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Abstract: (1) Background: Diabetic retinopathy, one of the most serious complications of diabetes,
is the primary cause of blindness in developed countries. Therefore, the prediction of diabetic
retinopathy has a positive impact on its early detection and treatment. The prediction of diabetic
retinopathy based on high-dimensional and small-sample-structured datasets (such as biochemical
data and physical data) was the problem to be solved in this study. (2) Methods: This study proposed
the XGB-Stacking model with the foundation of XGBoost and stacking. First, a wrapped feature
selection algorithm, XGBIBS (Improved Backward Search Based on XGBoost), was used to reduce
data feature redundancy and improve the effect of a single ensemble learning classifier. Second,
in view of the slight limitation of a single classifier, a stacking model fusion method, Sel-Stacking
(Select-Stacking), which keeps Label-Proba as the input matrix of meta-classifier and determines
the optimal combination of learners by a global search, was used in the XGB-Stacking model. (3)
Results: XGBIBS greatly improved the prediction accuracy and the feature reduction rate of a single
classifier. Compared to a single classifier, the accuracy of the Sel-Stacking model was improved
to varying degrees. Experiments proved that the prediction model of XGB-Stacking based on the
XGBIBS algorithm and the Sel-Stacking method made effective predictions on diabetes retinopathy.
(4) Conclusion: The XGB-Stacking prediction model of diabetic retinopathy based on biochemical
and physical data had outstanding performance. This is highly significant to improve the screening
efficiency of diabetes retinopathy and reduce the cost of diagnosis.

Keywords: XGBoost feature selection; stacking ensemble learning; model fusion; diabetic retinopa-
thy prediction

1. Introduction

Diabetes is one of the fastest growing health challenges in the 21st Century. According
to the Global Diabetes Atlas [1], there will be 578 million adults with diabetes by 2030.
Diabetic retinopathy is one of the most serious complications of diabetes, and it is the com-
monest cause of legal blindness in the working age population of developed countries [2],
so the prevention of diabetic retinopathy cannot be ignored. With the spread of sensor
devices and hospital information technology, diabetes data resources are becoming more
available. Disease prediction methods based on data mining are increasingly used in real
disease diagnosis scenarios, which can also significantly help the prediction and diagnosis
of diabetic retinopathy.

Diabetic retinal data include image data and non-image structured data. According to
different datasets in the diabetic retinopathy task, different methods are used in data mining.
For massive retinal image data, experts often use deep learning to solve problems [3,4].
For structured data, the main prediction method is machine learning, for example: SVM,
decision tree, and LR [5]; and the bagging ensemble classifier [6]. In the chronic diabetic
retinopathy dataset, the medical association among diseases and physical examination
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indicators is more complex. For small high-dimensional samples with complex feature
association, simple models and individual learners such as SVM and LR easily underfit
and have poor performance.

Complex feature association affects the effect of data mining and has higher require-
ments for algorithm selection. Ensemble learning is a good choice. Ensemble learning
produces a group of individual learners and then combines them with some strategies, such
as bagging, boosting, and stacking [7]. It has been proven to be better than a single model,
which is efficient to increase the accuracy and stability of classification algorithms [8].
However, the boosting and stacking methods are rarely used to predict diabetic retinopathy.
For the ensemble algorithms, boosting is an effective and popular ensemble method in ma-
chine learning. Gradient Boosting Decision Trees (GBDTs) such as GBDT [9], XGBoost [10],
LightGBM [11], and CatBoost [12] have become very successful in recent years, with many
awards in machine learning and data mining competitions. In ensemble learning, stacking
is a general ensemble method in which many base classifiers are combined using one
meta-classifier, which learns from their outputs to reduce the limitations of a single model.
Stacking has been proven to be an efficient model combination method that can improve
the performance of a single model.

Therefore, this paper took the data of structured diabetic retinopathy as the research
object and proposed new methods based on ensemble learning in feature selection and
model construction. The contributions of this paper are as follows:

1. A new wrapped feature selection algorithm, XGBIBS (Improved Backward Search
Based on XGBoost), was proposed to reduce feature redundancy and improve the
effect of a single ensemble learning classifier. The buffer feature subset was added to
make it possible to operate on multiple features, and XGBIBS searches for the optimal
subset in the sorting space based on the different feature metrics of XGBoost;

2. A stacking model fusion method, Sel-Stacking (Select-Stacking), was proposed to
improve the performance of a single model. There were two improvements to the algo-
rithm. Sel-Stacking not only kept Label-Proba as the input matrix of the meta-classifier,
but also determined the optimal combination of base classifiers by a global search;

3. A diabetic retinopathy prediction model, XGB-Stacking, was constructed to predict
the risk of diabetic retinopathy by combining the XGBIBS feature selection algorithm
and the Sel-Stacking model fusion method.

The remainder of the paper is organized as follows. Section 2 reviews related works,
including the prediction of diabetic retinopathy, feature selection, and the stacking model
fusion method. Section 3 focuses on the method to predict diabetic retinopathy and contains
a brief introduction of the dataset, the XGBIBS feature selection algorithm, the Sel-Stacking
model fusion method, and the evaluation matrix. The experimental setup and results are
analyzed and discussed in Section 4. Finally, the conclusions are drawn in Section 5.

2. Related Work
2.1. Prediction of Diabetic Retinopathy

Experts deal with the prediction of diabetic retinopathy using various methods.
Tsao et al. [5] built a prediction model for the DR in type 2 diabetes mellitus using data
mining techniques including support vector machines, decision trees, artificial neural
networks, and logistic regressions. The experiment showed that appropriate machine
learning algorithms combined with discriminative clinical features could effectively detect
diabetic retinopathy. Somasundaram et al. [6] designed the Machine Learning Bagging
Ensemble Classifier (ML-BEC). Features of diabetic retinopathy disease diagnosis were
initially extracted by applying t-distributed Stochastic Neighbor Embedding (t-SNE), and
experiments suggested that ML-BEC could achieve better classification accuracy and was
efficient for further reducing the diabetic retinopathy classification time. Ramani et al. [13]
proposed a novel method that utilized retinal image analysis and data mining techniques
to accurately categorize the retinal images as normal, diabetic retinopathy, and glaucoma-
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affected. The novel method included the Fisher ratio algorithm used in feature selection, as
well as C4.5 and random forest, achieving the best classification accuracy.

2.2. Feature Selection Algorithm
2.2.1. Wrapped Feature Selection Based on Heuristic Search

In different feature selection algorithms, the wrapped method tends to give supe-
rior performance compared with filters and embedded machine learning models [14].
At present, the wrapped feature selection algorithm based on heuristic search strategy
is a research hotspot [15]. There are many different research works on wrapped feature
selection algorithms based on heuristic search, such as random search and sequential
search. Tan et al. [16] proposed a framework based on a Genetic Algorithm (GA) for feature
subset selection that combined various existing feature selection methods. This approach
could accommodate multiple feature selection criteria and find small subsets of features
that performed well for a particular inductive learning algorithm to build the classifier.
Sequence search is also a hot topic. Nakariyakul et al. [17] proposed a new Improved
Forward Floating Selection (IFFS) algorithm. An additional search step called “replacing
the weak feature” was added to check whether removing any feature in the currently
selected feature subset and adding a new one at each sequential step could improve the
current feature subset. Fallahpour et al. [18] proposed the Sequential Floating Forward
Selection (SFFS) algorithm, and the SFFS-SVM ensemble classifier could be considered a
promising addition to existent models when confronting the FDP issue. Guyon et al. [19]
proposed a new method of gene selection utilizing support vector machine methods based
on Recursive Feature Elimination (RFE). The genes selected by SVM-RFE yielded better
classification performance and were biologically relevant to cancer. Li et al. [15] proposed a
new wrapped feature selection algorithm, XGBSFS (XGBoost Sequential Floating Selection),
and Improved Sequential Floating Forward Selection (ISFFS) was applied to search for the
feature subset to achieve high quality.

Different wrapped feature selection methods based on the heuristic search strategy
have defects. The time cost of random search is high. The current sequential search
strategies are often based on sequential forward search and operate on a single feature in
the search process, which easily leads to the appearance of redundant features or makes it
difficult to consider the statistical correlation of multiple features.

2.2.2. Feature Selection Algorithm Based on XGBoost

The XGBoost feature selection method has been used in different fields, and it has
achieved good performance [15,20,21]. Li et al. [15] proposed a new feature selection
method, XGBSFS. In XGBSFS, the thought process of building trees in XGBoost was used as
a reference, and different feature importance metrics were measured to avoid the limitation
of a single importance metric. Sang et al. [20] proposed feature selection based on XGBoost
to improve the performance of DBP prediction effectively, and the XGBoost algorithm
could provide better feature ranking than the random forest method. Chen et al. [21]
employed XGBoost to reduce the feature noise and performed a dimensionality reduction
through gradient boosting and average gain. The experiment obtained the top-ranked
features based on the descending order of feature importance to characterize the PPIs.

XGBoost is often used in sequence forward search or the filtered method in feature
selection. This method usually loses more feature information, which makes it difficult for
XGBoost feature importance metrics to play a greater role.

2.3. Multi-Model by Stacking Ensemble Learning

The multi-model by stacking ensemble learning method has outstanding performance
in many fields, and it also has good applicability in disease diagnosis tasks in the medical
field [22–25]. Wang et al. [22] proposed a stacking-based ensemble learning method that
simultaneously constructed the diagnostic model and extracted interpretable diagnostic
rules. A random forest classifier-based stacking technique was explored for the integration
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of the base learners. Rawat et al. [23] explored the usage of stacking for two models, and the
gradient boosting machine and artificial neural network were used in the prediction of
dementia. The experimental results showed that the stacking model was better than the
single model. Hammam et al. [24] proposed a stacking deep learning methodology to
produce the best results of COVID-19 classification, which produced test accuracy of 98.6%.
Ji et al. [25] proposed a classification strategy of multi-feature combination and the Stacking-
DWKNN algorithm, which consisted of four modules. The average accuracy obtained was
99.01%.

Among the above stacking model fusion methods, most of them specify the combina-
tion of classifiers, and a few of them explore the combination of classifiers. In the stacking
method, how to choose the combination of classifiers is also a question worth exploring.

3. Materials and Methods
3.1. Materials

The diabetic complication predicted by this study as diabetic retinopathy. This dataset
was provided by the China National Clinical Medical Science Data Center. It is a publicly
available database. This dataset is a structured dataset of diabetic retinopathy with nu-
merical variables and qualitative variables, and it does not contain image data. The data
monitored by different sensors included the biochemical indicators and physical indicators
of diabetic patients, as well as the disease information of patients.

The original dataset was preprocessed before using it in the experimental method.
The processing methods included deleting samples with overwhelming missing features,
filling in missing values, and deleting outliers.

The processed experimental data included a total of 2990 samples, 68 features, and 1
label, among which the label indicated whether a sample contained diabetic retinopathy.
A label value of zero indicated a diabetic patient with diabetic retinopathy, and a label
value of one indicated a diabetic patient without diabetic retinopathy. There were 1496
diabetic patients with diabetic retinopathy and 1494 diabetic patients without diabetic
retinopathy. All the features are shown in Table 1, including the basic patient information,
patient disease information, and various biochemical indicators.

Table 1. All features of the data.

Feature Category Number Features

Basic Information 9 NATION, MARITAL_STATUS, SEX, AGE, BMI, BP_HIGH,
BP_LOW, HEIGHT, WEIGHT

Disease Information 32

A_S, ARRHYTHMIAS, CHD, MI, LUNG_TUMOR,
BILIARY_TRACT_DISEASE, CHF, CIRRHOSIS,
BREAST_TUMOR, CAROTID_ARTERY_STENOSIS,
CEREBRAL_APOPLEXTY, CLD, DIGESTIVE_CARCINOMA,
ENDOCRINE_DISEASE, FLD, GYNECOLGICAL_TUMOR,
HEMATONOSIS, HYPERLIPIDEMIA, LEADDP,
HYPERTENTION, INTRACRANIAL_TUMOR,
OTHER_TUMOR, MEN, NEPHROPATHY, PCOS,
NERVOUS_SYSTEM_DISEASE, PREGNANT,
PANCREATIC_DISEASE, RENAL_FALIURE,
RESPIRATORY_SYSTEM_DISEASE,
RHEUMATIC_IMMUNITY, UROLOGIC_NEOPLASMS

Biochemical Indicators 27
ALB, ALP, ALT, AST, DBILI, GGT, GLO, IBILI, LDH_L, TBILI,
TP, BU, SCR, SUA, HDL_C, LDL_C, TC, TG, HB, PCV, PLT,
GLU, HBA1C, APTT, FBG, PT, PTA

Before applying feature selection and model construction, the dataset was described
statistically to understand its sample composition and value proportion. Table 2 shows
the sex distribution of the samples, while Table 3 shows the age distribution of the sam-
ples. Table 4 shows the distribution of other basic qualitative information about the samples.
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Table 2. Sex distribution of the samples.

SEX Number of Samples Percentage

Male (SEX = 1) 1869 62.51%
Female (SEX = 0) 1121 37.49%

Table 3. Age distribution of the samples.

AGE Number of Samples Percentage

Under 20 years old 2 0.07%
21–30 38 1.27%
31–40 139 4.65%
41–50 562 18.80%
51–60 1018 34.05%
61–70 860 28.76%

71 years old and above 371 12.41%

Table 4. Other basic qualitative information about the samples.

Features Percentage (Value = 0) Percentage (Value = 1)

NATION 95.65% 5.35%
MARITAL_STATUS 97.89% 2.11%

There were 1869 male and 1121 female samples, accounting for 62.51% and 37.49%,
respectively. The age range covered from 19 to 93 years old, with the proportion of male
samples being high. The cumulative proportion of 51–70-year-olds accounted for 62.81%,
which means that most of the patients were elderly patients. As can be seen from Table 4,
the majority of patients were Han ethnicity (the NATION value was 0), accounting for
95.65%, and the majority of patients were married (the MARITAL_STATUS value was 0),
accounting for 97.89%.

3.2. XGBIBS Feature Selection

The XGBIBS feature selection algorithm includes two elements, which are shown
in Figure 1. First, XGBoost provides different feature importance metrics to form two
feature-ranking spaces for feature search. Second, Buffer Floating Generalized Sequential
Backward Search (BFGSBS) is used to search for the optimal subset.

Figure 1. Two elements of the XGBIBS algorithm.

3.2.1. XGBoost Feature Importance Metrics in the XGBIBS Algorithm

Feature importance metrics measure the importance of a feature in the construction
of a model. The reason for choosing different feature importance metrics provided by
XGBoost is to fully obtain the internal correlation among features and targets and improve
the search efficiency. The feature importance score provided by XGBoost can represent the
value of the feature in the model to enhance the construction of the decision tree, which is
not a simple statistical linear relationship.

The base classifiers of the XGBoost algorithm support two choices: linear classifier
and tree model. The importance metrics of XGBoost features in this paper were based on
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the tree model. In the process of building the tree model, XGBoost starts from the root
node, and the feature is selected at each layer, which makes the tree obtain the maximum
gain for segmentation. The importance of this feature increases when it is used to segment
more times or the average gain of each feature segmentation becomes larger. In the process
of the continuous segmentation of a tree, the calculation formula of the gain is as shown in
Equation (1).

Gain =
1
2
[

G2
L

HL + λ
+

G2
R

HR + λ
− (GL + GR)

2

HL + HR + λ
]− γ (1)

Common feature importance metrics in XGBoost are the gain, cover, weight, to-
tal_gain, and total_cover. These are shown in Table 5. Feature importance metrics can be
obtained through the parameter in XGBoost “feature_importances_”, and different metrics
of “feature_importances_” can be set to provide different metrics.

Table 5. Descriptions of the XGBoost feature importance measurement metrics.

Parameter Description

weight the number of times a feature is used to split the data across all trees
gain the average gain of the feature when it is used in trees
cover the average coverage of the feature when it is used in trees

total_gain the total gain of the feature when it is used in trees
total_cover the total coverage of the feature when it is used in trees

The weight is the number of times that a feature is used to split the data. Its calculation
is shown in Formula (2), where X is the set of specified features classified into leaf nodes.
The calculation formula of the gain is Formula (3), and the calculation formula of the gain
is shown in Formula (1). The calculation formula of the cover is shown in Formula (4).
The calculation formula of the total_gain is shown in Formula (5), while the calculation
formula of the total_cover is shown in Formula (6).

Weight = |X| (2)

gain =
∑ GainX
|X| (3)

cover = ∑ coverX
|X| (4)

total_gain = ∑ GainX (5)

total_cover = ∑ coverX (6)

Before the XGBoost feature importance metrics are used in the search phase of the
XGBIBS feature selection algorithm, the following processing is undertaken:

1. It filters out the features with zero importance. In tree segmentation, it is inevitable
that features with a zero importance metric will appear. Most of the features with
zero importance are not distinguishable from the samples, as their information value
is very low. The XGBIBS feature selection algorithm can filter out the features with
zero importance so that they cannot enter the feature search space;

2. It outputs multiple different feature importance metrics at the same time. It is nec-
essary to construct two ranking spaces for the sequence search according to certain
rules. After XGBoost calculates the feature importance metrics, it outputs a variety
of rankings to be used in the XGBIBS feature selection algorithm. Different feature
importance metrics of the BFGSBS strategy can be chosen arbitrarily.

3.2.2. The BFGSBS Strategy in the XGBIBS Algorithm

The BFGSBS strategy in this study implemented floating generalized backward search
by increasing the buffer subset. In addition, the BFGSBS strategy constructed two feature-
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ranking spaces through two importance metrics, i1 and i2, provided by XGBoost. The fea-
ture ranking queue for deleting feature subsets and that for adding features were different.
The buffer subset of the BFGSBS strategy can fully consider the correlation among multiple
features, and through two feature important metrics, it provides a richer combination of
features and overcomes the limitations of a single metric.

The implementation steps of the BFGSBS strategy are as follows:
According to the XGBoost feature importance metric i1, the features are sorted from

small to large to generate the I1 queue.
According to the other XGBoost feature importance metric i2, the features are sorted

in the opposite way in order to generate the I2 queue.
A buffer feature subset is established starting with the full set of features O.
Stage 1 is the sequence backward deletion:

1. Delete the Nth feature from the buffer feature subset O each time (the starting value
of N is 1) according to the feature importance queue I1, and the buffer feature subset
O is updated;

2. Use the new buffer feature subset O to calculate the evaluation function. If the result
is better than that of the optimal evaluation function, save this buffer feature subset
as a new optimal feature subset Best_O;

3. After this round of operation, N = N + 1, and go to Stage 2
Stage 2 is the floating forward increase:

4. Search for a feature that is not in the buffer feature subset O and in turn from the
feature importance queue I2;

5. If this feature is added to the buffer feature subset O, the effect of the evaluation
function is improved. Then, the buffer feature subset O is updated, and the buffer
feature subset is saved as a new optimal feature subset, Best_O;

6. End this stage after traversing the order from beginning to end, and return to Stage 1.

After multiple iterations, an optimal feature subset with the least number of features
and the highest evaluation function effect is finally obtained.

The two feature importance metrics of the BFGSBS strategy are provided by the
XGBoost algorithm. The BFGSBS strategy and XGBoost feature metrics together constitute
the XGBIBS feature selection algorithm.

The flowchart of the XGBIBS algorithm (the BFGSBS strategy) is shown in Figure 2.
The symbols in Table 6 are used when describing the algorithm. The pseudo-code of the
XGBIBS algorithm is given in Algorithm 1.

Table 6. The definition of the XGBIBS symbols.

Symbol Definition

I1 Queue arranged from small to large according to the importance of the XGBoost model i1
I2 Queue arranged from large to small according to the importance of the XGBoost model i2
O The buffer feature subset

Best_O The optimal feature subset
Acc Classification accuracy

Best_Acc The highest classification accuracy
N Traverse the control variables of the I1 queue
J Traverse the control variables of the I2 queue
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Figure 2. The flowchart of the XGBIBS algorithm (the BFGSBS strategy).
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Algorithm 1: Improved Backward Search based on XGBoost (XGBIBS).
Input: original feature set A
Output: objective feature set Best_O

1 Train the XGBoost model;
2 Select feature queue I1 by XGBoost feature importance index i1 in ascending order;
3 Select feature queue I2 by XGBoost feature importance index i2 in descending

order;
4 Initialization: objective feature set Best_O = ∅, buffered feature set O = I1;
5 for i1 in I1 do
6 O = O − i1;
7 if model performance improved then
8 set Best_O = O;
9 end

10 for i2 in I2 do
11 O = O + i2;
12 if model performance improved then
13 set Best_O = O;
14 else
15 O = O − i2;
16 end
17 end
18 end
19 returnBest_O

3.2.3. Time Complexity of the XGBIBS Algorithm

This section analyzes the time complexity of the XGBIBS feature selection algorithm.
The maximum depth of the tree constructed by XGBoost in the XGBIBS algorithm is X,
and there are K trees in total. Assume that the training set has N samples and a total of
M features, without missing features and samples. The number of non-zero importance
features obtained by XGBoost feature importance ranking is m; for the XGBoost algorithm,
the time complexity of generating all the feature presorting is O(mNlogN); since the
results of global presorting can be reused in the later node splitting, no extra time to sort
needs to be consumed. For the process of tree model construction, the time complexity of
traversing the partition point of each layer is O(MN), so the time complexity of building K
trees is O(MNKX). The average time complexity of the quick sort algorithm is O(mlogm).
In BFGSBS, the time complexity of the sequence backward deletion process is O(m) because
there are m features in the sequence I1; the floating forward add procedure is also traversed
from beginning to end on sequence I2, the features if which are less than m, so the time
complexity of the adding process is O(m); the time complexity of the base classifier is
O(W). The total time complexity of BFGSBS is O(m2 ∗W). Taking the k-Nearest Neighbor
(KNN) as an example, the time complexity of the KNN classifier O(W) is O(mNlogN).
Therefore, the time complexity of BFGSBS search is O(m3NlogN). Therefore, the total time
complexity of the XGBIBS algorithm is shown as in Formula (7).

O(XGBIBS) = O(mNlogN + mlogm + MNKX + m3NlogN) (7)

3.3. Multi-Model by Sel-Stacking Ensemble Learning

Considering the limited number of base learners and the small amount of data in this
experiment and in order to prevent the problems of overfitting and local optimization of
the model combination, this study made the following improvements to the traditional
stacking model fusion algorithm:

1. The Sel-Stacking method changes the input of meta-classifiers. In order to avoid
overfitting, the output label and Proba of the base classifiers are retained and used as
the input of the meta-classifier at the same time. This prediction is a binary classifi-
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cation problem. A single learner outputs the predicted label and the corresponding
classification probability Proba. The Label-Proba matrix predicted by one base clas-
sifier of one input sample is shown in Figure 3. For each sample, N base classifiers
produce a 2*N output matrix, and M samples with N base classifiers produce a 2M*N
Label-Proba matrix.

Figure 3. Label-Proba matrix of a sample.

2. The Sel-Stacking method improves the combination of learners and selects the optimal
combination based on the data. For the model of the base classifiers, a variety of
classifiers that have applied the XGBIBS feature selection algorithm were respectively
connected, and the model was trained with six-fold cross-validation. The Sel-Stacking
method adds a feature selection process between the base classifiers and the meta-
classifier through a global search to select the best set of base classifiers.

The pseudo-code of the Sel-Stacking algorithm is summarized in Algorithm 2.

Algorithm 2: Select Stacking (Sel-Stacking).
Input: base classifiers’ set S1, meta-classifiers’ set S2
Output: best accuracy J, objective models’ subset Best_OS1 and Best_OS2

1 Initialization: J = 0, Best_OS1 = ∅, Best_OS2 = ∅;
2 for S1’ ⊆ S1 do
3 for s2 ∈ S2 do
4 J’ = Acc(S1’, s2, validation set);
5 if J’ better than J then
6 set J = J’;
7 set Best_OS1 = S1’;
8 set Best_OS2 = s2;
9 end

10 end
11 end
12 J = Acc(Best_OS1 ,Best_OS2 ,test set);
13 returnJ,Best_OS1 , Best_OS2 ;

Acc(S1,S2, dataset X) outputs the accuracy of meta-classifier S2, whose input is the
prediction matrix generated by base classifiers’ set S1 on dataset X.

The computational complexity of the Sel-Stacking model fusion algorithm can be
divided into two parts. When we use M base learners to fit a dataset with N rows of data,
the first part is K-fold stacking, the time complexity of which is O(K ∗∑M

m=1 Om); the time
complexity of the base classifiers m is Om. The second part trains the beta learner SVM with
the dataset generated by the M base classifiers. Since we used a global search to find the
best combination of base classifiers, its time complexity is O(2M ∗OSVM). Thus, the whole
time complexity of the Sel-Stacking is shown as in Formula (8).

O(Sel − Stacking) = O(K ∗
M

∑
m=1

Om + 2M ∗OSVM) (8)
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3.4. XGB-Stacking Model Based on the XGBIBS Algorithm and the Sel-Stacking Method

The method for predicting diabetic retinopathy in this study is called the XGB-Stacking
model, which was divided into two steps: XGBIBS feature selection and the Sel-Stacking
multi-model fusion process. Feature selection on all classifiers was first performed by
the XGBIBS algorithm. All the classifiers were used as the optional base classifiers for
model fusion.

The flowchart of the method XGB-Stacking is shown in Figure 4.

Figure 4. The flowchart of the XGB-Stacking model.

3.5. Performance Evaluation Matrix

Generally, feature selection had two evaluation indicators in the classification problem
experiment: classification accuracy and feature dimension reduction.

Classification accuracy (Acc) is defined as the proportion of the number of correctly
classified samples to the overall number of samples, which is shown in Formula (9). NCC
represents the Correct Number of Classifications, while NAS represents the total instances
of the dataset. Feature Dimensionality Reduction (DR) refers to the ratio of the number of
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unused features to the number of original features, which is shown in Formula (10), where
NSF represents the Number of Selected Features and that of all features. In the model
fusion, only the accuracy was used as the evaluation matrix.

Acc =
NCC
NAS

(9)

DR = 1− NSF
NAF

(10)

4. Experiments and Results Discussion

Because there were two methods proposed, the XGBIBS feature selection algorithm
and the Sel-Stacking model fusion method, this study performed experiments to verify the
effectiveness of the feature selection method and the model fusion method, respectively.

4.1. Experimental Setup
4.1.1. Experimental Environment

All experiments on the dataset of diabetic retinopathy were implemented on a client
of the data provider on a Dell PowerEdge T640 workstation, running Windows 7, with Gen-
uine Intel(R)2.60 GHz CPUs; all codes were implemented with Python 3.6.

4.1.2. Dataset Partition

The dataset was divided into a training set used to train the model, a validation set
to prevent overfitting, and an independent test set to test the generalization ability and
prediction effect of the model. The dataset partition ratio was 6:2:2. The selection of the
dataset segmentation ratio was based on the small sample size of this dataset, with a total
of 2990 samples. The proportion of the training set should be slightly higher to ensure
the effectiveness of model training, and the proportion of the verification set and test set
should not be too small, so as to ensure that the generalization ability of the model is
convincing. There were 1794 samples for the training set, 598 samples for the validation
set, and 598 samples for the independent test set.

4.1.3. Classifiers’ Selection

In the XGBIBS feature selection process of the XGB-Stacking method, different ensem-
ble learning classifiers were chosen as the base classifiers, as these can effectively improve
the accuracy of machine learning tasks. GBDT has outstanding performance in the field
of prediction, and the improved methods based on GBDT include XGBoost, LightGBM,
and CatBoost, all of which have their own advantages. GBDT, XGBoost, LightGBM, and
CatBoost were chosen as the ensemble learning classifiers with AdaBoost and KNN to
improve the difference of the classifiers. Therefore, six classifiers were selected in the
experiment: KNN, AdaBoost, GBDT, XGBoost, LightGBM, and CatBoost.

In the model fusion by Sel-Stacking of the XGB-Stacking method, the base classifiers
were selected from six classifiers after the XGBIBS feature selection, and the meta-classifier
was SVM. SVM is more suitable for sample classification in a linear relationship because of
the low model complexity, which can prevent overfitting.

4.2. Experimental Results of the XGBIBS Feature Selection Algorithm

In order to verify the superiority of the XGBIBS feature selection algorithm, compara-
tive experiments were conducted from two perspectives: first, comparative experiments
were done to prove the effectiveness of two XGBoost feature importance metrics and the
BFGSBS strategy in the XGBIBS feature selection algorithm; secondly, this XGBIBS feature
selection algorithm was compared with other feature selection algorithms to evaluate the
overall performance of the algorithm.

In the experiments, the metrics of feature importance I1 and I2 were selected from Set
I: gain, cover, weight, total_gain, total_cover. The experiment could not predict in advance
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which parameter could be used to obtain the best results from the different classifiers.
Due to the limited number of indicators in Set I, the global optimum of the parameter
combination could be obtained through enumeration.

The optimal feature subsets selected by different classifiers were different. The top
ten features selected by XGBIBS algorithm were NEPHROPATHY, HEIGHT, HBA1C,
CHD, LEADDP, OTHER_TUMOR, RESPIRATORY_SYSTEM_DISEASE, RENAL_FALIURE,
HYPERLIPIDEMIA, and GYNECOLGICAL_TUMOR. Their scores and rankings are shown
in Table 7.

Table 7. Top 10 features of the XGB-Stacking model.

Feature Ranking Score

NEPHROPATHY 1 19.10
HEIGHT 2 4.95
HBA1C 3 3.69

CHD 4 3.57
LEADDP 5 3.40

OTHER_TUMOR 6 3.24
RESPIRATORY_SYSTEM_DISEASE 7 3.10

RENAL_FALIURE 8 2.69
HYPERLIPIDEMIA 9 2.48

GYNECOLGICAL_TUMORHEIGHT 10 2.25

4.2.1. The Experimental Result of Using XGBoost Feature Importance Metrics

In order to verify the effectiveness of two XGBoost feature importance metrics in
the XGBIBS algorithm, the search strategy was compared with the I1-only ranking or the
I2-only ranking strategies. The comparison strategies were named BFGSBS1 and BFGSBS2,
respectively. The figures from Table 8 give the experimental results of the classification
accuracy. Table 8 also shows the classification effect of each classifier without feature
selection (NoFS). Table 9 shows the influence of feature dimension reduction.

Table 8. The influence of the XGBoost feature importance metrics on the classification accuracy.

Classifier NoFS (%) BFGSBS1 (%) BFGSBS2 (%) BFGSBS (%)

KNN 66.89 69.90 69.23 75.08
AdaBoost 78.09 80.60 80.43 80.60

GBDT 79.43 81.10 80.60 82.27
XGBoost 76.76 82.27 81.44 82.27

LightGBM 79.10 81.77 81.11 81.77
CatBoost 80.27 82.78 82.94 83.11

Table 9. The influence of the XGBoost feature importance metrics on DR.

Classifier NoFS (%) BFGSBS1 (%) BFGSBS2 (%) BFGSBS (%)

KNN 0 69.12 79.41 82.35
AdaBoost 0 64.71 47.06 64.71

GBDT 0 20.59 54.41 42.65
XGBoost 0 42.65 32.35 42.65

LightGBM 0 44.12 47.06 38.24
CatBoost 0 51.47 41.18 51.47

It can be seen from Table 8 that the two-metric strategy BFGSBS was obviously
effective in the performance of most classifiers, compared with BFGSBS1 and BFGSBS2.
The classification accuracy of BFGSBS1 and BFGSBS was the same for some classifiers,
such as AdaBoost, XGBoost, and LightGBM. This was probably because BFGSBS included
feature combinations in I1, and no better solution was found with the BFGSBS strategy,
which included most of the feature combinations in BFGSBS1. For all classifiers, BFGSBS
achieved the highest classification effect. This shows that the two feature importance
metrics could provide more feature combinations and avoid local optima.



Sensors 2021, 21, 3663 14 of 19

It can be seen from Table 9 that compared with BFGSBS1 and BFGSBS2, BFGSBS
performed better on four classifiers (KNN, AdaBoost, XGBoost, CatBoost). Therefore,
the application of important metrics of different characteristics was helpful to improve DR.
In general, there was little difference in the feature dimension reduction among the three
strategies. Two feature importance metrics could improve the accuracy, but they would
not weaken the feature dimension reduction.

4.2.2. The Experimental Result of the BFGSBS Search Strategy

In order to verify the effectiveness of the BFGSBS strategy in the XGBIBS feature selec-
tion algorithm, BFGSBS was compared with the traditional Sequential Floating Backward
Search (SFBS) strategy and Improved Sequential Floating Forward Search (ISFFS) [11]. The
SFBS algorithm operates on one feature in the backward search process, and ISFFS is a
forward search with different XGBoost feature importance metrics, which only operates
on a single feature in a sequential floating forward search according to the effect of the
evaluation function during iteration.

Table 10 shows the impact of different strategies on the classification accuracy. The BFGSBS
strategy had the highest accuracy on the CatBoost classifier, which was 83.11%. The BFGSBS
strategy had obvious advantages compared with SFBS, and it had more prominent performance
on all classifiers, with the improvement of classification accuracy being between 0.66% and
4.01%. Compared with ISFFS, BFGSBS achieved relatively higher accuracy on the rest of the
classifiers, except for KNN.

Table 10. Influence of different strategies on the classification accuracy.

Classifier NoFS (%) SFBS (%) ISFFS (%) BFGSBS (%)

KNN 66.89 71.07 77.93 75.08
AdaBoost 78.09 80.10 80.10 80.60

GBDT 79.43 81.61 76.92 82.27
XGBoost 76.76 80.77 77.93 82.27

LightGBM 79.10 81.10 75.08 81.77
CatBoost 80.27 82.44 77.42 83.11

Table 11 shows the impact of different strategies on feature dimension reduction.
BFGSBS had the highest feature dimension reduction on KNN, which was 82.35%. BFGSBS
was significantly better than SFBS, while having a much lower effect than ISFFS. ISFFS had
the highest feature dimension reduction on KNN, which was 88.24%. However, the high-
dimensional reduction was at the cost of lower accuracy. Therefore, although BFGSBS used
more features, the higher classification accuracy indicated that these features were not
redundant features. BFGSBS fully exploited the joint advantages of multiple features.

Table 11. Influence of different strategies on DR.

Classifier NoFS (%) SFBS (%) ISFFS (%) BFGSBS (%)

KNN 0 25.00 88.24 82.35
AdaBoost 0 23.53 79.41 64.71

GBDT 0 22.06 85.29 42.65
XGBoost 0 20.59 85.29 42.65

LightGBM 0 19.12 85.29 38.24
CatBoost 0 82.35 82.35 51.47

4.2.3. The Experimental Results of Different Feature Selection Algorithms

In order to verify the effectiveness of the XGBIBS method, comparison experiments
with other feature selection algorithms, GA and SVM-RFE, were carried out. The experi-
mental results are shown in Tables 12 and 13.
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Table 12. Performance of feature selection algorithms on classification accuracy.

Classifier GA (%) SVM-RFE (%) XGBIBS (%)

KNN 73.24 72.07 75.08
AdaBoost 80.10 78.43 80.60

GBDT 81.77 80.94 82.77
XGBoost 81.27 81.94 82.77

LightGBM 82.27 81.10 81.77
CatBoost 81.77 83.11 83.11

Table 13. Performance of feature selection algorithms on DR.

Classifier GA (%) SVM-RFE (%) XGBIBS (%)

KNN 55.88 33.82 82.35
AdaBoost 36.76 50.00 64.71

GBDT 36.76 57.35 42.65
XGBoost 44.12 48.53 42.65

LightGBM 51.47 55.88 38.24
CatBoost 47.06 22.06 51.47

It can be seen from Table 12 that the XGBIBS algorithm achieved the best results on
most ensemble learning classifiers. Compared with the original classifiers without feature
selection, the classification effect of XGBIBS was improved by 2.67–8.19%. Compared with
SVM-RFE, XGBIBS had a higher or equal classification effect with respect to SVM-RFE.
Compared with the genetic algorithm, except for the LightGBM classifier, the rest of the
classifiers were better than the genetic algorithm. This shows that the XGBIBS algorithm
had its advantages.

Analyzing the influence of different algorithms on the feature dimension reduction,
XGBIBS had certain advantages in the improvement of feature dimension reduction on
some classifiers. Although XGBIBS had a small feature dimension reduction on some
classifiers, this did not impact the advantages of XGBIBS combined with the classifica-
tion accuracy.

In order to compare the time cost of different feature selection algorithms, KNN was
used as a classifier to calculate their time cost. Table 14 shows the runtime of different
feature selection strategies and algorithms

Table 14. Runtime of different feature selection algorithms.

Feature Selection Time (s)

NoFS 0.17
SVM-RFE 40.05

GA 827.28
BFGSBS 65.20

It can be seen from Table 15 that the runtime of the XGBIBS feature selection algorithm
on the KNN classifier was 65.20 s, which was significantly higher than that of the algorithm
without feature selection. The runtime of XGBIBS was similar to that of SVM-RFE, but much
lower than that of GA. In general, although the runtime of the XGBIBS feature selection
algorithm increased, the optimization of classification performance was obvious, so the
time cost was acceptable.

Table 15. Influence of the meta-classifier’s different input strategies on classification accuracy.

Input Strategy of the Meta-Classifier Accuracy (%)

Label 83.11
Proba 81.94

Label-Proba 83.95
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In summary, XGBIBS had obvious advantages in small high-dimensional sample
datasets at reducing redundant features, and the selected feature subsets had the best
quality, which could improve the classification accuracy of the classifier.

4.3. The Experimental Results of Model Fusion by Sel-Stacking

Because the Sel-Stacking method improves the two aspects of the traditional model
fusion method, experiments were performed from two aspects—the Label-Proba input strat-
egy and the classifier combination strategy—to evaluate the performance of the method.

4.3.1. The Experimental Results of the Meta-Classifier’s Different Input Strategies

This experiment verified the validity of the Label-Proba combination input. There were
two comparison input strategies, the classification label input strategy and the classification
Proba input strategy. The experimental results of the different input strategies are shown
in Table 15.

The Label-Proba combined input with SVM as the meta-classifier had the best ef-
fect, which was 83.95%. In the model with SVM as the meta-classifier, the Label-Proba
combination was 0.84% higher than the label strategy and 2.01% higher than the Proba
strategy. To summarize the above experiments, it can be found that Label-Proba combined
the input strategy could enhance the fitting ability of the stacking model fusion algorithm
and achieve the best result.

4.3.2. The Experimental Results of Different Classifier Combination Strategies

The experimental results showed that the base classifiers chosen by Sel-Stacking
were KNN, GBDT, XGBoost, and CatBoost. These classifiers could achieve the highest
classification accuracy of 83.95%.

In order to prove the effectiveness of the model fusion strategy of Sel-Stacking, this
experiment compared this method with other model fusion methods and single classifiers.

The alternative classifiers were KNN, AdaBoost, GBDT, XGBoost, LightGBM, and
CatBoost. The experiment also provided two ways to randomly select the combination
of base classifiers in the stacking method to prove that the base classifiers selected by the
Sel-Stacking method had better classification performance.

Other model fusion methods were as follows:

1. Stacking A: KNN, AdaBoost, GBDT, XGBoost, LightGBM, and CatBoost (all optional
classifiers chosen as base classifiers in the stacking method);

2. Stacking B: AdaBoost, GBDT, XGBoost, LightGBM, and CatBoost (base classifiers
Combination A by selecting randomly in the stacking method);

3. Stacking C: GBDT, XGBoost, LightGBM, and CatBoost (base classifiers Combination
B by selecting randomly in the stacking method);

4. Voting A: KNN, AdaBoost, GBDT, XGBoost, LightGBM, and CatBoost (voting method
using all optional classifiers);

5. Voting B: KNN, GBDT, XGBoost, and CatBoost (voting method using the base classi-
fiers chosen by the Sel-Stacking method);

6. Blending A: KNN, AdaBoost, GBDT, XGBoost, LightGBM, and CatBoost (blending
method using all optional classifiers);

7. Blending B: KNN, GBDT, XGBoost, and CatBoost (blending method using the base
classifiers chosen by the Sel-Stacking method).

Single classifiers included all optional base classifiers (KNN, AdaBoost, GBDT, XG-
Boost, LightGBM, CatBoost) and other individual classifiers, such as SVM, LR, and ran-
dom forest.

Table 16 shows the classification accuracy and runtime of different model fusion
methods, and Table 17 shows the classification accuracy of the Sel-Stacking method and
different single classifiers.

According to the experimental results in Table 16, the Sel-Stacking method through
the global search reached the best accuracy of 83.95%. Compared with other model fusion
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methods, the proposed method of Sel-Stacking also had obvious advantages. It can be
seen from the experimental results that if the model fusion method was not properly
selected, the prediction accuracy was likely to be lower than that of a single classifier, such
as Stacking B and Blending. However, it was obvious that the Sel-Stacking method could
fully exploit the combined advantages of a single classifier.

Table 16. The accuracy and running time of different model fusion methods.

Method Accuracy (%) Time (s)

Sel-Stacking 83.95 101.74
Stacking A 83.78 75.53
Stacking B 83.61 65.81
Stacking C 83.11 74.23
Voting A 83.44 8.79
Voting B 82.27 8.42

Blending A 80.10 8.49
Blending B 80.10 7.30

Table 17. The accuracy of the Sel-Stacking method and different single classifiers.

Algorithm Category Algorithm Accuracy (%)

model fusion method Sel-Stacking 83.95
Single classifier KNN 75.08

AdaBoost 80.60
GBDT 82.77

XGBoost 82.27
LightGBM 81.77
CatBoost 83.11

SVM 74.25
LR 74.91

Random Forest 76.58

Compared with other stacking model fusions, Sel-Stacking took about 1/3 more time
to acquire the best performance. Although the time cost of this method was relatively high,
in order to pursue higher accuracy, this runtime of tens of seconds was worth it.

A conclusion can be drawn for the experiments that the global optimal base classifier
set was KNN, GBDT, XGBoost, and CatBoost, having the best effect. The combination of
the above classifiers was the best because the base classifiers selected by this combination
had good classification performance and had great differences in classifier construction.

It can be seen from Table 17 that the accuracy of the Sel-Stacking model was 0.84–9.7%
higher than that of a single classifier. Compared with traditional machine learning clas-
sifiers and single ensemble learning classifiers, the Sel-Stacking model had the highest
accuracy, which used the difference and diversity of single learners to make the results
more robust and accurate.

5. Conclusions and Future Work

This paper proposed a model fusion algorithm, XGB-Stacking, based on XGBIBS
feature selection and the Sel-stacking ensemble learning for the task of predicting diabetic
retinopathy. The main aim of XGBIBS feature selection was to reduce the data feature
redundancy and improve the effect of a single ensemble learning classifier. The buffer
feature subset was added in the BFGSBS strategy to make it possible to operate on multiple
features and make XGBIBS feature selection search for the optimal subset in different
sequences based on different feature metrics of XGBoost. The Sel-Stacking model fusion
method was used to solve the limitation of the generalization ability of a single classifier.
In the Sel-Stacking model fusion method, the Label-Proba of the base classifiers was used as
the input matrix of the meta-classifier, and the classifier combination method was searched
globally to determine the optimal classifier combination. The method proposed in this
paper was more suitable for the diabetic retinopathy dataset, and the accuracy of prediction
on whether the patient had retinopathy was higher.
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The aim of future studies will be to improve the feature dimensionality reduction rate
of XGBIBS and to consider stacking model fusion methods combined with other algorithms
to improve prediction accuracy.
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