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Abstract: The recovery of cerebral circulation during cardiopulmonary resuscitation (CPR) is im-
portant to improve the neurologic outcomes of cardiac arrest patients. To evaluate the feasibility
of an electroencephalogram (EEG)-based prediction model as a CPR feedback indicator of high- or
low-CBF carotid blood flow (CBF), the frontal EEG and hemodynamic data including CBF were
measured during animal experiments with a ventricular fibrillation (VF) swine model. The most
significant 10 EEG parameters in the time, frequency and entropy domains were determined by
neighborhood component analysis and Student’s t-test for discriminating high- or low-CBF recovery
with a division criterion of 30%. As a binary CBF classifier, the performances of logistic regression,
support vector machine (SVM), k-nearest neighbor, random forest and multilayer perceptron algo-
rithms were compared with eight-fold cross-validation. The three-order polynomial kernel-based
SVM model showed the best accuracy of 0.853. The sensitivity, specificity, F1 score and area under the
curve of the SVM model were 0.807, 0.906, 0.853 and 0.909, respectively. An automated CBF classifier
derived from non-invasive EEG is feasible as a potential indicator of the CBF recovery during CPR in
a VF swine model.

Keywords: electroencephalogram (EEG); carotid blood flow (CBF); cardiopulmonary resuscitation
(CPR); machine learning (ML); real-time feedback; classifier

1. Introduction

More than 74 out-of-hospital arrest (OHCA) patients per 100,000 people are treated by
emergency medical service in the United States every year [1]. Despite the improvement
of the cardiopulmonary resuscitation (CPR) protocol and equipment for decades, only 8%
of all OHCA patients survive with good neurological recovery. In practice, high-quality
CPR is the key to enhancing OHCA patients’ clinical outcomes, including brain function
recovery [2]. Multiple CPR feedback devices, which monitor compression depth, rate and
chest recoil in real-time, have been used in the clinical field [3]. However, to evaluate the
actual effectiveness of CPR, real-time monitoring of the patients’ physiologic data is highly
recommended [4].

The American Heart Association (AHA) guidelines suggest three hemodynamic data,
namely, end-tidal carbon dioxide (ETCO2), diastolic blood pressure (DBP) and coronary
perfusion pressure (COPP), as outcome predictors for the quality of CPR [5,6]. Monitor-
ing ETCO2 under endotracheal intubation is a widely used technique for CPR quality
assessment [5]. However, improper placement of the endotracheal tube might obstruct the
airway and lead to low ETCO2 levels [6]. DBP and COPP measurements are rarely possible
in an OHCA setting due to the difficult surgical and catheterization procedures for central
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venous cannulation. Most of all, these hemodynamic data are mainly related to the recovery
of the cardiac function or systemic circulation [6]. Maintaining sufficient blood flow to the
brain is also crucial to recover the neurological function of OHCA patients. Otherwise, the
resuscitated patients can suffer from neurological deficits [7]. Thus, monitoring techniques
for blood supply to the brain, such as carotid blood flow (CBF), are necessary.

Several methodologies have been suggested to monitor cerebral circulation. Tran-
scranial Doppler ultrasonography (TCD), which measures the velocity of cerebral blood
flow, showed the potential to estimate the cerebral perfusion pressure (CEPP) [8,9] and
was therefore applied to the resuscitated patients [10]. However, due to its bulky size and
the difficulty of placing the ultrasonic probe, the TCD technique is not appropriate for
the OHCA setting. Near-infrared spectroscopy (NIRS) technique also has been applied
in OHCA setting [11]. Higher regional oxygen saturation (rSO2) during CPR could fore-
tell ROSC, but does not necessarily mean brain function recovery [12]. As a simple and
convenient alternative, the electroencephalogram (EEG) has been proposed as an outcome
indicator for cerebral resuscitation and the recovery of brain activity. Non-invasive EEG
could be easily measured in an ambulatory setting with portable EEG devices. In this
manner, some EEG parameters, such as the bispectral index score, have been investigated
for CPR quality assessment [13]. Table 1 introduces several state-of-the-art CPR feedback
techniques. According to AHA consensus statement, CPR feedback techniques can be
categorized into a performance-oriented and a patient-oriented perspective [14].

Table 1. Various state-of-the-art CPR feedback techniques.

Category Method Measurement Characteristics

Performance-oriented
Accelero-meter Compression depth, rate

- Can guide exact compression depths and
rates with multiple audiovisual feedback
signals [3].

- Multiple devices are used, currently.
- Cannot reveal physiologic responses of

the patients [15].

Force sensor Chest recoil

Patient-oriented

Capno-graphy ETCO2

- Can reveal systemic circulation through
endotracheal intubation [5]

- Cannot reveal cerebral blood flow exactly
[16].

TCD Velocity of CBF

- Can evaluate cerebral blood flow
quantitatively [9]

- Might require an additional
measurement and be inappropriate in
OHCA setting [8].

NIRS rSO2

- Higher rSO2 could indicate ROSC [11]
- Favorable neurological outcomes are not

guaranteed [12].

EEG Cerebral electrical
activity

- Can reveal brain function recovery.
- Can be easily contaminated due to

external artifacts [13].

Abbreviation: ETCO2, end-tidal CO2; TCD, transcranial Doppler; OHCA, out-of-hospital cardiac arrest; NIRS, near-infrared spectroscopy;
CBF, cerebral blood flow; rSO2, regional oxygen saturation; ROSC, return of spontaneous circulation; EEG, electroencephalogram.

The former methods mainly observe how well CPR performance is performing [3],
while the latter methods, such as capnography, TCD and NIRS, mainly observe the pa-
tient’s physiologic responses to CPR [15]. Each patient-oriented method can monitor the
patient’s hemodynamic profile with its own strengths. However, those methods have
difficulty in evaluating the resultant neurologic responses to determine neurological re-
covery or sequelae. In this respect, monitoring cerebral electrical activity by non-invasive
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EEG can be advantageous. In the previous study [17], the frontal EEG was measured
without interrupting the operation of the CPR machine, and the relationship between the
recovery rates of CBF and non-invasive EEG parameters before defibrillation attempts
was investigated. We hypothesized that the CBF recovery might influence the brain cell
activation, and such changes could be reflected on the EEG activity such as awakening
or flattening [17,18]. Several time- and frequency-domain EEG parameters are positively
correlated to the recovery rates of CBF, which is closely related to brain blood flow [19].
Based on these findings, this study aimed to evaluate the feasibility of machine learning
(ML)-based estimation for high- and low- CBF recovery rates as a novel neurological CPR
quality indicator. A supervised learning method and statistical analysis were performed
to extract EEG parameters for the estimation model. Using these EEG parameters, five
different ML models were developed with an oversampling technique to overcome the
imbalance of training data and their classification performances were evaluated.

2. Materials and Methods
2.1. Ethical Statement

The animal test protocol was approved by the Institutional Animal Care and Use Com-
mittee of Seoul National University Hospital (IACUC number: 17-0106). All animal care
complied with the Laboratory Animal Act of the Korean Ministry of Food and Drug Safety.

2.2. Study Design and Setting

A ventricular fibrillation (VF) swine model was designed to acquire the frontal EEG
and hemodynamic data, including CBF [17]. This study assumed the scenario of a wit-
nessed OHCA, a situation wherein cardiac arrest is recognized immediately and bystanders
deliver manual chest compressions while waiting for the emergency medical team (EMT),
who applies defibrillation shocks and administrates epinephrine, to arrive [20]. After VF
was induced, the animals were left untreated for 1 min. Then, four consecutive 2-min
chest compressions, by which the bystanders regarded as basic life support (BLS), were
performed with the LUCAS2 Chest Compression System (Jolife AB, Lund, Sweden). At the
end of the BLS sessions, a biphasic defibrillation shock of 200 J was applied to restart the
heart. If a palpable pulse with organized QRS complexes appeared after the defibrillation,
the monitoring session for 20 min started to confirm the sustained return of spontaneous
circulation (ROSC) [12]. If a palpable pulse did not appear, or if VF occurred again during
the monitoring session, one cycle of chest compression with a regular injection of 1 mg of
epinephrine to increase the likelihood of ROSC once every 3 min [21], which is regarded
as advanced cardiovascular life support (ACLS) performed by EMT, was done. After the
single ACLS session, the defibrillation shock was also applied. A further ACLS cycle or
monitoring session was executed according to the test protocol. Non-ROSC was confirmed
if sustained ROSC was not achieved after the 10th ACLS session. The entire study design
is shown in Figure 1.

2.3. Experimental Animal and Housing

Approximately 3 month-old domestic cross-bred female pigs (45.6 ± 2.4 kg) were
studied (n = 8). The animals were maintained in a facility accredited by AAALAC Interna-
tional (#001169) in accordance with the Guide for the Care and Use of Laboratory Animals,
8th edition, NRC (2010) [22]. After a certified veterinarian adjudged them as healthy, the
animals were made to fast overnight.
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Figure 1. Flow chart of the study design [17]: After the initial experimental setup was completed
(Step 1), VF was induced and an animal was left untreated for 1 min (Step 2). Four consecutive
2−minute BLS sessions were performed by the bystanders (Step 3). The EMT was supposed to arrive
at the site and ECG was checked (Step Q1). If ECG was shockable, a biphasic defibrillation shock of
200 J was applied by the EMT (Step 4-1). Otherwise, an additional BLS session was performed (Step
4-2) and ECG was checked again (Step Q1). If ROSC occurred after the defibrillation attempt (Step
Q2), the monitoring session was initiated (Step 5) and sustained ROSC was confirmed if ROSC lasted
for 20 min (Step Q3→ Step 6). However, if ROSC did not occurred (Step Q2) or VF occurred again
during the monitoring session (Step Q3), ACLS sessions for 2 min with an injection of epinephrine
were performed up to 10 times (Step Q4, 7). If ROSC occurred (Step Q2), the monitoring session was
initiated (Step 5). Otherwise, an additional ACLS session was performed (Step Q4, 7). Non-ROSC
was confirmed if sustained ROSC was not achieved after the 10th ACLS session (Step Q4→ Step 6).

2.4. Surgical Preparation and Hemodynamic Measurements

The sedated animals were intubated and a carbon dioxide (CO2) analyzer (Capstar-
100, CWE Inc., Ardmore, PA, USA) was installed to measure the continuous CO2 before
the initialization of mechanical ventilation. An implantable perivascular probe (MA2PSB,
Transonic Systems, Ithaca, NY, USA) and a single-channel perivascular flowmeter (T420,
Transonic Systems, Ithaca, NY, USA) were utilized to measure the CBF in the ascending
internal carotid artery. Pressure catheters (Mikro-tip pressure catheters, Millar, Houston,
TX, USA) were inserted to measure the arterial blood pressure (ABP) and right arterial
pressure. All hemodynamic data were gathered and saved in a data acquisition platform
(PowerLab 16/35, ADInstruments, Dunedin, New Zealand).

A pace-making wire was inserted into the right ventricle to induce VF. Once VF
occurred, mechanical ventilation was ceased and the animals were left without assistance
for 1 min. Manual ventilation using a resuscitator bag (Ambu Resuscitators, Ambu A/S,
Ballerup, Denmark) was performed at a rate of once per 6 s, a recommended ventilation rate
for an intubated animal [23], while CPR and defibrillation attempts were being executed.
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2.5. EEG Signal Acquisition

A lab-developed battery-powered single-channel EEG device with Ag/AgCl elec-
trodes (MT-100, Kendall, Ontario, Canada) was installed on the forehead to measure the
frontal EEG under the referential montage [17]. Reference and ground electrodes were
attached on either side of the mastoid. An active electrode underneath the EEG device was
affixed on the forehead. The raw EEG was bandpass-filtered for the 0.5−47 Hz frequency
band and amplified with a gain of 12,000 v/v. The processed signal was digitized with
the analogue-digital conversion process at a rate of 250 Hz and transmitted to a laptop
via Bluetooth. The developed data acquisition software received and saved the EEG data
simultaneously. The EEG during approximately 3-s-long pauses was segmented into
three 2-s-long sub-epochs with 1.5-s overlaps to reduce variation; 0−2 s, 0.5−2.5 s and
1−3 s period.

2.6. Development of Machine-Learning Based Prediction Model

A data analysis and ML model development were performed using MATLAB (MAT-
LAB R2020a, Mathworks, Natick, MA, USA). The recovery rates of CBF were determined
with respect to the pre-arrest values (Equation (1)). The measured recovery rates of CBF
were categorized into two groups: Group 0 with recovery rates less than 30%, and Group 1
with recovery rates equal to or greater than 30%. The recovery rate of 30% was set because
30−40% of normal cerebral blood flow could be the threshold for the recovery of the brain
function and the flattering of the EEG [24]. The numbers of EEG epochs with CBF recovery
groups are shown in Table 2. The epoch number of each experiment depends on when
ROSC occurred in the test protocol (baseline, VF, 4 BLS and 10 ACLS). For example, ROSC
occurred at the end of BLS sessions in animal 6 while animal 2 and 5 were not resuscitated
until the 10th ACLS session, which led to a different number for each animal.

Recovery rates (%) = (CBF during the specific CPR period/baseline CBF before VF) * 100 (1)

Table 2. Number of EEG epochs with CBF recovery groups.

CBF Recovery
Degree Class

Amount of Acquired Data in Each Experiment

Test Number 1 2 3 4 5 6 7 8 Total

Lower (<30%) group 0 0 40 0 0 44 0 2 33 119
Higher (≥30%) group 1 15 1 28 12 1 14 35 0 106

All Total amount 15 41 28 12 45 14 37 33 225

Abbreviation: CBF, carotid blood flow.

Initially, a total of 20 EEG parameters were prepared as candidate inputs for the
prediction models. Three parameters (Magnitude, Rényi entropy, Log energy entropy),
which showed a correlation coefficient of over 0.7 with the recovery rates of CBF in the
previous study [17], were included. The final EEG parameters were selected in two
stages. First, optimal candidate parameters for binary groups were determined through
neighborhood component analysis (NCA) [25]. As a supervised learning method, NCA
finds a linear transformation of input data and learns a distance metric. With such distance
information, multivariate data are classified into a certain class over the data to maximize
the classification performance. NCA can be utilized to select the most significant parameters
of the EEG signals with feature ranking. Then, Student’s t-test was performed to find
parameters that significantly differed between the two groups. The significance was set at
p < 0.05.

The prediction models were established using three classical classifiers (logistic regres-
sion (LR), support vector machine (SVM) and k-nearest neighbors (KNN)), one graphical
model (multilayer perceptron (MLP)) and one ensemble model (random forest (RF)), with
EEG parameters as inputs and binary CBF groups as output. LR is a statistical model
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which uses a logistic function and estimates the probability of a certain class between
binary variables [26]. For the LR model, the generalized logistic model using the binomial
distribution was used. SVM is a supervised learning method that separates data with multi-
dimensional hyperplanes to classify them into a certain class [27]. For the SVM model, the
three-order polynomial kernel function with auto kernel scale and box constraint of 1 was
applied. KNN is a non-parametric method that finds the number of nearest neighbors and
classifies the data into the distinct class based on a similarity measure [28]. For the KNN
model, the Euclidean method with the squared inversed weights was applied to measure
distances between the data instances. A total of 9 neighboring data were investigated to
classify each instance into one of the two CBF groups. RF uses multiple learning meth-
ods to achieve better prediction ability. It establishes a multitude of decision trees and
classifies the data into a certain class by voting or averaging the outputs of the forests of
decision trees [29]. An ensemble aggregation method with random subspace was used
for the RF model. The number of ensemble learning cycle was 30. MLP is a feedforward
artificial neural network composed of one or multiple layers of perceptron, a supervised
learning algorithm of binary classification. It utilizes the backpropagation technique, a
supervised learning method, for training and can distinguish data that are not linearly
separable [30]. The MLP model with 10 hidden layers and scaled conjugated gradient
backpropagation method was obtained. For all models, 5-fold cross validated classifiers
were created. Before establishing the prediction models, bias problems due to imbalanced
training data were resolved by augmenting the minority class with the synthetic minority
oversampling technique (SMOTE), one of the most widely used oversampling techniques,
which generates new synthetic data along the lines between randomly selected instances
in the minority class [31]. Figure 2 shows the total developmental stages of the prediction
models. The performance of the classifiers was evaluated with the leave-one-out of cross
validation method. Each classifier model was established by merging data from seven of
the eight animal data. The model performance was evaluated using the remaining data.
The process was repeated eight times, and each classifier’s performance was averaged over
eight animals.

Figure 2. Total developmental stages of the prediction models; from animal experiments to performance evaluation: the
frontal EEG and CBF data were acquired during the process of CPR. CBF recovery rates were calculated and categorized
into two groups with a division criterion of 30%. Time- and frequency-domain EEG parameters and entropy endices were
determined. The top 10 significant EEG parameters were selected through the NCA and Student’s t-Test. An EEG-based
binary classifier for CBF recovery was established based on LOOCV and SMOTE methods. Finally, the performances of
prediction models were evaluated with the confusion matrix and ROC curve.
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2.7. Performance Evaluation

Confusion matrices were derived to evaluate the performance of the developed models.
True positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) were
determined with the confusion matrix. The ground truth was established based on the
actual CBF recovery rates and were categorized into the two groups, shown in Table 2. TP
is the proportion of the known positive instances that are correctly predicted, and TN is
the proportion of the known negative instances that are correctly predicted. FP and FN
represent the proportion of the incorrect positive and negative predictions, respectively. As
primary evaluation metrics [32], the accuracy, sensitivity and specificity were calculated
as follows.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (2)

Sensitivity = TP/(TP + FN) (3)

Specificity = TN/(TN + FP) (4)

For the second metric, the F1 score [33], the harmonic mean of precision (TP/(TP +
FP)) and recall (TP/(TP + FN), also known as sensitivity) is derived as follows.

F1 score = 2 * (precision * recall)/(precision + recall) (5)

Additionally, a receiver operating characteristic (ROC) curve and area under the curve
(AUC) were obtained with SPSS (IBM SPSS Statistics 25, IBM SPSS Statistics, New York, NY,
USA) to evaluate the classification ability of the models while the discrimination threshold
was varied. The ROC curve is created by plotting the true positive rate ((TP/(TP + FN),
also known as sensitivity) against the false positive rate ((FP/(FP + TN), also known as
(1—specificity)) at different threshold levels. The AUC is defined as the area under the
ROC curve.

3. Results
3.1. EEG Changes throughout the Experiments

Distinctive EEG changes were observed in the test protocol. Time-domain EEG
waveforms and frequency responses measured from animal 1 are shown in Figure 3. Before
VF, the amplitude of irregular EEG activity exceeded±20 µV (Figure 3a). Once VF occurred,
the amplitude dropped in approximately 15 s and became less than <±5 µV at the end
of untreated VF (Figure 3b). During CPR sessions, periodic motion artifact exceeding
±50 µV were observed (Figure 3c). Frequency components associated with the rate of
CPR dominated the power spectrum (Figure 3g). However, EEG activity with higher
amplitude and increased frequency components was observed after the 1st ACLS session
(Figure 3d,h).
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Figure 3. EEG changes in animal 1: (a) irregular baseline EEG activity before VF, (b) isoelectric EEG pattern during untreated
VF, red dotted lines denote the limits of the isoelectric state (±5 µV), (c) severely contaminated signal during CPR, (d)
recovered EEG activity after the 1st ACLS, (e) frequency response of the baseline EEG before VF, (f) frequency response of the
isoelectric EEG during untreated VF, (g) frequency response of CPR artifacts, red marks denote the frequency components of
CPR artifacts, (h) frequency response of the EEG after the 1st ACLS, a black dotted line in (f−h) is the frequency responses
of the baseline EEG (e).

3.2. EEG Parameters for Modeling

A total of 10 EEG parameters were selected through NCA and Student’s t-test. The
feature ranking was determined after the NCA, but parameters with p over 0.05 were dis-
carded after the Student’s t-test regardless of the ranking. The top 10 significant parameters
were finally adopted for the modeling process. Table 3 summarizes the feature selection
process. In total, a time-domain parameter (Magnitude), six frequency-domain parameters
(DeltaR, DAR, DTABR, DeltaPR, BcSEF and BG_Alpha+) and three entropy indices (Spec-
tral entropy, Rényi entropy and Log energy entropy) were used in the modeling process. It
is noteworthy that three parameters (Magnitude, Rényi entropy and Log energy entropy)
consistently showed a correlation coefficient greater than 0.7 with the recovery rates of CBF
in the previous study [17]. The parameters’ information, including definitions, medians
and interquartile ranges between groups, are shown in Table 4.

Table 3. The result of feature selection process among 20 EEG parameters.

EEG Parameters Definition NCA Feature Ranking p-Value Result of Selection

BSR Burst suppression ratio 18 <0.001 Excluded

Magnitude Maximal amplitude during the
epoch(unit: µV) 11 <0.001 Selected

SynchFastSlow Relative synchrony of fast and slow wave 17 0.264 Excluded

BetaR log(P20–47 Hz/P11–20 Hz) 4 0.864 Excluded after
Student’s t-test

DeltaR log(P8–20 Hz/P1–4 Hz) 5 <0.001 Selected
DAR log(P1–4 Hz/P8–13 Hz) 7 <0.001 Selected

DTABR log(P1–8 Hz/P8–30 Hz) 6 <0.001 Selected

BcSEF Burst suppression ratio-compensated
spectral edge frequency 95 1 <0.001 Selected
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Table 3. Cont.

EEG Parameters Definition NCA Feature Ranking p-Value Result of Selection

ExtraPR P40–47 Hz/P1–47 Hz 19 0.675 Excluded
AlphaPR P8–13 Hz/P1–47 Hz 12 0.439 Excluded
BetaPR P13–30 Hz/P1–47 Hz 16 <0.001 Excluded
DeltaPR P1–4 Hz/P1–47 Hz 3 0.014 Selected
ThetaPR P4–8 Hz/P1–47 Hz 15 <0.001 Excluded

GammaPR P30–47 Hz/P1–47 Hz 13 0.001 Excluded
Shannon
entropy (−1) ∗

n
∑

k=0
(p(xi)∗ log(p(xi))) 14 0.607 Excluded

Log energy
entropy

n
∑

i=1
log(p(xi))

2 10 <0.001 Selected

Spectral
entropy

n
∑

i=1
p(xi) log(1/p(xi)) 2 0.013 Selected

Rényi
entropy 1/(1− α)∗ log(

n
∑

i=1
p(xi)

α), (α = 0.5) 8 <0.001 Selected

Ratio05 Percentage of data whose amplitude is
under ±5 µV 20 <0.001 Excluded

BG_Alpha+ P8–47 Hz/P1–47 Hz 9 <0.001 Selected

Abbreviation: NCA, neighborhood component analysis; Pa-b Hz, the sum of spectral power from a−b Hz; p(xi) , probability distribution
function of signal xi , probability distribution function of signal xi .

Table 4. Final 10 EEG parameters used to establish the prediction models; definition, median, interquartile range and
p-value.

EEG Parameters Definition
Median (IQR)

p-Value
Group 0 Group 1

Magnitude Maximal amplitude during the epoch
(unit: µV)

4.08
(2.52 14.28)

18.55
(15.72 22.29) <0.001

DeltaR log(P8–20 Hz/P1–4 Hz) 0.00
(−0.30 0.31)

0.25
(−0.08 0.72) <0.001

DAR log(P1–4 Hz/P8–13 Hz) 0.20
(−0.10 0.49)

−0.07
(−0.42 0.36) <0.001

DeltaPR log(P1–4 Hz/P1–47 Hz) 0.28
(0.17 0.41)

0.20
(0.08 0.41) 0.014

DTABR log(P1–8 Hz/P8–30 Hz) 0.18
(−0.10 0.45)

−0.06
(−0.31 0.21) <0.001

BcSEF Burst suppression ratio-compensated
spectral edge frequency 95

0.00
(0.00 19.50)

27.0
(22.0 30.0) <0.001

BG_Alpha+ P8–47 Hz/P1–47 Hz
39.90

(26.54 55.94)
54.53

(39.07 67.68) <0.001

Spectral entropy
n
∑

i=1
p(xi) log(1/p(xi))

0.78
(0.76 0.80)

0.79
(0.77 0.81) 0.013

Rényientropy 1/(1− α)∗ log(
n
∑

i=1
p(xi)

α), (α = 0.5)
6.93

(5.57 9.06)
9.83

(9.20 10.11) <0.001

Log energyentropy
n
∑

i=1
log(p(xi))

2 −241.24
(−1014.8 729.0)

1122.30
(836.8 1304.1) <0.001

Abbreviation: IQR, interquartile range; Pa–b Hz, the sum of spectral power from a−b Hz; p(xi)

3.3. Performances of Prediction Models

Prediction models were derived based on the different ML and neural network algo-
rithms. During the training time, SMOTE was applied to overcome the data imbalance
issue. The result of the SMOTE application is shown in Figure 4.
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Figure 4. An oversampling example by SMOTE application: (a) Before applying SMOTE, (b) After
applying SMOTE.

Of the 10 EEG parameters, Log energy entropy and DeltaPR are presented on a
scatterplot as examples. In the original dataset, the number of majority class, group 0 (blue
circle markers, n = 117), is approximately twice the number of minority class, group 1 (red
circle markers, n = 71). After SMOTE was applied, newly augmented data instances (black
diamond markers, n = 71), were introduced to the minority class (group 1). The sample size
of group 0 and group 1 became comparable (n = 117 vs. n = 114) and prediction models were
established with the augmented dataset. Figures 5 and 6 present the confusion matrices
and the ROC curve of the prediction models, respectively. The overall performance is
summarized with six evaluation indices in Table 5. The accuracy ranged from 0.813 to
0.853, while the sensitivity ranged from 0.689 to 0.807 and the specificity ranged from 0.877
to 0.953. The precision ranged from 0.880 to 0.943 and the F1 score ranged from 0.796 to
0.853. In terms of accuracy, the 3-order polynomial kernel-based SVM model showed the
best performance. Furthermore, all five classifiers showed high AUC values of over 0.9.

Figure 5. Confusion matrices of classifier models: (a) LR, (b) SVM, (c) KNN, (d) RF, (e) MLP.
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Figure 6. The ROC curves and AUC values of classifier models: (a) LR, (b) SVM, (c) KNN, (d) RF, (e) MLP.

Table 5. Performances of prediction models with the different algorithms.

Performance LR SVM KNN RF MLP

Accuracy 0.840 0.853 0.813 0.827 0.836
Sensitivity 0.782 0.807 0.689 0.748 0.798
Specificity 0.906 0.906 0.953 0.915 0.877
Precision 0.903 0.906 0.943 0.908 0.880
F1 score 0.838 0.853 0.796 0.820 0.837

AUC 0.933 0.909 0.934 0.915 0.924
Abbreviation: LR, logistic regression; SVM, support vector machine; KNN, k-nearest neighbor; RF, random forest;
AUC, area under the curve; MLP, multilayer perceptron.

4. Discussion
4.1. EEG Parameters and Classification Model of Performances

In this study, ML-based prediction models of CBF recovery using non-invasive EEG
parameters were investigated as potential indicators of the recovery of CBF during CPR in
a VF swine model. Certain levels of cerebral circulation should be achieved to maintain the
metabolism of brain cells and to expect recovery of consciousness and brain function [24].
Currently, OHCA patients are routinely treated according to the guidelines, mainly focused
on the recovery of the cardiopulmonary function [5,6]. In such a situation, monitoring
systemic circulation might be possible with continuous ETCO2 measurement. The ETCO2
levels are greatly affected by changes in cardiac output (CO) under the prolonged low-flow
condition. However, ETCO2 might not reflect cerebral blood flow because CO does not cor-
relate with cerebral blood flow [16]. Along with the conventional ETCO2 measurement, the
requirement of new techniques for monitoring cerebral circulation has been suggested [18].

Several non-invasive methodologies have been studied to measure cerebral hemo-
dynamics. Especially, TCD methods have been reported to estimate CEPP [8]. Despite
competitive performance, however, these techniques might not be applicable to the out-
of-hospital CPR setting due to the difficulty in finding the vessels and placing the probe
correctly on patient’s head, as well as due to the invasive procedure for ABP measurement.
NIRS techniques have been used to measure the quality of CPR by measuring rSO2, which
can be an indicator of the occurrence of ROSC [11]. Even though rSO2 can directly show the
cerebral oxygenation levels, it can be distorted from extracranial blood flow [34] and might
represent systemic circulation rather than cerebral circulation during CPR [35]. In addition,
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the relationship between higher rSO2 levels and favorable neurological outcomes remains
unclear [11]. In this respect, non-invasive EEG can be an alternative. Basically, the EEG
signal represents the functional dynamics of the brain cells. Different levels of amplitude,
distribution of frequency components and entropy indices of the EEG are affected by the
blood flow throughout the brain [36,37]. Moreover, a portable EEG device is small and
lightweight, which enables EMTs to easily bring and apply the device to OHCA patients.
The automated prediction model of the CBF recovery is beneficial because it does not
require skillful operation or additional measurements. However, the EEG signal is prone
to external artifact resulting from the mechanical chest compressions during CPR. To avoid
such unfavorable effect, the prediction model only exploited an artifact-free EEG signal
measured during approximately 3-s-long pauses before defibrillation attempts [17]. All
the selected EEG parameters significantly differed between the two groups. For the time-
domain parameters, the Magnitude showed bigger amplitudes in group 1, which indicates
that more wakeful EEG patterns appeared under the improved blood flow [13]. For the
frequency-domain parameters, the higher frequency components over 8 Hz increased,
while the lower frequency components decreased in the high-CBF group [17]. DeltaR, DAR
and DTABR, which compared the lower and higher frequency bands, consistently reflected
such trend. Furthermore, DeltaPR decreased in the high-CBF group. These four parameters
contain the delta components (1−4 Hz).

It is known that the power decrease in the delta band is related to the conscious
recovery [38]. Such a change can be utilized in cerebral circulation assessment during
CPR. Simultaneously, BcSEF consistently showed higher values in the high-CBF group.
The spectral edge frequency (SEF), a classical parameter that refers to the frequency below
which 95% of the total spectral power is occupied, has been used to measure the depth
of anesthesia and sedation [39]. As the higher frequency components increased, the
power spectrum was re-distributed toward higher frequencies, which led to an increased
SEF [39]. In this study, the burst suppression ratio (BSR)-compensated SEF (BcSEF), defined
as (1—BSR/100), was applied instead of an original SEF. BSR was excluded due to its
low feature ranking, but, it showed the highest value of 100 mostly in low-CBF group,
which induced a zero-level BcSEF. Thus, a stark difference was observed in this parameter
between the two groups. The increased spectral complexity levels were also found with
three entropy indices in the high-CBF group. By exploiting these differences in the EEG
parameters between the two CBF groups, the proposed prediction models achieved AUC
values of at least 0.909, which indicates a high classification performance [40]. In this study,
three types of classifier models, including classic classifiers (LR, SVM and KNN), a graphical
classifier (MLP) and an ensemble classifier (RF), were implemented and compared. The
SVM model based on a polynomial kernel function showed the best result, but the other
models also showed competitive performance with an AUC of over 0.9.

4.2. Clinical Implication and Limitations

Currently, several evaluation scoring systems, such as the cerebral performance cate-
gory (CPC), are used during post-resuscitation treatment [41]. To our knowledge, there are
no reports of feedback indicators for cerebral recovery during CPR. When a low CBF level
is diagnosed in OHCA patients, EMTs could alter CPR strategies to increase blood supply
to the brain, which makes early recovery of the brain function possible, for example, by
injecting epinephrine [21] or guiding the Trendelenburg position [42]. If the EEG change
during CPR is closely related to CBF recovery, the neurological outcomes of patients with
cardiac arrest can be estimated noninvasively during CPR. Follow-up studies involving real
patients should be warranted. The proposed EEG parameters and ML model development
process such as an oversampling method or hyperparameters can be a good starting point
for the follow-up clinical studies. Further studies can include a regression approach to
estimate quantitative CBF recovery rates with a sufficient number of patients.

This study had several limitations. First, the prediction model was established and
evaluated with a limited size of eight animals. The proposed prediction model should be
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regarded as preliminary, and its performance should be evaluated after further human
clinical trials. Second, the VF duration of 1 min is short because this study assumed a
witnessed OHCA setting. If the untreated VF duration becomes longer, minimal or no
recovery of the EEG activity could be achieved. The EEG parameters obtained from the
various VF durations should be scrutinized to establish a more practical classifier model.

5. Conclusions

In an experimental VF swine model, ML-based prediction models of CBF recovery
using EEG parameters were developed to estimate the status of cerebral circulation during
CPR. The proposed models classified the binary groups of the recovery of CBF with an
accuracy of 0.834, a sensitivity of 0.765, a specificity of 0.911 and an AUC of 0.923, on
average the results showed that non-invasive EEG-based automated screening of CBF
recovery has the potential for real-time feedback of cerebral circulation during CPR.
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