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(S I N I N

Abstract: Most existing residential buildings adopt one single-zone thermostat to control the heating
of rooms with different thermal conditions. This solution often provides poor thermal comfort and
inefficient use of energy. The current market proposes smart thermostats and thermostatic radiator
valves (TRVs) as cheap and relatively easy-to-install retrofit solutions. These systems provide
increased freedom of installation, due to the use of wireless communication; however, the uncertainty
of the measured air temperature, considering the thermostat placement, could impact the final
heating performance. This paper presents a sensing optimization approach for a home thermostat, in
order to determine the optimal retrofit configuration to reduce the sensing uncertainty, thus achieving
the required comfort level and minimizing the retrofit’s payback period. The methodology was
applied to a real case study—a dwelling located in Italy. The measured data and a simulation model
were used to create different retrofit scenarios. Among these, the optimal scenario was achieved
through thermostat repositioning and a setpoint of 21 °C, without the use of TRVs. Such optimization
provided an improvement of control performance due to sensor location, with consequent energy
savings of 7% (compared to the baseline). The resulting payback period ranged from two and a half
years to less than a year, depending on impact of the embedded smart thermostat algorithms.

Keywords: sensing optimization; thermostat retrofit; building simulation; optimization; thermal
comfort; smart thermostat; thermostat placement

1. Introduction

According to [1], the stock of residential buildings in the EU is relatively old, with more
than 40% having been built before 1960 and 90% before 1990. Older buildings typically
use more energy than new ones. The rate at which new buildings either replace this old
stock, or expand the total stock, is low (about 1% a year). This implies that the reduction of
energy consumption of buildings should not exclude the renovation of existing buildings.
However, the renovation rate is also low, with only about 1-2% of the building stock
being renovated each year [2]. Similarly, the residential building stock is subject to a long
renovation cycle, according to [3].

Considering the age of the European building stock, most dwellings have changed
their partition design and room usage over the years. Moreover, the construction materials
initially used have degraded, thus decreasing thermal performances. The heating equip-
ment have also become obsolete, leading to discomfort and higher energy consumption
than necessary. Increasing the performance of buildings is the only solution to solve the
problem of existing buildings that are not comfortable, either affecting the well-being and
health of the occupants or driving them to take actions that may compromise the energy
economy of the building, as has been confirmed in [4]. Global climate targets and future
building consumption levels cannot be reached by only improving insulation or installing
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advanced heating/cooling system technologies, according to [5]. In addition, the IEA
has estimated that 53% of household final energy consumption can be attributed to space
heating [6,7].

Considering the age of the European building stock, its low renovation rate, the low
level of indoor thermal comfort provided to inhabitants, and the magnitude of energy
consumption due to indoor space heating, building retrofits focused on heating/cooling
control systems could provide an important contribution.

The current market is proposing new, cheap, and relatively easy-to-install solutions
to retrofit existing heating system controls. In particular, new smart thermostats [8-11]
offer the possibility to replace existing ones, both in terms of position and heating control.
Among the proposed solutions, the most adopted one concerns a system composed of
a wireless temperature sensor that can be installed in any room, connected by a radio
signal to a relay which, replacing the existing thermostat, is wired to the boiler to control
its operation. There is also the possibility to extend the monitoring system by adding
thermostatic radiator valves (TRVs) to control the heating/cooling sources in a smarter
way, optimizing the thermal load distribution within the dwelling. In particular, [12]
analyzed the application of thermostatic TRVs to an old existing multi-family building
in Italy; the study demonstrated that the application of dynamic energy simulation to
different patterns of TRV use brought significant energy savings, from a minimum of 2% up
to a maximum of 10%. Meanwhile, in [13], long-term field data were collected over several
heating seasons, from nine existing multi-family residential buildings in Poland equipped
with TRVs. The energy savings ranged between 7.1% and 23.3%, and the payback time was
less than 2.5 heating seasons in all cases.

Such new programmable thermostats also include evolved heating control approaches:
from reaching and maintaining a pre-defined temperature setpoint, to shifting setpoints
during times when lower temperature levels are reasonable and incorporating control-loop
external influences (e.g., weather compensation). Moreover, they can integrate advanced
control algorithms and can lead to significant energy savings. One study [14] aimed to
identify the impact of thermostat strategies on heating and cooling energy consumptions
in residential buildings. They concluded that the setpoint temperature of thermostat had a
significant impact on the heating and cooling energy consumptions, and the setback tem-
perature during the nighttime setback showed non-significant energy savings, compared to
the setpoint temperature variation. Another study [15] collected data on room temperature,
heating behavior, and occupancy patterns of households in Southern Germany over a
14-month period. They found that temperature setpoint variation could lead to median
savings potentials in the range of 21-26% and observed higher thermal comfort, compared
to programmable thermostats. The reported results also suggested that the focus of policy
should extend from retrofitting heating systems and building insulation towards more
efficient energy use enabled by intelligent control.

However, considering the study presented in [16], which evaluated the impact of
thermostat usability on facilitating the energy-saving behaviours of thermostat users,
something went wrong. The reported study reached the following conclusions: 1. “High
usability thermostat was not sufficiently easy to use;” and 2. “Study participants adjusted
their thermostats to override the default schedule. Regardless of the thermostat model, they
managed to keep the temperature at the level that ensured their comfort and negated any
energy saving features.” In [17], an extensive literature review regarding surveys on the
impact of smart thermostats in residential buildings was reported; the authors concluded
that smart thermostat systems are, in the short-term, a promising low-investment option for
households in buildings with low to medium efficiency standard, which are not expected
to be energetically refurbished in the coming years; however, in the long run, the thermal
insulation of buildings is indispensable, and more comprehensive energy management
approaches—at least at the building level—seem to offer greater potential for reducing
both energy consumption and CO; emissions. Meanwhile, Ref. [18] found that smart
thermostats are becoming prevalent in residential buildings; however, occupant usage of
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these devices is not well-understood, compared to conventional programmable thermostats.
In particular, a survey and thermostat data from 54 suites were used to characterize smart
thermostat programming and usage behaviours, alongside self-reported environmental
values and technical skill levels. Based on this characterization, several opportunities and
challenges for reducing energy use through the use of smart thermostats were identified.
Adjusting default thermostat settings—in particular, default schedules and default override
behaviours—is recommended to promote energy-conscious thermostat usage behaviours.

In addition, the lack of positive results from the adoption of smart thermostats could
become even worse, if the problem of measuring the air temperature is not correctly addressed.

In residential buildings, the heating system should be designed and operated to reach
the stated requirements in relation to the environment, comfort, and operating economy.
The control of multiple rooms is commonly performed with a single-zone thermostat
measuring the air temperature in one room of the dwelling, without considering the air
temperature differences in the adjacent rooms. For this reason, the thermal comfort is
not satisfied in all rooms at the same time, but mainly in the controlled one, and heating
energy is consumed inefficiently. In fact, descriptions of the criteria adopted to design
the control system, concerning the placement of the thermostat, are often omitted, as
it is generally based on experience and without considering the importance of sensing
the air temperature at the right location in the dwelling. Previous works have partially
addressed this reported issue. In particular, in [19], the authors proposed a framework
based on a coupled CFD (computational fluid dynamics)-BES (building energy simulation)
simulation model, in order to optimize HVAC systems with non-uniform airflow and
temperature distributions in the building design, to achieve good thermal comfort and
energy efficiency. The optimization platform was demonstrated to search for the optimal
thermostat placement in an office room with displacement ventilation and a VAV terminal
box. A similar approach has been applied to large sport facilities in [20]. In any case, the
previous works have been focused on non-residential buildings and large spaces, where
the air temperature distribution can be considered non-uniform.

Considering the literature review reported in the previous paragraphs, the following
outcomes can be recognized:

e Heating or cooling strategies based on temperature setpoint variation could lead to
energy savings and thermal comfort improvement in residential buildings;

e A smart thermostat alone cannot lead to the expected improvement, in terms of energy
savings and thermal comfort; and

e Advanced studies on indoor air temperature measurement accuracy and thermostat
placement have focused mostly on large spaces, not in residential buildings.

A study that combines smart thermostat placement and usage to optimize thermal
comfort and energy consumption in residential buildings has been found in the literature.
In particular, Ref. [21] developed a methodology to find the optimal configuration of
a multi-sensor monitoring system to decrease the energy consumption and match the
comfort conditions within the ASHRAE comfort zone. However, this study was suitable
for buildings with HVAC systems, excluding the cases with traditional heating systems
based on radiators.

Considering the outcomes of the literature review, this paper presents an innovative
methodology, which is specific to residential buildings, in order to optimally configure
the heating retrofit, taking into account the measurement uncertainty due to thermostat
placement, thermal comfort, advanced heating strategies, and costs. In particular, we
investigate the problem of measuring the air temperature in the optimal location of the
building with the optimal setpoint, considering the possibility of additionally installing
TRVs. The proposed approach is based on building simulation modelling, coupled with
criteria for guaranteeing thermal comfort with a reasonable payback period.

The paper is organized as follows: A description of the methodology, the modelling
approach, and selection of optimization criteria are presented in the following section. Then,
the case study is presented, highlighting the application of the proposed methodology.
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The results of the case study are further illustrated through a discussion on the impact on
energy savings.

2. Methodology

This study proposes a methodology based on dynamic building simulation, in order
to optimize the retrofitting of an existing heating control system for residential buildings,
taking into account the optimal location for measuring the air temperature to reduce control
errors due to uncertainty. In particular, the methodology provides, as output, the optimal
configuration of the heating system, in terms of:

1. Air temperature sensing strategy (thermostat location).
2. Optimal air temperature setpoint to be used during the occupied hours.

The optimization outcome is based on two KPIs—one for thermal comfort and one for
payback period—evaluated for the “as-is” scenario (before retrofit) and “what-if” scenarios,
generated with the support of dynamic simulations.

2.1. Building Modelling

The proposed approach is based on a white box for the dynamic simulation model
of the dwelling, which was used to analyse the current heating performance (Figure 1;

“as-is” scenario, step 1) and to create retrofit scenarios. The white box model approach is

law-driven and applies physical laws to predict the system behaviour. White box models
are highly detailed and can be used for operational analysis through calibration [22]. Due
to their level of detail, white box models represent building dynamics and performance
extremely well. The model inputs range from external weather conditions, building
descriptions, building fabric information, and building energy system description. These
inputs are collected through documents retrieved at various stages of the building life cycle,
such as the design stage, the as-built stage, and the operation stage. The simulation engine
consists of detailed calculations and mathematical algorithms, which involve thermal
load calculations, system simulation, and plant analysis. Various white box model tools
which provide a basis for the simulation engine are available, such as Energy plus [23],
TRANSYS [24], and IESVE [25].

(1) Scenario as is (2)Model (3) Optimization
preparation Opt thermostat
Building’s data Slmulatlgn mn.del Opt Tset
—Scenario as is Possibility
Fine tuning of the A
. : to install
simulation model
Measured Opt thermostat .
temperature data Opt Tset
Opt TRVs

TRVs ?
Figure 1. Workflow of the proposed methodology.

The simulation model was developed using the IESVE software [25], which is an
in-depth suite of integrated analysis tools providing high-quality simulation-based in-
formation, which is required to design, build, and operate better-performing sustainable
buildings which maintain the required comfort levels. For this study, several software
modules were used. Specifically, the ModellT allows for the generation of geometry of the
building simulation model; ApacheSim generates the thermal simulation model for the
building; MacroFlo is used for analysing infiltration and natural ventilation; ApacheHVAC
simulates the heating/cooling control system in a detailed way, allowing for the evalua-
tion of a proposed retrofitting solution; and VE-script is a Python environment for task
automation, providing add-on functionality such as post-processing analysis of the results.
VE-script was used to evaluate indoor thermal comfort levels and energy savings.

To achieve the required accuracy, the simulation model was fine-tuned using IoT tem-
perature sensors installed in each room of the dwelling (Figure 1, step 1). The monitoring
should be performed for a minimum period of two weeks inside the dwelling, during the
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heating season. In this way, the thermal characteristics of the house, related to the heating
systems and behaviour of occupants, can be captured and used for model fine-tuning. Once
the data are collected, a simulation model of the dwelling, replicating the “as-is” building’s
performance (Figure 1, step 2), is generated. Trends of air temperature in each room are
finally generated. A detailed description of the simulation model is reported in Section 3.2,
while the following section describes the KPIs utilized during the optimization process.

2.2. KPIs for Optimization

The selection of the optimal sensing configuration was based on two main KPIs:
thermal comfort and heating energy cost.

According to EN 16798 [26], thermal comfort can be assessed using predictive and
adaptive comfort models. The latter is considered more suitable for naturally ventilated
buildings, while the former is more suitable for buildings with mechanical ventilation.
In both cases, the building performance can be assessed using long period indicators,
calculated as the percentage of time during which the building operates outside the comfort
limits. Considering residential buildings, occupants have easy access to operable windows
and can freely adapt their clothing to the thermal conditions, while the thermal response
differs from that of occupants of buildings with HVAC systems and depends, in part, on the
outdoor climate. The indoor operative temperatures are compared to the external running
mean temperature, and the difference is assessed against a set limit to identify the time
outside an acceptable comfort range. Thus, the thermal comfort KPI used in this study was
defined as POR: the percentage of time during which the building operated outside the
comfort limits. For each room, the hourly operative temperature T, was extracted from
the simulation model and, for each day, the outdoor running mean temperature, Ty, is
calculated as:

Tog—1+08T,; »4+0.6T,; 34+05T,5_4+04T,; 5+03T,;_¢+02T,; 7
3.8

Trm,j = [OC]/ (1)
where T,;_; is the daily average of hourly external temperatures for the previous day
(according to location weather data) and T,;_; ... 7 are the daily averages of hourly external
temperatures for the 2nd—7th prior days (according to weather data). For every room and
every hour, the difference between the operative and running mean temperature (AT;) is
calculated as follows:

AT; = T,; — 0.33T,,,; — 18.8 [°C]. )

For every room the number of occupied hours outside the range (h,, ;) was calculated
as the number of occupied hours when | ATi| > [ ATy, |. ATy, in this study, was set to
£3 °C, according to the EN 16798 classification criteria. Thus, the percentage of occupied
hours outside the range, (POR;) [%], is calculated as follows:

ho .
POR; = -2 %100 [%). 3)
htot
The POR of the entire dwelling is finally calculated as the average of the POR,; for each
room, weighted according to the floor area:

;-1:1 PORZ' * Si
n

POR =
i=1 Si

[%], )
where 7 is the number of rooms and S; is the floor area of the ith room.

The POR was used as performance criterion to evaluate the building performance, in
terms of thermal comfort, before and after the retrofit intervention. A POR equal or lower
than 5% of the occupied hours was considered acceptable. The analysis was performed
only considering the main occupied rooms (e.g., bedrooms, living room, kitchen), and
did not consider short-term occupancy and transit areas (e.g., bathrooms, corridors, small
storage areas).
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The second criterion for the selection of the optimal retrofit solution was based on
a simplified payback period (PB). This KPI, which is related to the cost analysis, is calcu-

lated as:
Cretrofit

PB = lvl, @)
)

(Hchaseline, year — Hcretrofit, year

where Cietrofit is the cost of the retrofit solution (smart thermostat and TRVS), HCpgseline,year
is the yearly heating energy cost before the retrofit, and HCetrofit year is the yearly heating
energy cost after the retrofit. The lower the PB, the more convenient the retrofit.

2.3. Optimization for Home Thermostat Retrofit

Once the simulation model is calibrated, the methodology proceeds with the opti-
mization step (Figure 1). Depending on the typology of the heating system (i.e., possibility
to install TRVs), two optimization processes are proposed. In the case that there is no
possibility to install thermostatic valves on the radiators, an optimization process to find
the optimal placement of the thermostat with the optimal setpoint is proposed (Figure 1,
point 3a).

First of all, the as-is scenario evaluates the thermal comfort KPI in the current state
of the building. If the thermal comfort criterion is not satisfied, the optimization process
continues running a what-if scenario, consisting of modifying the existing thermostat
setpoint until the POR achieves the minimum requirement (<5%), where all rooms are in
comfort conditions. This what-if scenario is considered as baseline for the further retrofit
optimization steps. It represents the existing configuration of the heating control system,
using the optimal setpoint to guarantee the thermal comfort inside the dwelling. The
energy consumption calculated for this scenario is used as a baseline for the calculation of
PB, which is used to determine the optimal solution.

Once the Optimal setpoint is defined, new what-if scenarios are generated. Each
scenario consists of placing the new thermostat in a different room, covering all the rooms
of the dwelling (except for bathroom and store places) with temperature setpoints from
19-24 °C, with steps of 1 °C. Therefore, the optimization runs a number of simulations
considering the combinations of thermostat placements and temperature setpoints.

The POR is evaluated for all the previous scenarios. The scenarios that satisfied the
POR are those selected for analysis, in terms of PB.

The cost analysis defines the optimal thermostat placement configuration, in terms
of the payback period. Finally, the what-if scenarios that satisfied the POR are selected
to determine the optimal heating system configuration; that is, the optimal thermostat
placement and final optimal setpoint.

In the case that there is also the possibility to install TRVs, the optimization procedure
continues generating a what-if scenario with a TRV in each room. In this case, the new
thermostat is placed in the original position and the terminals located in the other rooms
(except the one where the thermostat is installed) are equipped with thermostatic valves.
Then, the temperature setpoint is adjusted (temperature setpoints from 19-24 °C, with
steps of 1 °C) to reach the best satisfaction of the POR criterion. Once it is satisfied, the
calculated setpoint is considered as the Optimal Tset. Then, the PB is calculated, in order
to identify the optimal solution, in comparison with the result coming from the previous
optimization process.

3. Test Case

The test case selected for the application of the methodology was a residential building
located in Jesi (AN), Italy. In particular, the analysis was performed for a dwelling on the
second floor of the building. The following sections illustrate the building data collection,
simulation model development, sensor network installation for model calibration, and
optimization process, and, finally, a discussion of the results is provided.
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3.1. Description of the Case Study

The dwelling under analysis consisted of a kitchen, a living room, two bedrooms, and
two bathrooms. The heating system was composed of a single non-condensing boiler with
heat capacity of 23 kW and 6 radiators. The thermostat, placed inside the kitchen, provided
the air temperature value measured in that zone as feedback to the boiler. The thermostat
was programmed to switch on the heating system from 7 to 9 a.m. and from 6 to 11 p.m.
There was no cooling system. The building characteristics essential to the analysis are
presented in Table 1.

Table 1. Characteristics of the case study.

Info Value
Building type Residential
Dwelling Second floor
R Kitchen, Living room, Bedroom 1, Bedroom 2, Bathroom 1,
oom usage Bathroom 2
Balcony Two balconies
Floor hight 3m
Location Jesi (AN), Italy
Latitude 43.52° N
Longitude 13.24° E
Elevation 24 [m]

External walls

External windows

Internal partitions

Roof

Ground/Exposed floor

Boiler efficiency

Boiler power
Terminals

Thermostat location
Thermostat Tset point

Scheduling

Heating system

Insulation 100 mm, Reinforced concrete 100 mm, cavity 50 mm,

Brickwork (outer leaf) 180 mm, Glass wool 10 mm, Brickwork
(inner leaf) 180 mm, Plasterboard 10 mm
Outer pane 4 mm, air cavity 8 mm, inner pane 4 mm
Plasterboard 10 mm, common brick 100 mm, plasterboard
10 mm
Insulation 20 mm, membrane 2 mm, concrete deck 100 mm,
plasterboard 10 mm

chipboard flooring 20 mm
0.73
23 kW
6 Radiators: 4 Main, 2 Small

Kitchen

20 °C
07:00-9:00 a.m. and 06:00-11:00 p.m.
Boiler plus a single-zone thermostat with a dead-band of 1 °C

3.2. Mesurements for Model Fine-Tuning

A sensor network was installed to capture the thermal behaviour of the dwelling
under analysis. The monitoring system was composed of four air temperature sensors,
placed inside the kitchen, living room, bedroom 1, and bedroom 2 (Figure 2), respectively.

The measurement campaign was performed during the second half of December. The
IoT sensor network was made using four Waspmote boards, equipped with Sensirion
SHT75 (accuracy £0.4 °C, resolution 0.1 °C) sensors, as shown in Figure 3. The sensors
were mounted on the perimetral walls at 1.7 m from the ground, the same height as the
existing thermostat. Sensor locations with the presence of large windowed surfaces, direct
solar radiation, air drift, or corners with possible air stagnation phenomena are not suitable
for sensor installation.

Figure 4 shows one day’s temperature profiles for each room measured during the
campaign. The heating system was configured using the thermostat located in the kitchen
(Figure 2), at a setpoint of 20 °C, which was scheduled to work between 07:00-9:00 a.m.
and 06:00-11:00 p.m., providing thermal loads to the different rooms. The boiler stopped
working around 8 a.m., when the setpoint temperature was reached inside the kitchen. The
dead-band of 1 °C did not allow the system to restart before the 9 a.m. Thus, during those
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two hours, the other rooms were under-heated, with a gradient of 2 °C compared to the

kitchen air temperature.

9.75m

1 g

Bedroom 1

i

Bedroom 2

~
(] D

9.95m | ( ﬂ
©
R

Living Room

- Kitchen ﬂ
| |

8.75m

¥

-+ © Thermostat

@-,)) loT temperature sensor

Figure 2. Layout of the dwelling with the location of the existing thermostat and sensors used for the

measurement campaign.

Figure 3. Waspmote board and Sensirion SHT75.
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Day [hour]

Figure 4. Indoor air temperature profiles measured during a typical winter day.

During the afternoon, the thermostat started working again, with a setpoint of 19 °C at
6 p.m., and the boiler stopped around 7 p.m. At 9 p.m., the heating system was active again
until 11 p.m., with a setpoint of 20 °C. In the evening, the gradients remained constant and
the condition of under-heating for the other rooms continued.
The monitoring task pointed out consistent air temperature gradients between rooms,
as confirmed by the relative frequencies shown in Figure 5. The thermostat located in the
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kitchen was able to provide and maintain the selected setpoint for the room, but the other
rooms remained, most of the time, in under-heating conditions.

Living Room Kitchen

303 2025/
5 5]
> S 02f
g g
=02 =
= =015
= 2
kot T 01
2o 2
0.05
0 J ol L . . —_—
16 17 18 19 20 21 22 23 24 16 17 18 19 20 21 22 23 24
Temperature [°C] Temperature [°C]
Bedroom 1 Bedroom 2
0.3 T T 1 0.3 T T T

o
LS

o
Relative frequency

Relative frequency
o
&

=
=]
a

0 \ | .
16 17 18 19 20 21 22 23 24 17 18 19 20 21 22 23 24
Temperature [°C] Temperature [°C]

Figure 5. Relative frequencies of air temperature measured in each room.

Results from the monitoring campaign underlined the importance of a retrofit measure, in
order to overcome thermal comfort issues due to the inhomogeneous temperature distribution.

3.3. Optimization of the Sensing System

The simulation model was developed based on the data reported in Table 1. The
challenge here was to generate a simulation model that was able to reproduce the indoor
thermal comfort inside the different rooms of the apartment, allowing the optimization
process to define the best retrofit scenario for the thermostat. Particular attention was paid
to the heating system sizing and control loop. In Apache HVAC, two separate environments
allow for simulation of the air and water parts of the heating system; in our case, only
natural ventilation was present. For each room, the characterization of the heating terminals
and control topology had to be set up, as well as internal gains and infiltrations, which
were the main parameters used to refine the simulation model performance.

Using the measured data, the simulation model was fine-tuned to reproduce the real
thermal behaviour of the building. It should be considered that the simulation model
uses generic weather data at the building’s location, and not the real data. This could lead
to an incorrect comparison between real indoor temperature trends and simulated ones.
In particular, considering the campaign period, a comparison based on heating degree
days (HDD) allowed for the selection of the most similar day between the real outdoor air
temperature trend and the simulated one, as provided by IESVE software, following an
approach similar to the work presented in [27]. The approach can be split into three steps:
1. Determining the Base Temperature; 2. extraction of HDD from a local weather station
and the weather simulation model file; and 3. selection of the most representative day
between those available for the calibration, considering the minimum deviation between
the real and simulated HDDs.

The objective of the calibration was to reproduce the indoor air temperature inho-
mogeneity within the different rooms of the dwelling, as reported in Figure 4. Therefore,
the model tuning was based on minimizing the difference in the absolute values of tem-
perature gradients (simulated versus measured data) between rooms on the selected day.
This allowed for replication of the thermal behaviours of the different rooms reacting to
different weather conditions. For a clear measure of the model performance, a comparison
based on air temperature gradients between rooms is reported in Figure 6.
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I Measured average delta
N Simulated average delta

—
wn
T
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Figure 6. Comparison of simulated vs. measured air temperature gradients between rooms.

The calibration process was performed manually, by using a radiator adjustment
function, as well as modifying infiltration and internal gains. The final model turned out to
provide a maximum deviance of 10% between the measured and simulated data (Bedroom

1 versus Kitchen) for the selected day. Figure 7 reports the simulated air temperature trends
after model calibration.

22

T | T T
[—Living Room —Bedroom 1 — Kitchen —Bedroom2]

21+

= )
© =)

Temperature [°C]
&

17

16 1 1 |
08:00 12:00 16:00 20:00 24:00
Day [hour]

Figure 7. Indoor air temperature profiles measured during a typical winter day.

As shown in Figure 7, the simulation model followed the temperature fluctuations
during the day well, according to the indoor air temperature trends reported in Figure 4.

The optimization methodology, detailed in the previous sections, was applied to this
test case. First, the as-is scenario was developed, with the thermostat placed in the kitchen
having a temperature setpoint of 20 °C. The POR index was equal to 35%, which indicated
a high percentage of time during which the building operated outside the comfort range.
As it overcame the limit for thermal comfort satisfaction, the as-is scenario was adjusted to
create a baseline where the POR limit was respected.

Then, all the what-if scenarios were analysed by moving the thermostat location from
one room to another and performing the POR analysis. The best configuration had the
thermostat located in Bedroom 2 with a setpoint of 21 °C. As the heating system allowed
for the installation of thermostatic valves, the optimization process continued developing
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the what-if scenarios with TRVs. The Tset, when increased by 1 °C, satisfied the POR
analysis; therefore, the Optimal Tset was defined as 21 °C. The selected best solutions
(i.e., those which were able to satisfy the POR) were then evaluated, in terms of PB, for
identification of the optimal solution. For the proposed case study, an average cost of 165 €
was considered for an off-the-shelf smart thermostat, and 70 € for each TRV. Energy costs
were calculated considering the cost of natural gas, which was used to operate the boiler,
being equal to 0.65 €/Nm?. Table 2 summarizes the results of the retrofit process, including
the cost analysis.

Table 2. Analysis of optimization results.

Retrofit

Thermostat Heating Energy Cost

Solution Tset Point Location POR Consumption  Post-Retrofit Retrofit Cost PB
Raising Tset of
existing single 24°C Kitchen 3.5% 852 Nm3 554 € - -
zone thermostat
Smart thermostat Kitchen +
21°C TRVs in each 3.7% 717 Nm? 466 € 375€ 42y
+ 3 TRVs
room
Smart thermostat 21°C Bed 1 3.8% 782 Nm? 508 € 165 € 36y
single zone
Smart
thermostat 21°C Bed 2 4.0% 745 Nm? 484 € 165 € 24y
single zone
Smart thermostat 21°C Living R 7.7% 686 Nm? 146 € 165 € 15y

single zone

The as-is scenario was simulated, showing a TOT POR of 35% and a heating con-
sumption of about 530 Nm?/y, which had a deviation of 7.5%, with respect to the real
gas consumption reported from bills (490 Nm?/y). The what-if scenario, with the old
thermostat position and setpoint raised to 24 °C, kept the dwelling under thermal comfort
condition at a cost of 554 € per year (baseline for the cost analysis). This scenario presented
the highest heating consumption, compared to the other retrofit solutions, due to the
overheating conditions generated in the kitchen to achieve comfortable temperatures in
the other rooms. The what-if scenario with TRVs reduced the heating consumption to
717 Nm?/y and energy cost to 466 €, with a retrofit expenditure of 375 € and a POR of 3.7%.
The best solution (bold highlighted in Table 2) was that using the new thermostat placed in
the bedroom 2 with a setpoint of 21 °C, satisfying the comfort requirements (POR equal to
4%). The heating consumption was raised to 745 Nm?/y—slightly higher, with respect to
the scenario with TRVs. However, this solution, with a heating energy cost of 484 € and
retrofit cost of 165 €, led to a payback period of 2.4 years, demonstrating the effectiveness
of the proposed solution, which was financially more attractive than that using TRVs.

3.4. Uncertainty Due to Thermostat Placement

As shown in previous sections, the accuracy of the thermostat operation could be
affected by measurement deviation due to the installation point. In fact, the experiment con-
ducted in the real case study showed a significant difference between the air temperature
measured in each room (Figure 4). So, if the desired measurand is a temperature represen-
tative of the overall thermal condition, each sensing location is characterized—among the
others—by an uncertainty component, which could be quantified as the deviation from
a reference condition, represented by the temperature (T;) calculated as the average of
measured room temperatures (T;) weighted by the floor area (4;):

_ L Ti()-A

T,(t) = Ty A (6)
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The data acquired during the monitoring campaign were used to calculate the ref-
erence time-series, Tr, to be compared with the baseline scenario (kitchen) and with the
optimal solution (bedroom 2). Table 3 recaps the statistics of the three time-series.

Table 3. Data statistics of the measured time-series.

Temperature Timeseries Mean STD Min Max
T, 18.2°C +0.8°C 159 °C 229°C
Tkitchen 19.7°C +1.0°C 16.8 °C 222°C
Tpedroom? 17.7 °C +0.8°C 14.7 °C 19.6 °C

To estimate the measurement accuracy due to the installation point, the deviation
between T, and Ty, and the deviation between T, and Tp,gr00m2 Were calculated. The
thermostat installed in the kitchen turned out to provide a deviation (mean and std) of
1.5 £ 0.4 °C, with respect to the reference T,. Meanwhile, the thermostat installed in
bedroom 2, according to the optimization results, decreased the deviation to 0.6 + 0.3 °C.
This result confirms that reducing the uncertainty due to thermostat placement can provide
more efficient control of the heating system.

4. Discussion

The application to the case study turned out to prove that the best retrofit solution
consisted of the selection of a new sensor location for the thermostat operation. This result
confirms that the measurement of the air temperature for a single-zone feedback loop plays
a pivotal role. Common strategies, such as measuring the temperature in the worse-case
room or averaging the hottest and coldest rooms, cannot guarantee the required level of
comfort in each room, or may not lead to an efficient use of heating energy. A second
thought derived from the case study is that TRVs, in some cases, may not be the most
efficient solution, especially when considering the payback period. Even with a non-smart
thermostat, air temperature sensor optimization could provide benefits on the same order
as the installation of TRVs.

In addition, if the retrofit is carried out using a new smart thermostat, the impact of
the increased smartness should be considered. In fact, the retrofit scenario applied to the
case study was analysed considering a new thermostat that is capable of simple on/off
control with a dead-band of 1 °C. This typology of control was a basic one, but other
commercial smart thermostats allow for the use of more sophisticated control algorithms:
Compensation with respect to weather forecast, occupancy evaluation, and PID controllers.
As reported in [17], the major finding from the field studies was that the average savings
provided by a smart thermostat are reasonably well-determined for single-family houses
in the U.S., but the factors that influence relative savings are so numerous and the total
sample size is so small that quantification can be challenging in other countries. Therefore,
in this study, we assumed that the energy savings provided by the smart thermostat could
range from 0 to 30%, compared to non-smart thermostats [28].

An analysis of the payback time for the retrofit solutions is reported in Figure 8. It
compares the baseline scenario with the scenario using a smart thermostat plus TRVs,
as well as the scenario with a smart thermostat installed in bedroom 2, according to
the optimization results. In particular, the figure reports the payback period of the two
solutions, considering the impact of the thermostat smartness providing energy savings in
the range 0-30%.
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Figure 8. Payback period analysis of proposed retrofit solutions as a function of the energy savings
produced by thermostat smartness.

In the case that the smart algorithms have no effect (point zero on x-axis) on the energy
savings, the payback period was the same as that calculated in Table 2. The effectiveness
of the smart thermostat could decrease the payback period from four to two and a half
years for the what-if scenario All-in, which was aligned with the values reported in [13].
Concerning the best what-if scenario, the payback period decreased from two and a half
years to less than one year.

5. Conclusions and Future Work

In this paper, a methodology to optimize the thermostat sensor for the feedback loop
in existing heating systems of residential buildings was described, together with its applica-
tion to a real test case. A simulation model of a dwelling in Italy was developed using the
IESVE software, including details related to the heating control system. A sensor network
was installed inside the dwelling, in order to measure its air temperature distribution. A
significant difference of air temperature was registered between the different rooms, even
with the heating switched on. The entire methodology was applied to create baseline and
retrofit scenarios. The scenarios were evaluated, in terms of thermal comfort and payback
period, to determine the optimal sensing strategy (room for thermostat relocation). This
demonstrated that the optimal thermostat placement was in bedroom 2, with an optimal
temperature setpoint of 21 °C (no TRV needed). The new optimized sensing configuration
for the heating system provided the right level of thermal comfort for tenants and allowed
a potential energy savings of 7%, compared to the baseline (i.e., the existent monitor-
ing/control system configuration), with a payback period ranging from two and half years
to less than a year, depending on the additional savings provided by the smart thermo-
stat algorithms. The proposed investigation confirmed the importance of the thermostat
placement. In particular, the optimal solution provided a reduction of the measurement un-
certainty due to the thermostat placement, with the consequent achievement of a properly
balanced heating control. Moreover, using the proposed optimization approach, the benefit
of using TRVs was also investigated. In the real case study, the optimized thermostat
placement turned out to provide benefits comparable to the addition of TRVs, but with a
shorter payback period.

Finally, this study was based on the development and calibration of a building simu-
lation model using a white box approach, which provided the required accuracy for the
analysis; however, this could be a limitation, as it is time-consuming, costly, and requires a
certain number of detailed inputs. A solution to overcome the mentioned issue is to target
the typical typology of dwellings, depending on the country. Therefore, once the simulation
model is developed, in terms of the geometry, heating/cooling system, and control loop,
the application of the same model and methodology to another similar building would only
require small adjustments, justifying the cost of the initial model development. Further



Sensors 2021, 21, 3685 14 of 15

studies are needed, regarding the impact of sensor measurement uncertainty, for different
commercial thermostats, on the estimation of thermal comfort and energy consumption.
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