tried applying our approach to ITOP dataset. However, due to very different noise model
and point distribution of Microsoft Kinect sensor when compared to Intel Realsense, the
reconstruction results proved to be inconsistent. Having the model trained with ITOP
dataset would greatly improve the results. Unfortunately, the dataset has additional
background noise that we were unable to isolate to be used during the training process.
Further research could improve our model by making it compatible with Kinect-like device
noise; however, due to the Microsoft Kinect being a discontinued product, we feel like
pursuing this is not as useful.

Figure 14. Stacked views for real depth sensor input (orange) and its prediction (teal). Real input
is quite distorted due to depth sensor inaccuracies, and the cleanup stage manages to clean up the
majority of the noise.

5. Discussion

The main of advantage over other state-of-the-art approaches involving object recon-
struction, is that our three-staged neural network architecture is capable of reconstructing
full human body postures with no external interference using real world depth sensor
frames. The addition of the cleanup stage has allowed our approach to not only denoise
the input data, but it also acted as real world input refinement, which has allowed us to
train the network without actually having ground truths for it. Furthermore, our solution,
unlike voxel grid-based approaches, does not require us finding the objects’ transformation
matrix in order to scale and translate it to place it in 3D space. Instead, it is easily adaptable
to existing 3D applications, such as AR or VR. Finally, while our solution had no issue
in reconstructing the general objects’ shape with less than half of the object visible, finer
details, like palms and fingers, tend to be too small features for reconstruction, causing
ambiguities and bad reconstruction results.
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6. Conclusions

We proposed three-staged adversarial auto-refining reconstruction network, which is
capable of reconstructing human body using both: synthetic depth inputs and real world
depth sensor data. The network has achieved Earth Mover’s and Chamfer distances of 0.059
and 0.079, respectively, indicating good reconstruction quality, when compared to other
state-of-the-art methods. Additionally, when comparing the reconstructed pointclouds
visually, it is clear that the network manages to meet the expectations of reconstructing
both synthetic and real world samples with most of the defects being concentrated at the
ends of the limbs, or in the case of real world data, large defects in the depth map can cause
defects in the reconstruction even when cleaning. This is likely due to constraints of refiner
attempting to retain the original shape of the object.

Finally, we have proposed a four-phased training approach for training the adversarial
auto-refiner. The addition of adversarial refinement to the network has allowed our
approach to work with real-world depth sensor data, which other approaches are unable
to do.
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