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Abstract: Recent advances in nanomaterials technology create the new possibility to fabricate high
performance sensors. However, there has been limitations in terms of multivariate measurable
and interoperable sensors. In this study, we fabricated an interoperable silver nanoparticle sensor
fabricated by an aerodynamically focused nanomaterial (AFN) printing system which is a direct
printing technique for inorganic nanomaterials onto a flexible substrate. The printed sensor exhibited
the maximum measurable frequency of 850 Hz, and a gauge factor of 290.62. Using a fabricated
sensor, we evaluated the sensing performance and demonstrated the measurement independency of
strain and vibration sensing. Furthermore, using the proposed signal separation algorithm based
on the Kalman filter, strain and vibration were each measured in real time. Finally, we applied the
printed sensor to quadrotor condition monitoring to predict the motion of a quadrotor.

Keywords: interoperable sensors; nanoparticle sensors; strain and vibration monitoring; strain gauge;
drone motion monitoring

1. Introduction

A sensor is a key enabler for the process or condition monitoring and optimization for
an overall machine [1–3]. Data obtained by sensors and real-time feedback to a mechanical
system enable the direct benefits for the quality and performance of the end-product.
Hence, previous research related to sensor technologies have focused on expanding the
physical quantity that can be measured and improving the performance of the sensor
itself [4–8].

Especially, there have been several efforts to fabricate highly sensitive strain sensors
using metal nanoparticles (NPs) [9–13]. Using the current transport mechanism based on
current tunneling between nanogaps between NPs, drastic contact resistance change was
available according to physical quantity to be measured [14–18].

According to Figure S1 and Table S1 (Supplementary Materials), it has been confirmed
that existing studies have limitations in both high sensitivity and a measurable range.
Furthermore, the study was not only insufficient but also limited in terms of high perfor-
mance for a multivariate measurable sensor [19,20]. In the case of strain sensors, several
researches on sensors with high sensitivity or a wide measurable range have been reported
while other physical quantities such as vibration and temperature cannot be measured
simultaneously [21–27].

This research has focused on the development of an interoperable sensor capable of
strain and vibration sensing without the decrease of each sensing performance. Using an
aerodynamically focused nanomaterial (AFN) printing system which is a direct printing
technique for inorganic nanomaterials onto a flexible substrate in low vacuum and room

Sensors 2021, 21, 3648. https://doi.org/10.3390/s21113648 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7354-4736
https://www.mdpi.com/article/10.3390/s21113648?type=check_update&version=1
https://doi.org/10.3390/s21113648
https://doi.org/10.3390/s21113648
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113648
https://www.mdpi.com/journal/sensors


Sensors 2021, 21, 3648 2 of 10

temperature conditions, a conductive pattern composed of porous NPs was fabricated in
several tens of micrometers scale [28]. Then, the sensing performance of the fabricated
sensor was evaluated and real-time measurement independency of strain and vibration
using proposed signal processing technique was validated. Finally, real-time quadrotor
motion prediction was conducted using the data from the printed sensor.

2. Materials and Methods
2.1. Materials

We used Kapton polyimide film as an adhesive substrate to attach on a certain level
of free-form surface and silver nanoparticles (576, 832, <100-nm diameter, Sigma-Aldrich,
Saint Louis, MO, USA) as printing materials. The printing process is occurred by mechani-
cal movements of substrate driven by multi-axis stage (SGSP20, Sigma Koki, Japan) with a
velocity of 0.2 mms−1 which is controlled by LabVIEW 2015 and NI USB 6009 modules
(National Instrument, Austin, TX, USA). The AgNPs erupted from a nozzle with an inner
diameter of 150 µm (Taeha Co., Korea). After a wiring and soldering process using silver
paste (conductive paste, 735,825, Sigma-Aldrich, Saint Louis, MO, USA) at the tip of printed
line pattern, UV curable adhesives (UV-3300, Skycares Co., Gimpo, Korea) are wrapped for
electrical insulation and mechanical protection from external stimulation.

2.2. Sensor Direct Printing

Figure 1a,b shows a schematic diagram of the AFN printing system and its process,
respectively. The AFN printing system includes a vacuum chamber, nozzle, and nanomate-
rials feeder to generate an aerosolized nanoparticle beam. Using successive repetition of
excitation and purging of aerosolized nanoparticles, aerosolized nanomaterials are aerody-
namically focused when they erupt from the AFN system and directly accumulated on to a
substrate governed by drag force, Saffman’s lift force, and centrifugal force [25].
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Figure 1. (a) Schematic diagram of the aerodynamically focused nanomaterial (AFN) printing system. (b) Schematic
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pattern. (f) Nanoparticle packing ratio with respect to the scan velocity. (g) Relative electrical resistance with respect to the
scan velocity.
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Since it does not require any post-process include chemical etching and heat treatment,
it is an environmentally friendly process with a high degree of freedom in design and
manufacturing. It is especially suitable for the fabrication of a microscale porous pattern
which could be applied to highly sensitive sensor fabrication. Furthermore, patterns could
be reconfigured or repaired according to needs, which defeat the limitations of conventional
processes such as photolithography or laser ablation.

Aerodynamic focusing is administered by evacuation of compressed air and time-
scaling of excitation, optimizing process parameters is important to fabricate patterns as
desired. A high upstream pressure tends to drop off Saffman’s lift effect when focusing
the nanoparticles inside the nozzle and reduces the relaxation time, thus augmenting the
nanoparticle beam in downstream of the nozzle. Hence, an excitation time of 10 ms and
purging time of 90 ms remained for the process while the source pressure and chamber
pressure were maintained at 1000 and 400 Pa, respectively.

Figure 1c,d shows the optical microscope image and the scanning electron microscopy
(SEM) image of the fabricated sensor obtained by charge-couple device (CCD) cameras (EO-
0813C, Edmond Optics, USA) and field-emission scanning SEM (AURIGA60, Carl Zeiss
AG, Germany), respectively. The printed sensor has a porous structure of NPs inside the
triangular shape of the cross section of the strip, which enables highly sensitive properties
of sensor due to the drastic variance of resistance occurred by mechanical detachment
among NPs. In comparison to conventional metal foil strain gauge, it was demonstrated
that several micrometers strain can be measured by an AFN printed sensor in a previous
study [29,30].

According to the previous study, it was demonstrated that the packing ratio of the
pattern, which is defined as the volume ratio of printed nanoparticles to the surface border
of the pattern, could be controlled by the scan velocity of the AFN printing process [29,30].
By measuring the disparity between the mass of the substrate before and after AFN printing
by a precise microbalance (Sartorius AG, Germany) and surface profile by laser confocal
microscope (OLS 4100, Olympus, Japan), the packing ratio was calculated as shown in
Figure 1f. The scan velocity dominantly influences on not only the geometry of the printed
pattern but also the packing ratio. By differing the velocity of the scan from 2 to 80 µm/s,
the packing ratio decreased from 65% to 40%.

Furthermore, the decrease of the packing ratio occurred with the increase of rela-
tive electrical resistance as shown in Figure 1g. Since the high packing ratio decreased
the distance among nanoparticles, electrical resistance increased as the number of elec-
trical floating nanoparticles increased in the printed pattern. Hence, the scan velocity
was maintained as 80 µm/s during the AFN printing process for highly sensitive sensor
fabrication.

3. Results and Discussion
3.1. Sensing Performance Evaluation

Figure 2a shows the schematic diagram of the sensing mechanism for a NP-based
strain sensor to explain the highly sensitive properties of the fabricated sensor. A simplified
electron-tunneling model has often been used to explore the resistive responses of the NPs
based strain sensor, represents that the relative resistance change is due to mechanical de-
tachment between NPs. Mechanical segregation between NPs enables the drastic variances
of relative resistance.

We evaluated the strain sensing performance based on a standardized four-points
bending method. Both ends of the sensor were fixed to the mechanical jig and the center of
the sensor was translated by a motorized stage (SGSP 20–85, Sigma Koki, Japan) with the
initial gap between both ends at 40 mm. The images during translation were captured by
a CCD camera (UI-2240SE, IDS Imaging Development Systems, Germany). The resistive
responses of the printed sensor and commercial strain gauge (FLA-2-11-1L, Tokyo Sokki
Kenkyujo, Japan) were captured by a data acquisition board (NI-USB-6009, National
Instruments, USA) to gauge and estimate the applied strain within the experimental setup.
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The plots in Figure 2b show the resistive response by the applied strain. The response of
a sensor exhibited that the sensitivity was changeable dramatically by varying the scan
velocity of AFN printing. In an instant, sensitivity of 1056 was exhibited at an applied
strain with a narrow strain range [24,25].
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Figure 2. (a) Schematic diagram of the sensing mechanism of the nanoparticle sensor for strain and vibration measurement,
respectively. (b) Relative resistance changes of sensor according to strain. (c) Relative resistance changes during continuous
vibration with a frequency of 200 Hz by the vibration shaker. (d) Peak frequency of sensor resistance obtained by fast
Fourier transform (FFT) at Q-level of 70.7% with respect to the induced frequency. (e) Flowchart of proposed interoperable
strain and vibration measurement.

To not only evaluate strain sensing performance but also vibration sensing perfor-
mance, the sensing performance evaluation for vibration was also conducted. The printed
sensor was directly attached to a vibration shaker (Vibration testing shaker, TIRA GmbH,
Germany) and relative resistance change was measured during a continuous vibration with
various vibration frequencies as shown in Figure 2c. Figure 2d shows the frequency analy-
sis results by fast Fourier transform (FFT) according to induced frequency. The average
and standard deviation values of spectrum were calculated using quality factor (Q-factor)
at 70.7%. Hence, it was demonstrated that the printed sensor was capable of not only strain
sensing but also vibration sensing.

In order to verify that the strain and vibration could be separated each other, a
statistical verification was conducted. First, the sensor data was divided by strain, vibration,
and the random noise component for further analysis as shown in Equation (1) where Xt is
sensor signal, St is strain component, Vt is vibration component, and Et is normal random
noise component.

Xt = St + Vt + Et (1)

As shown in Equation (2), the null hypothesis H0, which denotes that the resistance
change of the sensor was only influenced by strain component, was set. Otherwise, the
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alternative hypothesis H1 assumed that the resistance change of the sensor was influenced
by both independent strain and vibration component as shown in Equation (3).

H0: Xt = St + Et (2)

H1: Xt = St + Acos(2π fct) + Bsin(2π fct) + Et (3)

To test the probability of hypothesis, analysis of variance (ANOVA) based on F-
distribution was conducted to determine whether the means of strain and vibration are
different [31]. The F-distribution which is continuous probability distribution based on
beta function could be simply explained by the variation between sample means by vari-
ations within the samples. In consideration of the statistical degree-of-freedom of the
sensor data, the variable was defined to follow the F-distribution without scaling as shown
in Equation (4), where DF denotes degree of freedom that can vary in an analysis with-
out breaking any constraints and SS denotes sum of square of variation. The sum of
square of variation at frequency with 0 Hz was subtracted to separate the strain effects of
interoperable sensor.

(∑i DFi − DFt − 1)SSt/DFt

∑i SSi − I(0)− SSt
∼ F(DFt, ∑

i
DFi − DFt − 1) (4)

By calculating probability value (p-value) which is the probability of obtaining test
results at least as extreme as the results actually observed during the test by assuming
that the null hypothesis is correct, it was decided to whether reject or accept null hypothe-
sis [32]. At a significance level of 0.05, the null hypothesis was rejected, and the alternative
hypothesis was accepted, which means measurement independency of strain and vibration
was validated as shown in Table 1.

Table 1. The results of p-value according to induced frequency.

Vibration Source (Hz) Results of p-Value

200 0.032
400 0.018
600 0.011

Figure 2e shows the proposed overall flowchart of signal process technique for real-
time separation of strain and vibration. First, the raw data of the sensor signal was filtered
by the Kalman filter which is a widely used algorithm for a series of measurement observed
over time, containing statistical noise and other inaccuracies [33,34]. We estimated a joint
probability distribution over the variables for each time frame of the prediction steps. Then
we updated estimates using a weighted average with more weight being given to estimates
with higher certainty. The filtered signal was considered to the strain value and the value
obtained by subtracting the filtered signal from the raw data was perceived as a vibration
signal. The FFT was conducted for vibration signal to estimate the vibration frequency.

3.2. Interoperable Strain and Vibration Measurement

To apply the vibration and strain simultaneously to the sensor, the experimental setup
using a rotor was configured as shown in Figure 3a. Since the blade was mechanically
bended during rotation of the rotor, we could apply the vibration and strain to the sensor
by attaching the sensor to the fan blade. We connected the fan blade (D200-26A, Hawco,
UK) to the BLCD motor (DC 12V-36V 775, Mabuchi Motor Company, Japan) capable of
rotation up to 1400 Hz by regulation of the voltage which was controlled by DC power
supply (DP30-05A, TOYOTECH, Korea). Sensor was directly attached to the back side of
the fan blade and the resistance of the sensor was measure using Source meter (KEITHLEY
2450, Keithley Instruments, USA).
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Figure 3. (a) Photograph of the experimental setup for strain and vibration measurement of the fan blade (b) Measured
resistance according to rotor frequency. (c) Estimated strain from the printed sensor using the Kalman filter (solid line)
and measured strain from the commercial strain gauge (dotted line) (d) Estimated vibration obtained by subtracting the
estimated strain from the measured resistance. (e) Fast Fourier transform (FFT) results of estimated vibration.

Figure 3b shows the estimated resistance by linear interpolation with respect to
various frequencies of 200, 400, 600, and 800 Hz. As discussed above, the resistance data
was filtered using the Kalman filter to estimate the strain as shown by the solid line in
Figure 3d. The estimated strain was compared to the actual strain which was measured
by commercial strain gauge (FLA-2-11-1L, Tokyo Sokki Kenkyujo, Japan) as indicated
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by the dotted line in Figure 3d. The strain value measured by the printed sensor and
measured by a commercial strain gauge exhibited similar trends, which denotes that the
strain measurement performance was validated. The mechanical deformation of fan blade
was initially increased and stagnated after few seconds varied by rotation frequency.

Figure 3d represents the estimated vibration signal by subtracting filtered data in
Figure 3c The FFT results of the vibration signal exhibited that the peak frequency fol-
lowed the induced frequency as shown in Figure 3e which denotes that vibration sensing
performance of printed sensor was also validated.

3.3. Quadrotor Monitoring

We applied the interoperable strain and vibration sensing of the printed sensor to
the commercial quadrotor (Tello, Ryze Technology, China). Figure 4a shows the schematic
illustration of the drone and its motion including up and down, turn, and flip which were
all supported by the manufacturer. The experiments were conducted by measuring the
resistance during each motion and the spectrogram was calculated.
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Figure 4b shows the photograph of experimental setup. We directly attached the
printed sensors onto the backside of the blade similar to fan blade experiment. Similarly, a
loop wire was hooked to the ring wire which is located in the shaft of the blade and the
resistance of the shaft was measured. An identical source meter (KEITHLEY 2450, Keithley
Instruments, USA) was used to measure the resistance of the sensor.

Figure 4c–e shows the spectrogram of time–frequency plots resulted by FFT of vibra-
tion signal of the sensor with respect to motion of up and down, turn, and flip, respectively.
According to Figure 4c, the rotation frequency of the quadrotor was increased as the quadro-
tor went up and decreased during the quadrotor went down. For the turning motion,
rotation frequency was the highest when it rotated. Hence, it has been confirmed that
real-time monitoring was available for quadrotors including drones using the printed
sensor. For the up motion of the drone, the frequency should increase to get more thrust
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for the elevation of the height. Otherwise, frequency should decrease to decrease their
thrust force which was shown well in Figure 4c. In terms of the turn motion, four motors
at each blade of the drone should be driven differently. With the angular speed of the
motor in charge of the rotating axis being maintained, the angular speed of the motor in
the direction to be rotated should increase and that of the other motors should decrease. In
the experiment, the measured resistance of the blade we measured by the developed sensor
was almost maintained during the turning motion since it behaved as a rotational axis.
Finally, for the flipping motion, the angular speed of the motors driving the two blades
in the direction to be turned upward should decrease and the angular speed of the other
motors should increase. Likewise, the blade we measured during the experiment which
was flipped in the direction of downward showed a decrease in motor frequency.

4. Conclusions

This research has focused on the fabrication and evaluation of an interoperable sensor
which is capable of real-time strain and vibration measurement. The sensor was printed
using an AFN printing process which is a dry and direct printing technique without chemi-
cal process using successive repetitions of excitation and purging of aerosol. The porous
properties of the conductive patterns fabricated by the AFN printing process overcame
the challenge of high sensitivity of current strain sensor and enabled the interoperable
measurement of strain and vibration sensing.

The strain and vibration sensing performance of the printed sensor was evaluated
respectively and independency was demonstrated by statistical methods. Furthermore, the
signal processing technique for real-time separation was introduced based on the Kalman
filter. As a result of experiments with a sensor attached to the rotating fan blade, the
real-time interoperable measurement performance was verified. Finally, we applied the
printed sensor to the quadrotor condition monitoring and predicted the quadrotor’s motion
through the sensor data.

The proposed sensor exhibited the wide range in terms of gauge factor (GF) and
maximum measurable frequency in comparison to the previous interoperable sensor as
shown in Figure 5 [10,16,17,24,26,29,35–42]. The results presented in this research are
expected to facilitate the highly sensitive reliable measurement of strain and vibration
sensing based on a cost-effective method that can leverage the future development of
related technologies including structural dynamic behavior analysis of rotational machines.
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