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Abstract: This paper proposes an online direct closed-loop identification method based on a new 

dynamic sliding mode technique for robotic applications. The estimated parameters are obtained 

by minimizing the prediction error with respect to the vector of unknown parameters. The estima-

tion step requires knowledge of the actual input and output of the system, as well as the successive 

estimate of the output derivatives. Therefore, a special robust differentiator based on higher-order 

sliding modes with a dynamic gain is defined. A proof of convergence is given for the robust differ-

entiator. The dynamic parameters are estimated using the recursive least squares algorithm by the 

solution of a system model that is obtained from sampled positions along the closed-loop trajectory. 

An experimental validation is given for a 2 Degrees Of Freedom (2-DOF) robot manipulator, where 

direct and cross-validations are carried out. A comparative analysis is detailed to evaluate the algo-

rithm’s effectiveness and reliability. Its performance is demonstrated by a better-quality torque pre-

diction compared to other differentiators recently proposed in the literature. The experimental re-

sults highlight that the differentiator design strongly influences the online parametric identification 

and, thus, the prediction of system input variables. 

Keywords: identification; dynamic sliding mode; direct and cross-validation; robot application 

 

1. Introduction 

The general problem of manipulators still lies in the large number of their physical 

parameters, which are usually not well known. To correctly build a mathematical model 

of such systems, different parameter identification techniques exist, which can be divided 

into two categories: direct and indirect approaches [1]. For the latter approach, the con-

troller expression is related to the definition of the identification algorithm, whereas direct 

methods can identify the parameters of the system model independently of the structure 

controller applied to the robot. This research study relates to direct methods. 

Most of the identification methods defined in the literature use the direct model of 

the system [1,2]. The formulation of the identification problem with such a model can lead 

to nonlinear optimization. Unfortunately, such a solution suffers from various difficulties, 

such as having multiple feasible regions; each one has multiple locally optimal points, 

specifically when the objective function or any of the constraints is non-convex. This non-

convexity issue is more problematic for nonlinear models due to the methods that give 

coherent initialization steps. These methods may not be available for many nonlinear 

model structures. Other methods exist in the literature which are based on neural net-

works [3–6]. Identification methods based on nonlinear observers/filters such as methods 

based on the extended Kalman filter [7], high-gain observers [8], and observers based on 
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sliding modes [9–12] have also been proposed. The drawback of these last ones is that they 

depend on a priori knowledge of the modeled system, which can sometimes be quite com-

plex and inaccurate. Nevertheless, the direct model for mechanical systems is often flat, 

thus promoting the use of the inverse model that can be considered linear with respect to 

a set of dynamic parameters. By relying on the inverse model, the problem of identifica-

tion is reduced to a minimization of a prediction error of unknown parameters. This min-

imization is performed according to a chosen criterion that is generally of a quadratic 

form. Thus, the vector of unknown parameters can be obtained through optimization 

based on different models that exist in the literature. Some of these models include the 

least-squares (LS) method [13], the weighted least squares (WLS) method [7], the maxi-

mum likelihood estimation method [14], and the recursive least squares (RLS) algorithm. 

The RLS algorithm has a major advantage in that it requires multiple iterations, making 

online identification easier. It has good convergence and provides for small estimation 

errors in the stationary case and the underlying normally distributed noise [15]. To further 

improve the performance of this algorithm, a forgetting factor (FF) term can be included 

[15,16]. Apart from the possibility of application of a classical algorithm such as the RLS, 

the use of the inverse model requires also a good prior estimation of the state and its de-

rivatives. Therefore, both filtering and differentiation algorithm methods play a key role 

in such identification processes. Only a few studies have investigated the procedure of 

online parametric identification by associating a differentiator and have implemented it 

for fear of amplifying the measurement noise. The measurement noise properties are not 

known beforehand, especially in practice. Thus, the main challenge here is to find a suit-

able online algorithm that can guarantee a good compromise between the differentiation 

accuracy and noise rejection. This algorithm is defined as a soft sensor to estimate the 

successive derivatives of the system state and also to replace a real physical sensor. The 

use of such a sensor makes it possible to reduce the number of speed and acceleration 

sensors. Indeed, if we have an n-DoF manipulator, we need 2 × n physical sensors. In 

addition, a software sensor rarely breaks down, never wears out, and does not require 

calibration. Soft sensors have become increasingly important in various applications, such 

as the design of controllers, observers [17,18], the sensorless control approach, and diag-

nostic problems [19]. A limited number of studies have proposed software sensors based 

on the differentiation algorithm [20,21]. In [21], the authors addressed the problem of 

online identification for uncertain nonlinear systems based on the state derivative estima-

tion method. For their purpose, they have approximated the system model online, using 

a neural network with some feedback term to compensate for the modeling errors and 

exogenous disturbances. To achieve the identification process, a comparative study of dif-

ferent differentiation algorithms—including the high gain observer, Levant’s first-order 

sliding mode differentiator, backward difference, and central difference methods—was 

performed. This study was done with simulation tests, and only a first-order state deriv-

ative was computed. In [22–24], the authors proposed the parameter identification of a 

robot manipulator, using a causal Jacobi orthogonal-based algebraic differentiator to com-

pute the joint acceleration from the position measurements. The principle of this kind of 

differentiator, as proposed by [25], is based on the truncated series of the Taylor expansion 

signal to be estimated. Although such an algorithm allows efficient attenuation of the 

noise, it is sensitive to the truncation order, to the size of the sliding window estimation, 

and especially to the setting of its parameters. All this makes it difficult to set these pa-

rameters in order to obtain a good estimate. An alternative differentiator that is based on 

a higher-order sliding mode can be used. For the state estimation, a robust differentiator 

based on the sliding mode technique is applied, as in [26–28]. In fact, the author uses the 

well-known Levant’s differentiator, the so-called Super Twisting (ST) algorithm [27], and 

the LS method for online parametric identification of nonlinear systems in the presence of 

noise. Different new forms of the popular first-order ST differentiator have been proposed 

and applied with satisfactory results [26–34]. 
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In this paper, we propose a soft sensor based on the sliding mode differentiation al-

gorithm to enhance an online dynamic parameter identification procedure for a robot ma-

nipulator based on its inverse model. The software sensor outputs are, therefore, injected 

into an RLS estimator to reach this aim. To the best of our knowledge, only a few software 

sensors based on the second-order adaptive sliding mode algorithm allow velocity and 

acceleration to be provided simultaneously [35]. The main features of the proposed online 

identification approach may be summarized as follows: (1) Estimation of both the velocity 

and acceleration of each joint by the proposed software sensor, which is robust with re-

spect to the noisy data, without any knowledge of the statistical properties of the noise. 

(2) A comparative analysis allows assessing the performance of the proposed identifica-

tion approach with respect to other software sensor-based differentiators. (3) The pro-

posed approach allows identifying model parameters with very good performances. This 

paper is organized as follows. Section 2 outlines the general principle of the proposed 

method. Section 3 presents the system application and the different implementation steps 

of the identification process. Section 4 is dedicated to the experimental results, validation, 

and discussion. 

2. Manipulator Modeling and Parameter Identification 

This paper considers the parameter identification problem of closed-loop nonlinear 

systems [36]. In fact, the problem is especially interesting for open-loop unstable systems 

and also for operating safety reasons. The correlation between the input/noise in the 

closed-loop technique is the major area in which it differs from the open-loop methods. 

Considering some input/output constraints, it is possible to consider that the perfor-

mances of the open-loop and closed-loop identification techniques are the same [37,38]. 

For both techniques, the manipulator input-output signals are recorded as the system 

tracks some pre-defined trajectories. Thus, the main practical challenge for the identifica-

tion procedure is the noises that could be provided by the data acquisition chain, sensors, 

and even the process. The defined closed-loop online identification approach can be ap-

plied to any robot manipulator no matter how many inputs/outputs it has. The only condition 

is that the direct model must be flat [39]. Therefore, exploiting the properties of the inverse 

model gives us a linear model with respect to a grouping of physical parameters. 

The problem, then, becomes a minimization problem of a prediction error e


 with 

respect to the vector of unknown parameters 


obtained by an RLS algorithm. The over-

all identification procedure is illustrated in Figure 1. The prediction error e


represents 

the difference between the system inputs 


 and their estimates ̂


. All mechanical quan-

tities denoted by the vectors 


, q


, ̂


, q̂

 , q̂

, and ̂


 are the vector of system inputs, 

outputs, input estimation, velocity estimation, acceleration estimation, and the vector pa-

rameter estimation, respectively. This approach requires in return a good prior estimate 

of the state derivatives. Thus, the software sensor that must be chosen plays a key role in 

the identification process. For such sensors, the first issue concerns the noises on their 

outputs and the second issue is about the estimation accuracy of the velocities and accel-

erations. For the closed-loop identification approach, the robots are usually position-con-

trolled. Different basic controllers are generally used such as PD and PID controllers. Alt-

hough these controllers do not have good precision compared with others, they are widely 

used for identification due to their ease of adjustment. Commonly, all the electrical parts 

relating to the actuators are neglected because their dynamics are very fast compared to 

the mechanical parts. Thus, the relationship between the torque and the current signal 

provided from the electrical motors is modeled by a static gain. The value of this gain is 

known a priori from the manufacturer data. 
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Figure 1. The general principle of the closed-loop identification approach. 

2.1. Dynamic Model 

This section presents the class of nonlinear systems to be identified. Let us define a 

mathematical dynamic model of an n-link rigid robot in joint space as follows: 

 ( ) , ( )
F

A q q C q q q g q         (1)

where          ,
T T

q t q t q t q ti i    and     
T

q t q ti   are the vector of joint posi-

tion, the joint velocity, and the acceleration, respectively.  A q  is the inertia matrix of the 

robot,  ,C q q  is the matrix containing the centrifugal, and the Coriolis torques, 

( ) ng q   is the vector of the gravitational vector 
F

  and  , are the friction forces and 

the joint torque vectors, respectively. The friction forces vector is defined by the dry fric-

tion and viscous friction terms as follows: 

 
F v s

Fq F sign q     (2)

where 
 *

,
n n

v s
F F   are constant diagonal matrices representing viscous and Coulomb 

friction parameters, respectively. Let us rewrite Equation (1) in a linearly parameterized 

form with respect to a vector of n dynamic parameters [40]: 

 , ,H q q q     (3)

where �(�, �̇, �̈) ∈ ℝ(�∗��) is a regression matrix and � ∈ ℝ(��∗�) is a vector of the param-

eter model that represents the minimal set of identifiable parameters to describe the dy-

namic model. The vector   is obtained by regrouping some of the base parameters with 

respect to the QR decomposition [39] or via some linear relations [2,7]. 

2.2. Algorithm for the Proposed Soft Sensor 

The main advantage of higher-order sliding mode (HOSM) algorithms is the ease of 

their implementation in real-time, which justifies their successful applications [41–43]. 

However, their major drawback is the gain setting in real-time. In fact, the gain setting 

requires that the Lipschitz constant of the derivative signal, which is difficult to know in 

practice since the signal to estimate is not necessarily known in advance, must be accu-

rately known beforehand. Thus, for online applications, it is necessary to adjust the gains 

each time the basic signal changes. Therefore, the major difficulty lies in the gain selection 
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of such differentiators. To fix this problem, various new sliding mode differentiators have 

been proposed in the literature, where the aim is to define an adaptive form of this classic 

scheme. 

Let the input signal  g t  be a function defined on  0,   and have a Lipschitz de-

rivative C defined as:    

( 1)

( 1)
0, ; max

n

n

d
t g t C

dt




   

 
 
 

, where C is unknown. This input 

signal can be defined as follows: 

0( ) ( ) ( )g t g t t   (4)

where 0 ( )g t  is an unknown base signal with the (n + 1)th derivative having some Lipschitz 

constant 0C   and ( )t  is a bounded Lebesgue-measurable noise with unknown fea-

tures; it is defined by: ( )t   , where   is sufficiently small. 

The basic form of the first-order differentiator ST and the nth-order differentiator are 

defined in [27,28], respectively. The ST algorithm is described by Equation (5). By referring 

to [26], a basic form of the second-order sliding mode differentiator (2SMD) (for 2n  ) 

is defined by Equation (6): 

 

 

0 0

1

20 0 0 0 1

1 1 1 0

z y

y z g sign z g z

z sign z y









    


  






 (5)

   

   

0 0
1

3
21 1 1 0 1 0 220 0 0 0 1

2 2 2 1 2 1 0
1 1

,

z y

y z y sign z y z
y z g sign z g z

z sign z y sign z yz y


 


 
      

     
       






 (6)

where  0i ,i ,..,n   are differentiator parameters, which are positive, depending on 

the Lipschitz constant C of 
1

0 ( )ng t
, and y0 and y1 are the differentiator outputs. 

At time t = 0, these differentiators can well be performed as follows: 

       0 0 0 0 0 1 2iz g ,z ,i ,    after finite-time convergence and in noiseless cases, 

1 0z y  is the estimation of 0( )g t , and 2 1z y  is the estimation of 0 ( ).g t  In the equa-

tion systems (5) and (6), the quantities that present the sign(.) functions must theoretically 

vanish in finite time, but it is impossible to achieve this due to different inaccuracy sources 

as the measurement errors. In addition, this problem is amplified by the presence of dis-

continuities, which come from the sign(.) functions, in these equations. These latter pro-

duce the so-called chattering effect on the estimated signals. To overcome this problem, it 

is necessary to have adequate values of the differentiator parameters to also have good 

accuracy and minimize the chattering effect as much as possible. In some previous works 

[44], it was possible to replace the “sign (.)” with the “sat(.)” function; this makes it possible 

to slightly reduce the noise amplification in spite of the convergence algorithm, which can 

occur in the event of an inadequate slope value. 

To define an algorithm with a compromise between the exactness and the level of 

noise for the considered signal, the new scheme of 2SMD is proposed. This solution per-

mits some dynamic laws on the estimator’s settings that will be exposed by the following. 

Let us define the proposed second-order sliding mode differentiator (P2SMD) as: 
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 

1 1
0 0

12
21 1 1 1 2 1 1 130 0 0 0 1 0 0

0

;
;

, ˆˆ ( )ˆ ( )

t

z y
z y

y e sign e sign e dt ey e sign e z e

 
 

          







 (7)

where 0 1 2ˆ ˆ ˆ, ,    are dynamic gains, 0 , 1 are convergence gains, and e0, e1 are the slid-

ing functions, which are defined as: 

0 0 1 1 0,e z g e z y     (8)

The dynamic gains  ˆ , 0,1,2i i   are defined as: 

   

   

 

2
3ˆ ˆ ˆ, 0 0 0 00 0 0 0 0 0

1
2ˆ ˆ ˆ, 0 0 0 01 1 1 1 1 1

ˆ 2 1 1
0

e sign e e and t

e sign e e and t

t
e sign e dt

       

       

  

  
  

 
  
  

 




 

 



 (9)

Theorem 1. For 0 1, 0    and with the dynamic gains  ˆ , 0,1,2i i  defined by system 

Equation (9), the system trajectories (7) converge locally and asymptotically towards the 

equilibrium point 0 1 0e e  , with the following assumption: 

         
2 1

* * *3 2,0 0 0 1 1 1 1 2 1
0

t
g t e sign e z g t e sign e sign e dt         (10)

where 0 1 2
* * *
, ,    are positive constants that are unknown a priori. 

Proof of Theorem 1. Let 0 0e g   . With this new coordinate, the first two equations of 

the system (7) can be re-written as follows: 

 
2
3ˆ0 0 0 0 0 0 1sign         (11)

where 1 1z g    , 0
ˆ 0  , and 0 0  . From Equation (11) we have: 

 
2

31 0 0 0 0 0 0ˆsign
 

        
 

 . Then, we have: 

   1 0 0sign sign     (12)

Subtracting  g t  on both sides of the second Equation of (7), we obtain: 

     
2

30 0 0 0 0 0 1ˆy g t sign z g t           (13)

Substituting  g t  in Equation (13) with its expression in Equation (10), we obtain the 

following equation: 
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 
2

30 0 0 0 0 0sign        (14)

with 
*

0 0 0ˆ     , which is an error between the estimated gain value and the gain 

value known a priori. Considering now that 1 1z g    , it gives 1 1 0s    . Subtracting 

 g t  from both sides of the last equation of (7), we have: 

     
1

21 1 1 0 1 0 0 1 0 2 1 0

0

t

sign sign dt                   (15)

Let us define a Lyapunov function as: 

     
2

22 2
0 1 0 1 0

0

1 1 1
, , , 0,1,2

2 2 2
i i

i

V i


             (16)

Let us define the equilibrium point such as  0,0,0
T

eqX  . Then, the derivative of 

the Lyapunov function defined by Equation (16) is given by: 

  0 0 1 0 1 0 0 0 1 1 2 2ˆ ˆ ˆV                          (17)

with 
2

0 0 0 0 0 0ˆ       , and we can also obtain: 

   22
0 0 1 1 0 1 0 0V               (18)

We have: 

     
2 1

3 31 0 0 1 0 0 0 0 0 0 0 0 0

2
ˆ

3
sign


                  


 



       (19)

Replacing 0̂  (see system (9)) in Equation (19) by its expression, the following equal-

ity is satisfied: 

 
7 1 2

2 2
3 3 31 0 0 1 0 0 0 0 0 0 0 0 0

2 5

3 3

 
                      

 
   

 

(20)

Consequently, Equation (17) can be rewritten as follows: 

 
1 7 2

22 2 2
3 3 30 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0

2 5

3 3
V

 
                         

 

      (21)

To show that V is negative, it is sufficient to prove that: 

7 2
2

3 30 0 0 0 0 0

5
0

3

 
            

 
  (22)

Therefore, let us assume that 0 0M    , where 0M is a positive constant satisfy-

ing the following inequality: 

1

30 0 0

3

5
M     (23)
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To obtain the condition defined by Equation (23), one must choose 0  such that: 

1 5

3 30 0 0 0 0

3 3

5 5

 
       

 
  (24)

It should be noted that the only condition to satisfy inequalities (24) and (25) is to 

have a positive value of 0  (namely a high value). 

End Proof 

Remark 1. It can be noticed that V  is a negative function   3
0 1, , i       and it cancels 

when  0 10, 0,
T

i eqX       . Therefore, V  is a globally semi-negative definite func-

tion on 
3  and it is defined as a locally negative definite function of 

 3
0 10, 0,

T

i     . Consequently, with the defined Lyapunov function, a global con-

vergence of 
3  of the equilibrium point is proved. And a local asymptotic convergence 

of the algorithm has also been proven on  3
0 10, 0,

T

i     . The global asymptotic 

convergence of the algorithm could not be demonstrated using the LaSalle’s invariance 

principle. 

Remark 2. The convergence of the dynamic gains 0

*  and 1

*  is not guaranteed. As op-

posed to this, these dynamic gains change over time in a continuous way according to the 

imposed adaptation laws. Depending on the initial values of the differentiator gains, the 

dynamic gains have a bounded evolution for all simulation tests that are carried out. 

Remark 3. The behavior of the P2SMD is equivalent to the behavior of a bandpass filter 

for small values of a couple of gains  0 1,  . In fact, the setting  0 1,   is specified for 

the two possible cases: with noiseless signals and with a noisy signal. For the first case, if 

the gain values  0 1,   become high, then the convergence time of the algorithms be-

comes quick. For the second case, there is some compromise between the convergence 

time and the noise amplification rate. In fact, the linear terms  0,1i is i   defined by 

the  0 1,   gains are the key to smoother output differentiators compared to the basic 

scheme. Then, it is necessary not to choose values that are too high. 

2.3. Recursive Least Squares Estimator 

To track the imposed reference trajectories that excite the system dynamics of the 

robot manipulator, the inputs/outputs of this last one are sampled. For our case, a recur-

sive least squares (RLS) estimation method is used. Then, via the measurement of torques 

and positions of each joint, the root-mean-square residual error of the model is optimized. 

This error is the difference between the signal torque and its estimated value. Thereafter, 

a cost function resting on this error is used to obtain a parameter identification formula 

under the assumption that the measurement errors are negligible. The joint positions/tor-

ques are measured with a sampling period Te  and these data are collected with N sam-

ples over one period Te . We denote the kth sampling time as tk. These measurements can 

be used to obtain an over-determined set of equations [36]: 

   ˆ ˆ, ,W q q qt        (25)
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where ˆ,q q  and q̂  are vectors of joint positions, estimated velocities, and estimated ac-

celerations, respectively. 
 1n

t


   and 
 1n




   are vectors that represent a sam-

pling of the actual torques  and all terms caused by the modeling error, friction, and 

measurement noise, respectively. n is the number of equations and n is the number of 

parameters to be identified.   is supposed to have a zero mean and is serially uncorre-

lated. 
 n nW   is the observation matrix, which is a sampling of the regression H 

defined by (3). Then, t  and W  are defined as follows: 

1
... ;

Tn
t t t       

where:    1 ... ;
Tj

t j j N     

      

    

      

ˆ ˆ1 , 1 , 1

ˆ ˆ2 , 2 , (2)

.

.

ˆ ˆ, ,

j
H q q q

j
H q q q

j
W

j
H q N q N q N



 
 
 
 
 
 
  

 

 

 

 

where 
j
t and 

j
W  are the N equations of a subsystem j with N number of rows. 

      ˆ ˆ. , . , .
j

H q q q   is the jth row of the  n n matrix of the regressor given by Equa-

tion (3). 

Finally, the over-determined set of the equation system (25) is solved using the RLS 

estimator with a constant forgetting factor. 

Noise will limit the accuracy of parameters obtained by least squares and also the 

convergence rate of the RLS algorithm. To overcome such problems, the trajectory used 

in the identification process must be correctly chosen, which is called a persistently excit-

ing trajectory [45]. The parameter identification results rely on the well-conditioned re-

duced observation matrix and therefore to obtain a unique LS solution. The unicity of this 

solution directly depends on the rank of the observation matrix W . The rank loss of this 

matrix may occur in two cases: (i) where there is a structural issue of the parameter iden-

tifiability problem; (ii) where there is a data deficiency due to a lack of consideration of 

the sufficiency of trajectory excitation. To obtain such a trajectory, two methods are usu-

ally used: (i) compute the trajectory based on some optimization criteria [45]; (ii) use spe-

cial test movements done sequentially to excite each time some parameters. This special 

test consists of locking some joints while moving others. For our case, the generation of 

such test moves has been carried out, which is why the observation matrix is assumed to 

be a full-rank and well-conditioned matrix. For the identification experiment, the solution 

of Equation (25) may induce some bias, essentially due to the measurement noises. There-

fore, it is better to use data filtering to improve parameter estimations by the RLS method. 

3. System Application and Implementation of the Identification Procedure 

3.1. Application System: Robot SCARA 

The proposed identification scheme has been experimentally tested on the robot 

SCARA with 2-DoF without gravity and joints driven by synchronous motors with an 

absolute encoder (see Figure 2). The control law of the robot is validated via a Dspace 1104 

controller board with a dedicated digital signal processor. The different terms defined in 

Equation (4) can be described as follows [17], where the regression matrix is given by: 
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



 

(26)

with  2 2OC cos q  and  2 2OS sin q . The vector of unknown parameters’ vector is 

given by: 

 1 1 1 2 1 2 1 2 2 2

T

s sZZR F F ZZ LMX LMY F F    (27)

where 
2

1 1 2 1ZZR ZZ M L   
1L  is the length of body 1, 2M  is the mass of body 2, and 

iZZ

represents the inertia's moments of body i,  1, 2 .i   1 2L MX  and 1 2L MY  are the first mo-

ments of body 2 multiplied by the length of body 1, and 
1F , 

1sF , 2F , and 2Fs  are the 

viscous and dry friction parameters of both axes. 

 

Figure 2. System application: Robot SCARA with 2-DoF. 

3.2. Implementation of the Identification Procedure 

The different steps required to implement the identification procedure are summa-

rized as follows. (1) Make an adequate choice of the reference trajectory that must satisfy 

the persistency of excitation (PE) condition [44]. (2) Apply a controller for the system de-

fined by Equations (4), (26), and (27). (3) Estimate both the velocity and acceleration for 

each joint with the proposed algorithms (7)–(8) and (9). (4) Inject the estimate signals into 

the regression matrix W. (5) Initialize the parameter vector (27) and the covariance matrix 

 , 0, ..., 1P j Nj   . (6) Get the values of ˆ ˆ ˆ, , , ,q q q t t    at the time instant nTe. (7) Compute 

the nth estimate via  ˆ n , (8) Update the parameters of the estimation model. (9) Go to 

step 6. 

As indicated previously, the identification procedure is applied when the system op-

erates in a closed-loop due to its instability in an open loop. Closed-loop identification is 

operated with a PD feedback control as the system tracks a fifth-order polynomial trajec-

tory. The sampling frequency of the recording experimental data is equal to 200 Hz. 
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Excitation trajectory. The reference trajectory is computed to have a well-condi-

tioned observation matrix W [45]. To satisfy the PE condition having an excitation trajec-

tory refq , some conditions are imposed to define the polynomial trajectory as: 

     

   
   
   

 

; ;max max max

0 0

1, 2
0 0

0 0

q t q q t q q t qi i i i i i

q t q t ti i final
i

q t q t ti i final

q t q t ti i final

  

   


   

   









   

 

 

 (28)

where max max,q q , and maxq  are bounds on joint positions, velocities, and accelerations, 

respectively. As shown in Equation (28), the values at the start (t = 0) and endpoints (t = 

tf) are null. 

Data filtering. The PD controller is given by the following equation: 

 
 

 
 

ˆ00
1 11 11 1 1

0 0 ˆ2 2 22 22 2

K e K epr q qdr

KK q q q qpr drref ref

K Kq q q qpr drref ref







 

 
 

 

                            

  


 

 

 (29)

where Kpr and Kdr are positive definite diagonal matrices for the proportional and deriva-

tive actions, respectively. It is worth noting that the PD controller has no impact on the accu-

racy of the parameter identification because such a control scheme allows for a very small 

error. 

The measurements are performed on the test bench in order to collect both the joint 

position and torque data. However, these data may be noisy and biased due to bad sen-

sors, such as the quantization noise of the encoder. Then, to improve the accuracy of the 

parameter identification, a low-pass filter, e.g., the Butterworth filter, is used to treat data 

(inputs/outputs) online. This filter's cutoff frequency Ff  is set to 10F dynf f , where 

dynf  represents the estimated natural frequency of the robot. The filtered torques are 

shown in Figure 3. All filters are implemented in their discreet form with the same sam-

pling period of the control loop. 
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(a) Non-filtered torques 

 
 

(b) Filtered torques 

Figure 3. Curves of non-filtered and filtered torques. 

4. Experimental Results and Discussion 

Different algorithms will also be exposed in order to consider them as a comparative 

basis to evaluate the proposed identification approach. Direct and cross-validations are 

performed, and the results are discussed, with some criteria of performance metrics ana-

lyzed to show the role of the soft sensor-based differentiator used in the parametric iden-

tification loop. Therefore, our aim is to compare the practical parameter estimation by the 

proposed differentiator P2SMD with the estimations by the classic sliding mode differen-

tiator defined in Equation (4) (2SMD), the basic Euler differentiator (backward difference 

algorithm) associated with the FIR (finite impulse response) low-pass filter (ED+FIR), and 

a new scheme of the adaptive super twisting differentiator (ASTD) proposed by Shtessel 

[30]. This latter is described as follows: 

      
 

  

1 10 0

1
1

2 1 0 20 0 0 0 1

,

2

z yz y

k t
y sign e t zy k t e t sign e t z


 
 

      



 (30)

The sliding function e0(t) is defined in the first equation of Equation (8). k0(t) and k1(t) 

are positive gains, where 1 0( ) 2 ( )k t k t  and the dynamics of 0( )k t are given by: 

    
1
21

1 0 0 0 ,  0 2

0 0 0

, , , , and : positive constants1 0 1 0

sign e t if k k mk t

if k k m

k m


 



    

 




     





 (31)

For the experimental validation, an initialization step is necessary. For the RLS esti-

mator, the initial covariance matrix 0P  is arbitrarily chosen such that it is a diagonal ma-

trix. It is preferable that the values of the matrix coefficients are high in order to ensure 

fast convergence of the dynamic parameters. In practice, we have P0 = 100I1, where I1 is an 

identity matrix. The values of the gains are set to 0.951   and 12  . For the PD 
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controller, its gain values are selected as Kpr = [6.5 155]T and Kdr = [5 25]T. The setting of 

each differentiation algorithm is described in Table 1. 

Table 1. Parametric tuning of algorithms. 

Algorithm Settings 

ED+FIR 
The cutoff frequency of the FIR low-pass filter is a 10th-order FIR tuned 

to 5 Hz  

2SMD 10, 8, 50 1 2      

ASTD 1, 50, 0.1, 2, 1.5, 0.011 0 1 0k m           

P2SMD 

(proposed) 
25 200 1,     

It should be noted that the experiments were realized to measure the joint positions 

with an optical encoder. These position signals are affected by the quantization error. The 

velocities and accelerations estimated with the aforementioned differentiators are de-

picted in Figures 4 and 5. We observe from Figures 4a and 5a that the signals given for the 

velocities present low noise. On the other hand, the acceleration signals show amplifica-

tion of the noise level (Figures 4b and 5b). Moreover, the proposed algorithm presents the 

lowest noise level compared to the others. However, it must also be said that the signals 

estimated by the ASTD have a relatively long transient phase compared to the signals 

estimated by the other algorithms. In fact, if there is a change of setting to improve this 

transient phase, an increase in the level of the noise would then be recorded. Therefore, a 

delicate compromise exists with the adjustment of the ASTD. 

  

(a)  (b) 

  

(c)  (d) 
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(a’) (b’) 

  

(c’) (d’) 

Figure 4. Estimated velocities and accelerations: (a) Time evolution velocities for joint 1; (b) Time evolution accelerations 

for joint 1; (c) Time evolution velocities for joint 2; (d) Time evolution accelerations for joint 2. Zoom of estimated velocities 

and accelerations: (a’) Time evolution velocities for joint 1; (b’) Time evolution accelerations for joint 1; (c’) Time evolution 

velocities for joint 2; (d’) Time evolution accelerations for joint 2. 

4.1. Statistical Analysis and Comparison Criteria 

To correctly compare the estimated parameters obtained by the different differentiators, 

let us define the relative standard deviations can determine assuming the matrix W to be a 

deterministic one. From Equation (25),   is a zero-mean additive independent noise such 

that: 

TC E I    
   (32)

where I is an (n × n) identity matrix. The covariance matrix of the estimation error is cal-

culated by: 

   
1

ˆ ˆ( )ˆ ˆ
T T

C E W W   



    

  
 (33)

where 
2
ˆ ˆ ˆC
i ii


 

  is the ith diagonal coefficient of .ˆ ˆC


 The relative standard deviation 

ˆ%
i

  of ˆ
i is given by: 

ˆ
% 100ˆ ˆ

i

i i





 


 with 

ˆ 0.i   
(34)

Focusing on other quantitative elements for the comparative study is also considered. 

A root-mean-square (RMS) error for each estimated parameter is computed as a criterion. 

This error is given by the following expression: 
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 
1 2ˆ

ˆ
1

k
RMS i i

i N in

 


 


 (35)

where Nn is the number of samples and  ˆ, , 1,..8i i i    are the ith actual and estimated 

parameters, respectively. Good validation requires a good prediction of the torques of 

each joint. To quantify the quality of torque prediction, some criteria are calculated, such 

as the RMS error (RMSE) already defined in Equation (35), and the coefficient of determi-

nation, denoted by R2, is also computed to assess the strength of the linear relationship 

between the actual torques and the predicted ones. The formula used to calculate this co-

efficient is as follows: 

 2ˆ
2 11

2
1

1 1

Nn
i i

iR
N Nn n

i i
i iN n

 

 


 

 
 

 
 
 

 (36)

where Nn is the sample size and ˆ, ,i i   are the individual samples of the actual and the 

predicted torques, respectively, indexed with i. 

4.2. Results of Direct Validation 

Table 2 presents the parameters identified with the four algorithms as well as the a 

priori values of these parameters. The a priori values have been determined via measure-

ments made on the disassembled links. From Table 2, one can notice that, of all the differ-

entiation algorithms, the P2SMD has the lowest relative standard deviation for almost all 

the parameters. The deviations recorded for the frictions by the P2SMD are high but val-

ues remain lower than those given by the other algorithms. For example, for the dry fric-

tion 2vF , the value given by the proposed algorithm is 3.37 times lower than the ED+FIR 

value and more than 10 times lower than the ASTD value. In Figure 5, the maximum value 

ˆ%
i

  is presented for each algorithm. It is clear from this figure that the lowest value is 

given by the proposed algorithm. For each of the other algorithms, the maximum value 

of the relative standard deviation greatly exceeds 30%. 

 

Figure 5. The maximum value of the relative standard deviation (%) for each differentiator. 

If the values of ˆ%
i

  exceed 20% or 30%, then the parameters are misidentified [8]. 

In this research work, the authors suggest that the parameters which remain poorly iden-

tifiable must be canceled because their contributions to the system dynamics are poor. 

However, there are no statistical tests that prove the cancelation or not of such parameters. 
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However, we can conclude that the rather large ˆ%
i

 proves that the algorithm used 

presents more noise and allows the estimator to be biased. Thus, one can observe that, 

except for the friction parameters ( 1vF , 1sF , 2vF , 2sF ), the obtained outcomes are widely 

accepted values of ˆ%
i

 . Therefore, it is more interesting to consider them as parameters 

varying over time, which can enhance their identification. Table 3 provides the results 

concerning the RMS error corresponding to each identified parameter. The lowest RMS 

error values are described in bold; these lowest values are given by the proposed differ-

entiation algorithm. 

Table 2. Estimated parameters and the relative standard deviation values. High values are noted in bold. 

i  a Priori Values ED+FIR ˆ%
i

  2SMD ˆ%
i

  ASTD ˆ%
i

  P2SMD 

Proposed 
ˆ%
i

  

ZZ1R1 3.42 3.13 1.01 3.02 0.82 2.90 0.88 3.34 0.28 

Fv1 0.07 0.255 38.79 0.50 15.94  14.14 0.08 13.92 

Fs1 0.58 0.45 34.56 0.16 76.98 1.67 7.10 0.59 7.29 

ZZ2 0.064 0.058 1.44 0.061 1.25 0.05 2.82 0.063 0.81 

L1MX2 0.131 0.169 1.02 0.15 1.00 0.03 9.50 0.14 0.72 

L1MY2 0 0.038 4.33 0.031 4.88 - 0.06 4.03 0.018 5.2 

Fv2 0.015 0.0156 26.62 0.04 9.27 0.0099 70.09 0.028 7.88 

Fs2 0.156 0.0583 11.40 0.05 11.27 0.23 4.80 0.0789 5.0 

Table 3. RMS parameters errors. The lowest values are noted in bold. 

 ZZ1R1 Fv1 Fs1 ZZ2 L1MX2 L1MY2 Fv2 Fs2 

ED+FIR 1.3285 0.9907 1.5776 0.0627 0.2754 0.2203 0.7456 0.2356 

2SMD 1.1709 0.8036 1.1709 0.0479 0.2127 0.1559 0.5724 0.1981 

ASTD 2.1080 2.9089 5.3328 0.1763 0.5272 0.2034 1.8056 0.2949 

P2SMD (proposed) 0.2797 0.2291 0.3270 0.017 0.0703 0.0430 0.1683 0.0795 

The time evolution of the estimated parameters using the studied and proposed al-

gorithms is presented in Figure 6. Note from this figure that for the estimates provided by 

the ASTD, the time evolution of the parameters behaves in an oscillatory manner and has 

the highest transient phase. This adaptive form of the ST differentiator (ASTD) remains 

hard to adjust due to the large number of parameters required (six parameters) and the 

compromise that exists between the convergence speed, the noise level, and the accuracy 

of the algorithm. The evolutions of the estimated parameters obtained by the 2SMD and 

ED+FIR are quite close, although the 2SMD presents faster convergence with less over-

shoot for some parameters. With the proposed algorithm, the parameters are identified 

with the weakest transient phase and have the lowest overshoot. For some parameters, 

the estimated values converge to the a priori known values in 2 s. 
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Figure 6. Time evolution of the estimated parameters using the different differentiators. 

A direct validation is performed to test the model and to highlight its performance. 

The aim is to compare the actual torques with those estimated using the identified param-

eters (see Figure 7). Note that the predicted torques given by the ED+FIR are most affected 

by the noise (see Figure 7a). This is obviously because the velocity and acceleration esti-

mates for this differentiator are much noisier than for the other differentiators. It is also worth 

mentioning that all disturbances, such as noise, position quantization error, and quality of ve-

locity and acceleration estimations, remarkably affect the identification results. 

Figure 7b,c show that the identified model and measurements are close with less 

noise than the ED+FIR. From Figure 7d, it is clear that the predicted torques are very close 

to the measured ones for the P2SMD. This implies a good estimation of the parameters. In 

addition, the proposed algorithm is easier to adjust than the other algorithms. As noted 

in Table 1, the P2SMD presents only two parameters that need adjustment. Table 4 shows 

the RMS error and the R2 values yielded by each differentiation method, with the best 

values highlighted in bold. In general, the validation gives better results for the prediction 

of torque 1 than for the prediction of torque 2. Indeed, for torque 1, the values of R2 and 

RMSE are quite close for the ED+FIR, 2SMD, and ASTD algorithms. The value of R2 for 

each of these three algorithms is about 91%, while the corresponding value for the pro-

posed algorithm is 96%. The RMSE of the proposed algorithm is 1.5 times lower than those 

of the other algorithms. However, the results provided for torque 2 remain acceptable, 

with an R2 equal to 92%, 85%, 81%, and 72% for P2SMD, 2SMD, ED+FIR, and ASTD, re-

spectively. Thus, the R2 values obtained with the proposed method are very close to 1 but 

the RMSE values are lowest for both torques, which indicates that the fit between the ac-

tual and predicted signals is almost perfect; therefore, the model is reliable. It is important 

to mention that the other differentiators give an acceptable value of R2 since they exceed 

71%. However, the values of RMSE and R2 given by ASTD for torque 2 are the worst com-

pared with other methods. Although this algorithm has a good filtering rate, its estimates 

are less accurate. For a given system, the set of parameter estimates could be valid for any 

inputs/outputs. Therefore, validation must be carried out with another input/output da-

taset to provide a conclusion on the quality of the parameter identification step or torque 

prediction step. The next section presents the result of the cross-validation of the model. 
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Figure 7. Actual and predicted torques: direct validation through (a) ED+FIR, (b) the 2SMD algo-

rithm, (c) the ASTD algorithm, and (d) the P2SMD algorithm. 

Table 4. Results obtained for the direct validation in terms of R2 and RMSE. The best results are 

shown in bold 

 Torque 1 Torque 2 

 R2 RMSE R2 RMSE 

ED+FIR 0. 9122 2.9766 0. 8135 0.1770 

2SMD 0.9140 2.9510 0.8519 0.1672 

ASTD 0.9182 2.9018 0.7250 0.2207 

P2SMD (proposed) 0.9604 1.9776 0.9215 0.1093 

4.3. Results of the Cross Validation 

For the cross-validation, we use the same parametric setting of the PD controller. The 

parametric setting of the different algorithms also remains the same. Other exciting tra-

jectories different from those defined during the identification process are used. 
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Figure 8 shows the actual and predicted actuator torques. For torque 1, the cross-

validation yields relatively good results. The results are not as good for torque 2 compared 

to torque 1. This is explained by the fact that the dynamics of the new trajectory of torque 

2 is too different from that used for direct validation. Figure 8 indicates that the proposed 

method has the best performance and allows predicting the actuator torque with a good 

filtering rate. In general, algorithms based on sliding modes have some transient phases, 

but this remains weak, and all the algorithms quickly converge. It is possible to reduce 

this transient phase by increasing the gains of the algorithms. This is not a limitation for 

the proposed algorithm given that it presents a good level of filtering. The torque ripples 

can also be suppressed with a decimation procedure; this procedure is detailed in [22]. On 

the other hand, increasing the values of the gains tends to increase the noise level. Given 

the good filtering provided by the P2SMD, increasing the convergence gains will not pose 

such a challenge. Similar to the qualitative criterion for cross-validation via Figure 8, the 

quantitative criteria show good performance of the proposed algorithm. In fact, the 

P2SMD has the lowest values in terms of RMSE and the highest values for R2, see Table 5. 

Moreover, the R2 values are very close to 1, which shows that the model obtained makes 

it possible to correctly predict both torques. For torque 2, the results provided by the other 

algorithms are largely degraded especially for the ASTD. This is due to its high cumula-

tive imprecision, since the estimation of acceleration is done via two successive blocks of 

ASTD. 

Table 5. Results obtained for cross-validation in terms of R2 and RMSE. The best results are shown 

in bold 

 Torque 1 Torque 2 

 R2 RMSE R2 RMSE 

ED+FIR 0.9099 2.8556 0.6014 0.2758 

2SMD 0.8693 3.0320 0.5014 0.2976 

ASTD 0.8934 4.0341 0.0888 0.4553 

P2SMD (proposed) 0.9552 2.2530 0.8537 0.1862 

  

(a) 

  

(b) 
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(d) 

Figure 8. Actual and predicted torques: cross-validation through (a) ED+FIR, (b) the 2SMD algo-

rithm, (c) the ASTD algorithm, and (d) the P2SMD algorithm. 

5. Discussion 

The parametric identification of a nonlinear model and the prediction of the inputs 

based on the inverse model associated with a differentiation algorithm have been studied 

in this paper. Such an approach can circumvent the non-convexity problem to find a local 

solution. In fact, this study describes the key role of a soft sensor for this purpose with a 

basic RLS algorithm. It is well known that the RLS method can provide unbiased results 

due to inaccurate measurements of joint positions q at a high sampling rate and especially 

due to the bad-tuned filtering. In the previous research works, one associates the RLS 

method with a traditional Euler type differentiator with a filter. The challenge of such an 

LS estimator concerns the noisy observation matrix; thus, the filter cut-off frequency must 

be correctly chosen. An alternative solution to the conventional differentiator associated 

with a filter is the soft sensors based on SM differentiators, in which the differentiation 

and filtering take place in a parallel manner. Two SM algorithms (2SMD and ASTD) have 

been compared to the proposed P2SMD. The results indicate a significant difference be-

tween the three studied algorithms (ED+FIR, 2SMD, and ASTD) and the P2SMD algo-

rithm. The performance has been evaluated in terms of qualitative and quantitative crite-

ria. The qualitative criteria are based on the quality of the curve forms of the predicted 

torques compared with the actual ones and on the time evolution of the estimated param-

eters given for all soft sensors. The quantitative criteria are defined by some performance 

metrics, such as the relative standard deviations, the coefficient of determination R2, and 

the RMSE. For all these performance criteria, the results show the higher performance of 

the proposed soft sensor, which may be attributed to the quality of both the velocity and 

acceleration estimates. In fact, the performance likely depends on three factors: time con-

vergence, accuracy, and noise robustness of the differentiator. Despite the disturbances 

due to the position quantization error, the P2SMD algorithm has been found to behave 

faster and more accurately than the other sensors. Moreover, it has a high filtering rate 

compared to the other algorithms. Thus, the considered metric values almost do not 

change between the direct and cross-validations, which proves the effectiveness of the 

P2SMD. Furthermore, the gain adjustment of the proposed algorithm is easier to do com-

pared with other methods, and it is also easy to implement. In fact, only two parameters 

are necessary for this adjustment compared to three for the 2SMD and six for the ASTD. 
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The classic differentiator yields better results than the 2SMD and ASTD, but attention 

must be paid to its filter setting in order to avoid any distortion in the frequency range 

related to the closed-loop manipulator. In [45], the authors present an extended Kalman 

filter to identify the parameters of a 2-DoF manipulator such as the one used in this paper. 

With such a filter, it is not necessary to carry out any treatment on the measurement joint 

positions. However, the obtained results were very sensitive to the initial values. There-

fore, the extended Kalman filter requires good a priori knowledge of the initial parameters 

and takes a very long computing time compared to the proposed algorithm. It is important 

to highlight that for all the algorithms, the performance may be increased by incorporating 

a variable forgetting factor (FF) to correctly track the parameter changes. Specifically, for 

the parameters of viscous and dry friction, it is possible to optimize their identification using 

a value of FF that is smaller than 1, since these variables are non-stationary parameters. In fact, 

friction models are generally nonlinear. Thus, it is possible to use the separable least squares 

as presented in [46], where the dynamic model is divided into two sub-models. The first sub-

model contains all base parameters and the second one is a nonlinear model that defines the 

friction parameters. 

Our study is mainly applied on the SCARA robot with 2 DoF and no gravity effect. 

As shown in [46], it will be very interesting to validate our algorithm on a more complex 

robot (six degrees of freedom and with gravity effect) with a considerable number of pa-

rameters. 
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