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Abstract: In this article, we report on video-rate identification of very low-cost tags in the terahertz
(THz) domain. Contrary to barcodes, Radio Frequency Identification (RFID) tags, or even chipless
RFID tags, operate in the Ultra-Wide Band (UWB). These THz labels are not based on a planar
surface pattern but are instead embedded, thus hidden, in the volume of the product to identify.
The tag is entirely made of dielectric materials and is based on a 1D photonic bandgap structure,
made of a quasi-periodic stack of two different polyethylene-based materials presenting different
refractive indices. The thickness of each layer is of the order of the THz wavelength, leading to
an overall tag thickness in the millimetre range. More particularly, we show in this article that the
binary information coded within these tags can be rapidly and reliably identified using a commercial
terahertz Time Domain Spectroscopy (THz-TDS) system as a reader. More precisely, a bit error rate
smaller than 1% is experimentally reached for a reading duration as short as a few tens of milliseconds
on an 8 bits (~40 bits/cm2) THID tag. The performance limits of such a tag structure are explored in
terms of both dielectric material properties (losses) and angular acceptance. Finally, realistic coding
capacities of about 60 bits (~300 bits/cm2) can be envisaged with such tags.

Keywords: low-cost and large capacity tag; 1D photonic band gap structure; Terahertz Identification

1. Introduction

The idea to extend the concept of chipless RFID to the THz domain is mainly motivated
by the necessity of fighting against counterfeiting, and thereby to reach higher security level
for identification systems. Indeed, the devices of the most common tagging technologies
(RFID tags and barcodes) can be easily counterfeited by reverse engineering [1–3] most of
time because they are composed of metal parts or of printed schemes at the tag surface i.e.,
easily identifiable and could then be cloned in the case of high added value applications.
Moreover, conventional RFID tags exhibit large dimensions (several centimetres), which
depend directly on the corresponding RF wavelengths. The idea is to take advantage of
both the optical and the radiofrequency (RF) domains i.e., the possibility to propose small
device patterns to encode the information (by using shorter wavelengths than RF) and
to keep these patterns out of sight by burying them under the surface of the tags (the
main dielectric material is transparent enough in THz range, contrary to optical domain).
On other hand, in case of chipless RFID, coding capacity remains much smaller than
when integrating a chip. Chipless RFID is mainly based on resonator technology and
the tag’s performance of course depends on the resonators design, number, the selected
frequency range, and on the coding technique. Moreover, in the RF domain mainly, the
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design of chipless structures, and more generally the research for efficient performance,
remains a hot topic subject with very rapid development [4–8]. The best performances
published in the last two years reach about 30 bits but remains for the majority around
20 bits, corresponding to spatial density in the range of 1 bit/cm2, very exceptionally
around 10 bits/cm2 or higher.

In contrast, the Terahertz Identification (THID) development is in its early stages and
is currently limited by the development of the THz technologies, not only in terms of cost
and compactness, but also in terms of the speed–reliability compromise of the reader, which
is crucial for the intended applications. THID approaches have been initiated in 2003 by
D. Cumming [9] who designed a THz hologram embedded in a dielectric material, which
was opaque in the visible range but transparent in the THz one. In 2011, we proposed to
encode binary information in the spectral response transmitted or reflected by tags, based
on 1D quasi-periodic multilayer structures [10,11]. The information is thus contained in the
volume of the tag, which can be directly embedded in the product to identify or its package.
Thereby, the stealth of the tag does not make the latter visible at first glance. In real-word
scenarios, its position should be either located by a specific design at the surface, or even
kept secret as an additional level of protection, with a reading that would not be visible
to everyone. This device principle was taken up in 2013 to encode binary information in
the time domain by using the echoes of the incident wave reflected at the interfaces of the
tag [12].

More recently, THID has attracted more pronounced attention due to advances in
THz technologies, coupled to the evident possibilities to develop breakthrough solutions
in order to push the limits of currently used technologies. In 2015, Y. Guan et al. [13]
demonstrated an adaptation of the barcode for the THz range, using successive layers of
polyethylene. In 2018, a 2D photonic-crystal slab matrix made of silicon was proposed as
large-capacity tag, using both frequency and spatial domains [14]. Even if an interesting
capacity of 48 bits/cm2 has been demonstrated, the device made of a periodic array of
holes in a silicon slab remains unachievable by current low-cost industrial manufacturing
techniques. In 2019, Cai Y. et al. [15] proposed a theoretical THID tag structure based on
square graphene loops deposited on dielectric Topas material. A 2-bits Graphene Terahertz
Identification Tag (GTIDT), with geometrical dimensions of several micrometers was first
showed. Moreover, multilayer GTIDTs were investigated to form 3-bits structures. In 2019,
we also demonstrated the principle to use a multilayer device including random inclusions
in order to be used for THID identification, by using THz imaging associated with the Shift
Invariant Wavelet Packet Decomposition (SIWPD) analysis method [16]. Finally, we also
proposed a novel structure of device dedicating to identification and authentication, based
on a diffractive grating engraved on a low-cost substrate [17]. By using different statistical
analyses (Principal Component Analysis-PCA and Linear Discriminant Analysis-LDA),
we show that the frequency signature of such a tag can be authenticated with a success
rate of 99.994%. More recently, in 2020, Mitsuhashi et al. proposed a solution for real-time
identification by combining a multi-wavelength injection-seeded THz parametric oscillator
and a convolutional neural network algorithm [18]. A 46 bits’ tag has been demonstrated by
combining 3 different materials in etalon type cavities of different thicknesses and arranged
in a 2D array. At the same time, M. I. W. Khan et al. proposed a patch antenna array (2 × 2),
built in a CMOS, to be used for identification at 260 GHz [19]. Even if this tag, made of
a metallic pattern with a very small size of 1.6 mm2 is not “chipless” and remains out of
the context of this study, it well illustrates the necessity to increase the useful frequency in
order to reduce the size of the structure.

On the other hand, this study is also positioned in the perspective of very rapid
developments that affect the size of potential technical solutions to read such tags in the THz
range. Indeed, a low cost and compact solution have been proposed by M. Koch et al. [20]
in 2015. This THz-TDS system uses cheap and commercially available components, such as
for example, those taken from a DVD drive. In order to reduce the cost of the THz-TDS
system, it is possible to replace the femtosecond laser by a cheaper and more classical
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Fabry–Perot laser diode [21]. Even if the performance of such THz-TDS systems is reduced,
especially in terms of bandwidth, it remains sufficient for tag reading. Moreover, such
an evolution can also be observed on continuous wave systems (THz-CW), which do not
require a femtosecond laser. Such a spectrometer, based on DFB (Distributed Feedback
Laser), can be of course less expensive and more compact, for example to be carried on a
drone [22]. Some ongoing developments are also very encouraging to continue to reduce
their cost and size, for example, by using multimode laser integrated on glass to be used
for THz generation by frequency mixing [23].

In this context, we show that the prospect to operationally read and reliably identify
a low-cost and easy to manufacture tag, is now made possible using commercially avail-
able THz spectrometers. We based our study on the structure we proposed in 2011 [10],
fabricated using polyethylene to make it low-cost and compatible with industrial man-
ufacturing techniques [11,24]. In this study, we experimentally show the possibility to
read such an 8-bits tag in a quasi-real-time duration (<64 ms), with a rapid commercial
Terahertz Time Domain Spectrometer (THz-TDS), while keeping a bit error rate smaller
than 1%. We deduced from these results a criterion to ensure minimum reading reliability,
that takes into account the reader performances, such as, for example, its signal to noise
ratio. We also theoretically explore the impact of the losses of the material used to fabricate
the tag on the coding capacity. Thus we show that the performances of such a tag can
realistically extend up to about 60 bits by only using materials exhibiting an absorption
coefficient of about 1 cm−1. Taking into account the size of the tag, much smaller than in the
radiofrequency range, it corresponds to a surface density of about 300 bits/cm2, almost one
order of magnitude higher than demonstrated in [14]. Finally, we experimentally evaluate
that angular acceptance inversely decreases with the coding capacity, but tends to a limit
of 5 degrees, despite the coding capacity from 20 bits. Let’s noticed that such angular
acceptance remains sufficient for application using, for example, smart cards type objects.

2. Description of the THID Tag and of the Measurement Setup

The simplest form of the proposed THID tags is an 1D periodic stack of thin dielectric
slabs, made of two different and transparent enough materials exhibiting high (H) and low
(L) refractive index, respectively. On such a multilayer structure, an incident electromag-
netic wave is either transmitted or reflected according to its frequency. The non-transmitted
bandwidths are known as Photonic Band Gaps (PBGs) and appear periodically in the fre-
quency domain. The spectral positions of these PBGs depend on the optical thicknesses of
the quarter-wave equivalent layers, whereas their depth, also called rejection rate, depends
on both the refractive index contrast between the successive layers H and L, and their
number. When the optical thickness (refractive index multiplied by thickness) of at least
one layer of the structure is modified (creation of a structural defect), the period of the stack
is broken, altering in turn the transmitted spectral response of the structure: peaks appear
in the PBGs. Both the number and frequency positions of these peaks are directly related to
the structural defect characteristics [25]. Thereby, a given structural defect configuration
leads to a unique THz transmitted (respectively reflected) spectral response which can be
used as a signature to reliably identify the corresponding tag.

In order to obtain a high index contrast and, consequently, deep PBGs, we used
pure Low-Density Polyethylene (LDPE) as L layer (nL = 1.51) and a mixture of TiO2 (60%)
—LDPE (40%), as H one (nH = 2.29). The thicknesses of these layers (eL = 240 µm for L and
eH = 85 µm for H as shown in Figure 1) were chosen to centre the first PBG around 310 GHz,
where the THz reading systems present a high dynamic range (see Figure 2-inset). The
number of layers (19) has been practically optimized (i) to maximize the signal rejection in
the PBG, (ii) to limit the overall losses due to the absorption, and (iii) to keep the structure
thickness in the millimetre range (see Figure 1a). Note that the whole thickness of the
above described device remains reasonable (few millimetres) when working in the THz
frequency domain, compared to the same type of device in RF (several tens of centimetres).



Sensors 2021, 21, 3692 4 of 13

Sensors 2021, 21, x FOR PEER REVIEW 4 of 13 
 

 

frequency domain, compared to the same type of device in RF (several tens of centime-
tres). 

 
Figure 1. (a) Picture of the realized multilayer tag; (b) microscope images of stacked layers made 
of pure LDPE and TiO2 + LDPE mixture. © 2021 IEEE: this figure is plotted from [24]. 

 
Figure 2. THz pulse delivered by the THz-TDS setup TAS 7500 SP System from ADVANTEST 
(dashed line) and its associated spectrum (inset). Solid lines correspond to the THz pulse transmit-
ted through the developed multilayer THID tag and its associated spectrum (inset). 

The setup used to characterize the tag is a commercial THz Time Domain Spectrom-
eter (THz-TDS) system from ADVANTEST® (model TAS7500 SP), which uses photocon-
ductive antennas as the THz emitter and receiver. Contrarily to conventional THz-TDS 
systems based on mechanical delay lines [26], the pump/probe delay of the TAS7500 SP is 
achieved using an electrically controlled optical sampling (ECOPS) technique [27] that 
permits very high-speed measurements. This ECOPS-based system is then able to record 
a 132-ps long waveform in only 8ms, with a time resolution of 2 fs. The spectral bandwidth 
spread typically from 0.1 to 4 THz (see Figure 2-inset) with a spectral resolution of about 
7.6 GHz, whereas the signal to noise ratio and the dynamics depends, of course, directly 
on the number of waveforms averaged (from 1 to 4096). 

The signature of the tag i.e., its complex transmission coefficient ෨ܶሺ߱ሻ	 of the tag is 
obtained by dividing the Fast Fourier Transform (FFT) of two THz waveforms (see Figure 
2), the first one measured with the tag in between the antennas S(t), and the second one 
without R(t). ෨ܶሺ߱ሻ can be then written: ෨ܶሺ߱ሻ ൌ ሚܵሺ߱ሻ෨ܴሺ߱ሻ (1)

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

0 20 40 60 80 100 120 140

Am
pl

itu
de

 (a
.u

.)

Time (ps)

Reference Sample

-60

-50

-40

-30

-20

-10

0

0 1 2 3 4 5

Sp
ec

tr
um

 (d
B.

)

Frequency (THz)

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

Figure 1. (a) Picture of the realized multilayer tag; (b) microscope images of stacked layers made of
pure LDPE and TiO2 + LDPE mixture. © 2021 IEEE: this figure is plotted from [24].
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Figure 2. THz pulse delivered by the THz-TDS setup TAS 7500 SP System from ADVANTEST
(dashed line) and its associated spectrum (inset). Solid lines correspond to the THz pulse transmit-ted
through the developed multilayer THID tag and its associated spectrum (inset).

The setup used to characterize the tag is a commercial THz Time Domain Spectrometer
(THz-TDS) system from ADVANTEST® (model TAS7500 SP), which uses photoconductive
antennas as the THz emitter and receiver. Contrarily to conventional THz-TDS systems
based on mechanical delay lines [26], the pump/probe delay of the TAS7500 SP is achieved
using an electrically controlled optical sampling (ECOPS) technique [27] that permits very
high-speed measurements. This ECOPS-based system is then able to record a 132-ps long
waveform in only 8 ms, with a time resolution of 2 fs. The spectral bandwidth spread
typically from 0.1 to 4 THz (see Figure 2-inset) with a spectral resolution of about 7.6 GHz,
whereas the signal to noise ratio and the dynamics depends, of course, directly on the
number of waveforms averaged (from 1 to 4096).

The signature of the tag i.e., its complex transmission coefficient T̃(ω) of the tag
is obtained by dividing the Fast Fourier Transform (FFT) of two THz waveforms (see
Figure 2), the first one measured with the tag in between the antennas S(t), and the second
one without R(t). T̃(ω) can be then written:

T̃(ω) =
S̃(ω)

R̃(ω)
(1)
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where S̃(ω) and R̃(ω) are the complex Fourier transform of the THz waveforms of S(t) and
R(t), respectively.

For example, Figure 3 exhibits the frequency-dependent transmission coefficient of
the tag previously described, in which a structural defect has been created by modifying
the thickness of the central layer made of pure LDPE: ed = 1180 µm, instead of 240 µm. As
previously pointed out, some peaks (two in the present case) of transmitted energy, occur
in the first PBG. Then, we propose to use the presence of such transmitted peaks at some
given frequencies to encode binary information, as described in the next section.
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Figure 3. (a) Experimental (blue circles) and calculated (black continuous line) transmission spec-tra
of the tag presented in Figure 1b. Focused on the first PBG whose limits are defined by blue vertical
lines. Vertical strips represent the frequency coding channels. © 2021 IEEE: Figure (b) is plotted
from [24].

We can also notice that the modulus of the THz transmission of the tag can be perfectly
predicted by the theory (see black continuous line) calculating by using a transfer matrix
method [28]. The theoretical expression of T̃(ω) is then given by:

T(ω) =
1
|P11|

(2)

where P11 is the upper left element of the transfer matrix P that links the incident (Ei), and
reflected (Er) THz electric fields, with the transmitted one (Et):(

Ei
Er

)
=

(
P11 P12
P21 P22

)(
Et
0

)
(3)

considering the above-described tag, and assuming an incoming THz beam under normal
incidence, the transfer matrix writes:

P = A.S4.∆︸ ︷︷ ︸
M

.(M∗)−1 (4)

M* is the complex conjugate of M, this latter being calculated from:

A =
1

1 + r1

(
e−i ω

c nHeH r1ei ω
c nHeH

r1e−i ω
c nHeH ei ω

c nHeH

)
(5)

∆ =
1

1 + r2

(
e−i ω

c nL
ed
2 r2ei ω

c nL
ed
2

r2e−i ω
c nL

ed
2 ei ω

c nL
ed
2

)
(6)
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S =
1

1− r2
2

(
e−i ω

c nLeL r2ei ω
c nLeL

r2e−i ω
c nLeL ei ω

c nLeL

)
·
(

e−i ω
c nHeH −r2ei ω

c nHeH

−r2e−i ω
c nHeH ei ω

c nHeH

)
(7)

where r1 = 1−nH
1+nH

and r2 = nH−nL
nH+nL

are the reflection coefficients at interfaces air/H and
H/L, respectively.

3. Principle and Theory of Coding

To encode the binary information from the THz signature, obtained either in trans-
mission or reflection, the PBG is divided into channels, each of them being labelled by
a binary word. The transmitted peaks induced by the structural defect are then used to
activate some of these channels (peak = channel activated, no peak = channel not activated).
The corresponding binary code for the tag is then given by sorting and concatenating the
binary codes of each activated channels. For example, in the case of Figure 3b, the PBG is
divided in N = 8 channels, each of them corresponding to a 3-bits binary word. Channel 1
(at the lower frequency) and channel 8 (at the higher frequency) are associated to <000>
and <111>, respectively. In the present case, the structural defect leads to M = 2 peaks that
activate the 3rd and the 6th channels, each of them corresponding to <010> and <101>,
respectively. Thereby, the corresponding binary word embedded into the spectral response
can be coded over k = 6 bits: <010101>. Even though the obtained binary code is composed
of 6 digits, the effective number of possible binary words cannot be practically equal to
26 = 64, since some combinations are not allowed in this simple way of encoding. Indeed,
the information is coded via the presence of peaks in given channels, without considering
their magnitudes. Consequently, the system is not able to detect the presence of two
superimposed peaks in the same channel. This means that, for example the code <010 010>,
as well as for all the other “symmetric” ones, are not allowed. Moreover, as the activated
channels are arbitrarily read from the left-hand side to the right-hand side, it implies that if
the word <010101> can be obtained, the word <101010> cannot. Taking into account these
limitations, the number of different codes achievable with the above-described coding
technique is given by the combinations CM

N obtained by activating M channels among the
N available, with M varying from 0 to = N. In turn, the total coding capacity ρ (in bits) of
the presented tags is:

ρ(N) = log2

(
N

∑
M=0

CM
N

)
= N (8)

Thereby, the coding capacity (in bit) is equal to the number of channels N defined in
the PBG, this latter depending directly on the PBG bandwidth ∆f, and the width of each
channel δf (see Figure 3b):

N =

∣∣∣∣∆ f
δ f

∣∣∣∣ (9)

If ∆f is fixed by the tag structure, δf can be limited by both the reader performance
(spectral resolution) and the spectral bandwidth of the peaks. Indeed, to be distinguished,
two peaks must be i. spectrally resolved and ii. separated by at least the full width at
half maximum (FWHM) of the considered peaks whose value increases with the losses
of the materials that constitute the layers in the tag. These two conditions constrain the
channel width and in turn the coding capacity of the tag. Considering the frequency
resolution of our reading system (about 7.6 GHz), which is limited by the maximum
available time window to record the signal. Taking into account a value of ∆f = 130 GHz
and a δf ~ 16 GHz (two time the spectral resolution to be sure to really identify a peak),
it leads to a coding capacity of 8 bits. It corresponds to a spatial coding density of about
40 bits/cm2, as the THz beam diameter is about 5 mm.

Nevertheless, to better evaluate the effect of these limiting parameters, we plot in
Figure 4 the prospective evolution of the coding capacity ρ versus δf, keeping constant the
other characteristics of the tag presented previously similar to the width of the first PBG
(∆f = 130 GHz). Thus, the channel number N varies inversely with δf.
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Note that the coding capacity ρ can reach several tens of bits, when δf goes below
3 GHz typically. In one hand, if such frequency resolution is hardly reached with classical
TDS systems, it can be easily obtained using continuous wave (CW) systems whose fre-
quency resolution goes typically down to 100 MHz. In that case, δf is no more limited by
the reader but only by the FWHM of the transmitted peaks (for a given number of layers),
i.e., by the layers’ absorptions. On other hand, considering realistic dielectric materials
with absorption of about 1 cm−1 around 0.3 THz, we can estimate, by using the transfer
matrix method, that the peaks width in such a structure would present a FWHM of 2.2 GHz
(see insert of Figure 4). According to Figure 4, an eligible coding capacity of 60 bits can be
then obtained, leading to theoretical spatial coding density of about 300 bits/cm2. Such
a performance is several orders of magnitude better than coding density obtained with a
chipless RFID system [4–8], mainly since THz wavelengths are a hundred times smaller
than in the RF.

In order to analyse the effect, and consequently the performance limitations by the
material used to fabricate the tag, we plot in Figure 5 the variation of the minimum channel
bandwidth δf (blue curve) and then the corresponding coding capacity ρ (red curve) versus
the absorption coefficient of the materials. We can easily see that ρ rapidly drops for
absorption coefficient from 0.1 to 10 cm−1. However, as many dielectric materials exhibit
low to moderate absorption in the frequency range typically below 1 THz, a coding capacity
bigger than 30 bits can easily be considered with common plastic materials. Let’s noticed
that these theoretical results have been obtained by taking into account the 19 layers’
structures described previously. Obviously, for a structure made of fewer layers, as long
as this number remains sufficient to maintain an exploitable PBG, these results can be
considered as underestimated.

Even though THID tags represent a potentially high coding capacity solution for
identification applications, they will be of interest only if they are able to be reliably and
rapidly read. Practically, THz signals recorded from the THz detector remain small; it
follows that the corresponding signal to noise ratio drastically depends on the averaging
rate, i.e., to the global acquisition time. Thereby, it exists as a speed–reliability compromise,
which is discussed in the following section, where we focus on the evolution of reading
reliability via the bit error rate (BER), when measurement duration is decreased down to
allow video-rate reading.



Sensors 2021, 21, 3692 8 of 13

Sensors 2021, 21, x FOR PEER REVIEW 8 of 13 
 

 

reading reliability via the bit error rate (BER), when measurement duration is decreased 
down to allow video-rate reading. 

 
Figure 5. Variation of the channel width δf (in blue) and of the corresponding coding capacity ρ (in 
red) versus the absorption coefficient of the materials used to fabricate the 19 layers’ tag. 

4. Video Rate Identification 
In this section we proceed to evaluate the ability of a current commercial THz system 

to precisely and rapidly get the signature of the THID tag described previously. To ensure 
a usable tag reading, the SNR of the chosen THz system must be large enough in the con-
sidered bandwidth, i.e., from 0.25 THz to 0.38 THz in the present case. Otherwise, the 
commercial TDS-THz systems that are currently available permit very fast acquisition of 
the frequency-dependent transmission coefficient of any sample under test, over a band-
width spreading from 0.1 to 4 THz with a spectral resolution of several GHz. Such sys-
tems, as well as CW ones, can be obviously considered as good candidates for video-rate 
identification application, especially since their SNR remain sufficient. However, as the 
noise level is getting higher when measurement averaging is getting lower, the identifica-
tion process becomes more and more hazardous as the acquisition time decreases. There-
fore, we address below the problem to determine the highest reading speed compatible to 
a reliable identification process of the tag signature. 

To estimate the shortest acquisition duration required to accurately identify the tag 
when read by the TAS7500 SP system, we compared one hundred spectral signatures 
measured on the 19-layer tag with the reference signature. For each set of measurements, 
we vary the number of averaging and thereby the whole measurement acquisition time, 
whereas the reference signature has been obtained using the largest averaging number 
(32,768), leading to an acquisition time of a few minutes (red curve in Figure 6). 

 

Figure 5. Variation of the channel width δf (in blue) and of the corresponding coding capacity ρ (in
red) versus the absorption coefficient of the materials used to fabricate the 19 layers’ tag.

4. Video Rate Identification

In this section we proceed to evaluate the ability of a current commercial THz system
to precisely and rapidly get the signature of the THID tag described previously. To ensure
a usable tag reading, the SNR of the chosen THz system must be large enough in the
considered bandwidth, i.e., from 0.25 THz to 0.38 THz in the present case. Otherwise, the
commercial TDS-THz systems that are currently available permit very fast acquisition of the
frequency-dependent transmission coefficient of any sample under test, over a bandwidth
spreading from 0.1 to 4 THz with a spectral resolution of several GHz. Such systems, as well
as CW ones, can be obviously considered as good candidates for video-rate identification
application, especially since their SNR remain sufficient. However, as the noise level is
getting higher when measurement averaging is getting lower, the identification process
becomes more and more hazardous as the acquisition time decreases. Therefore, we
address below the problem to determine the highest reading speed compatible to a reliable
identification process of the tag signature.

To estimate the shortest acquisition duration required to accurately identify the tag
when read by the TAS7500 SP system, we compared one hundred spectral signatures
measured on the 19-layer tag with the reference signature. For each set of measurements,
we vary the number of averaging and thereby the whole measurement acquisition time,
whereas the reference signature has been obtained using the largest averaging number
(32,768), leading to an acquisition time of a few minutes (red curve in Figure 6).

Then, all the binary codes obtained by using the coding technique previously described
on all of these signatures, are calculated and compared to the reference one: <010101>.
Finally, the identification reliability is quantified by calculating the BER, which is simply
obtained by counting the erroneous binary codes among the hundred measurements of
each set. For all these steps, we used a homemade software based on a find-peak algorithm
to objectively retrieve the binary code hidden in the signature. More precisely, the algorithm
consists in two main steps:

• First, the spectral position and width of the PBG is determined by scanning the whole
spectral signature. The PBG bandwidth is therefore simply defined as the spectral
region where the modulus of the transfer function is lower than a given threshold,
empirically chosen at -6dB in the present study (see horizontal black dashed line in
Figure 6);

• Secondly, peaks are detected within the PBG using a peak-find algorithm considering
only transmission peaks (1) whose magnitudes are greater than a given “decision
threshold” (see horizontal black continuous line in Figure 6), and (2) which have spec-
trally separated each other by at least one channel width. As previously mentioned,
this latter condition ensures a reliable detection of close peaks by taking into account
the spectral resolution of the THz reader and FWHM of the peaks.
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As an example, Figure 6 illustrates these two steps in the case of an 8 ms acquisition
time measurement (blue doted curve), compared to the reference one (red curve). It is easy
to see that the longer the acquisition time, the smaller the noise, the clearer the peaks appear
in the PBG, and the better the binary code can be extracted. For 8 ms measurement duration,
the noise level (represented by the grey error bars) is large enough to induce erroneous
binary code extraction. Such noise-induced errors are of three kinds: (i) a transmission
value, which is theoretically out of PBG bandwidth, gets lower than the PBG threshold
(horizontal black dashed line): the PBG bandwidth is badly estimated as much as the
frequency assignment of the channels, (ii) a defect peak is not taken into account as it
keeps below the decision threshold (horizontal black continuous line): a channel is then not
activated whereas it should be and (iii) a “noise peak” is detected as its amplitude becomes
higher than the decision threshold, leading to the activation of a non-expected channel. Of
course, the impact of the noise can be optimized by adjusting the two thresholds, especially
the decision one that directly controls the unwanted activation, or inactivation of channels
by the noise.

In order to better understand the influence of the decision threshold, we plot in
Figure 7a the behaviour of the BER versus this parameter for different acquisition times.
First of all, Let noticed that the BER goes up to 100% when the decision threshold becomes
higher than −8 dB, despite the acquisition duration. This threshold value corresponds
to the magnitude of the peak cantered at 0.345 THz (see Figure 6). Indeed, in such a
case, the peak can never be detected and thereby used to activate a channel, since the
decision threshold is too high: the binary code cannot be retrieved and the BER tends to
100%. This behaviour is less drastic with short acquisition time since additional noise can
potentially activate the expected channel, even if the decision threshold is higher than the
peak magnitude (as illustrated by case (iii)) in Figure 6.

On the other hand, when the decision is chosen lower, BER decreases to 0%, corre-
sponding to an effective reliability of a reading smaller than 1%, before increasing again.
This is obviously explained by the fact that the find-peak algorithm is more robust to the
noise induced errors of kind ii and iii as long as the threshold decision remains in between
the noise level and peaks magnitudes. Therefore, for each measurement time duration
there is an optimal decision threshold position to obtain a minimum BER. We can notice
in Figure 7b that this optimal threshold is roughly constant around −11 dB, despite the
acquisition time. Note that this optimal threshold is then located 3 dB below the magnitude
of the lowest peak (here cantered at 0.345 THz). This decision threshold value can be
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consequently used to determine the best value of the BER for all the different acquisition
duration (Figure 8).
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As expected, the BER becomes greater when acquisition time decreases. Considering
the TAS7500 SP system, it appears that the tag is accurately identified as long as the
acquisition time remains longer than 64 ms. In this case, the effective BER drops down
below 1%, which corresponds to the minimum achievable limit of this study, as each set of
measurements is based on one hundred tag signatures. Obviously, such a result depends
on the other intrinsic performances of the THz system (dynamics, bandwidth, and spectral
resolution), but also on the tag response (magnitude of the defect peaks, rejection level and
bandwidth of the PBG).

Moreover, the electromagnetic response of such a multi-layered structure, i.e., the PBG
width and peak positions, also closely depend on the incident angle of measurement θ (see
insert of Figure 9). Indeed, under non normal incidence, the effective optical thickness of
each layer is then increased, tending to a high frequency shift of the spectral signature.
This angle-dependent behaviour can directly impact of the BER, by the activation of
unwanted channels and leading to a wrong corresponding binary code. To compensate
for such a frequency-shift impact, we must increase the channels width δf. According to
Expressions (8) and (9), the number N of channel decreases, as well as the coding capacity.
In order to fix a limit acceptance angle, we plot in Figure 9 the impact of the incident
angle on the ultimate coding capacity based on the tag structure previously described.



Sensors 2021, 21, 3692 11 of 13

Considering the first analysis, the initial coding capacity of 8-bits remains unchanged since
the incidence angle remains smaller than 12◦. However, in the case of a larger capacity
around 60 dB, the angular acceptance drops down to 5◦. Let noticed that for a coding
capacity from about 25 bits, such angular acceptance keeps roughly constant.
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5. Conclusions

In this work, we have experimentally demonstrated the ability to identify an 8-bit
coding capacity (coding density ~40 bits/cm2) THID tag only made of dielectric materials
and by using a commercial THz-TDS spectrometer. The tag signature is read with a
reliability rate bigger than 99 percent in only a few tens of milliseconds. Such a performance
has been obtained by comparing the binary words encoded in the frequency domain by the
spectral position of two defect modes appearing in the first photonic band gap of a few-mm
thick tag, constituted of 19 layers of LDPE and of LDPE-TiO2 mixture (40/60 volume ratio),
alternately stacked. To ensure such success rate, we define a decision threshold (~11 dB) as
an absolute criterion to reliably, find the frequency position of the peaks, and therefore, the
binary code of the tag. Consequently, it implies that a THz reading system must exhibit a
sufficiently large SNR to perform both video-rate and reliable reading of a tag (>18 dB). Let
noticed that the SNR of course depends on the averaging rate but also on the intrinsic noise
sources in THz-TDS systems [29]. The performance limits, in terms of coding capacity,
have been also explored both versus the material permittivity (dielectric losses) and the
angular acceptance.

On the other hand, the recent developments of ultrafast high-resolution ASOPS-based
THz-TDS systems [30] or in the longer term, THz-CW systems [22], associated with de-
noising extraction techniques [31,32], would provide a powerful THz reader, perfectly
suited for the video-rate identification of tags exhibiting large storage capacities. Indeed, a
better performance would be obtained by improving the frequency resolution of the reader,
leading to a larger number of channels, and by increasing the number of peaks in the PBG
from the tag side [33].

Based on these results, we showed that such a multilayer tag family is able, with the
realistic improvements suggested previously on both the tag and the reader, to exhibit
coding capacity up to 60 bits, corresponding to a coding density of about 300 bits/cm2,
i.e., more than 6 times bigger than the one reported by Mitsuhashi et al. [14]. Moreover,
the structures proposed in [14,18] are made of a 2D arrangement of several “unitary cells”,
whose size of each of them is very close to that of our entire tag. The surface of these devices
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then increases with the coding capacity, while it remains constant in our case. Indeed, the
surface of our tag is only limited by the THz beam diameter, itself limited by the diffraction
phenomenon (in case of far field reading); it will then be smaller the higher the frequency.

Finally, the optimization of the technique used to encode the binary information, for
example by taking into account either the Q-factor and/or the magnitude of each defect
peaks, would also considerably increase the performances of the whole system.
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