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Abstract: Weeds are one of the most important factors affecting agricultural production. The waste
and pollution of farmland ecological environment caused by full-coverage chemical herbicide spray-
ing are becoming increasingly evident. With the continuous improvement in the agricultural produc-
tion level, accurately distinguishing crops from weeds and achieving precise spraying only for weeds
are important. However, precise spraying depends on accurately identifying and locating weeds
and crops. In recent years, some scholars have used various computer vision methods to achieve
this purpose. This review elaborates the two aspects of using traditional image-processing methods
and deep learning-based methods to solve weed detection problems. It provides an overview of
various methods for weed detection in recent years, analyzes the advantages and disadvantages of
existing methods, and introduces several related plant leaves, weed datasets, and weeding machinery.
Lastly, the problems and difficulties of the existing weed detection methods are analyzed, and the
development trend of future research is prospected.

Keywords: weed detection; computer vision; image processing; deep learning; machine learning

1. Introduction

At present, many smart agriculture tasks, such as plant disease detection, crop yield
prediction, species identification, weed detection, and water and soil conservation, are
realized through computer vision technology [1-3]. Weed control is an important means to
improve crop productivity. Considerable literature has proposed precise variable spraying
methods to prevent waste and herbicide residual problems caused by the traditional full-
coverage spraying [4]. To achieve precise variable spraying, a key issue that should be
solved is how to realize real-time precise detection and identification of crops and weeds.

Methods for realizing field weed detection by using computer vision technology
mainly include traditional image processing and deep learning. When weed detection
is conducted with traditional image-processing technology, extracting features, such as
color, texture, and shape, of the image and combining with traditional machine learning
methods, such as random forest or Support Vector Machine (SVM) algorithm, for weed
identification are necessary [5]. These methods need to design features manually and have
high dependence on image acquisition methods, preprocessing methods, and the quality
of feature extraction. With the improvement in computing power and the increase in data
volume, deep learning algorithms can extract multiscale and multidimensional spatial
semantic feature information of weeds through Convolutional Neural Networks (CNNs)
due to their enhanced data expression capabilities for images, avoiding the disadvantages
of traditional extraction methods. Therefore, they have attracted increasing attention
from researchers.

Several reviews on the application of machine learning in agriculture [6] and an
overview of using deep learning methods to achieve agricultural tasks have been pre-
sented [7]. They have either provided a comprehensive overview of the methods applied
in the entire agricultural field [8] or conducted the latest research on a certain type of tech-
nology for a specific task [9]. For example, Koirala et al. [10] summarized the application of
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deep learning in fruit detection and yield estimation, including the problem and solution
to fruit being occluded in imaging. However, they focused only on detection and yield
estimation and disregarded other agricultural tasks that contain a large number of objects,
such as weed detection. Kamilaris et al. [7] reviewed the application of deep learning in
agriculture, involving many studies in the fields of weed identification, land cover classifi-
cation, plant identification, fruit counting, and crop type classification. Nevertheless, it was
only a summary of the current situation in weed detection. Yuan et al. [11] elucidated the
research progress in field weed identification at home and abroad and the advantages and
disadvantages of various segmentation, extraction, and identification methods. Nonethe-
less, few discussions were presented about the use of deep learning methods to solve the
problem of weed identification. Hasan et al. [12] provided a comprehensive review of weed
detection and classification research but focused on methods based on deep learning.

Traditional and deep learning-based weed detection methods have their own ad-
vantages. Traditional weed detection methods require small sample sizes, have low re-
quirements on graphics processing units, and can be used in agricultural machinery and
equipment at a low cost. This paper mainly reviews the related methods for weed detection
in recent years from the perspectives of traditional machine learning (ML) methods and
deep learning and briefly discusses the pros and cons of the methods. The datasets of weed
identification and detection and leaf classification are summarized, and the problems faced
in field weed detection under different conditions are analyzed. This paper provides a
certain reference to other scholars to further their research on weed detection algorithms
based on computer vision and achieve intelligent weed control and related areas of research
and application.

2. Public Image Datasets

Many public and annotated image datasets are available in the field of computer
vision, such as ImageNet [13], COCO [14], Pascal VOC [15], and Open Images [16]. The
use of these datasets enables the effective evaluation of the performance of object detection,
classification, and segmentation algorithms. Although the kinds and quantities of these
datasets are considerable, these datasets are mainly composed of natural scenes and
network images and cannot be directly applied to precision agricultural visual tasks. In
the study of the method of using computer vision technology to detect weeds, field weed
image datasets are critical for the construction of an algorithm and the test of its effect. In
fact, public plant image datasets that can be used for precision agriculture tasks should
be based on plants or their leaves, but few public datasets meet this requirement [17].
Researchers face a series of problems, such as few databases and poor algorithm mobility.
When researchers use different datasets for specific weed detection algorithms, evaluating
different methods on the basis of the results of published literature is difficult or impossible.
As computer vision and machine learning continue to impact agriculture, the number of
public image datasets designated for specific agriculture tasks has gradually increased since
2015, effectively promoting the development of computer vision technology in precision
agriculture. Table 1 lists several common datasets related to the field of weed detection and
identification. Part of datasets contain leaf-level ground truth or pixel-level annotations,
which can be widely used for weed detection, species identification, and leaf segmentation.
The publication of increasing standard datasets will help further break the bottleneck of
algorithm research on weed detection tasks.

Figure 1 shows four typical plant dataset images, representing different situations:
(a) demonstrates the images of a target plant segmented from a cluttered background, (b)
presents plant leaves with a white background, (c) shows unsegmented maize, and (d)
depicts crops and weeds on land.
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Table 1. Public weed image datasets and their features.
Reference Datasets Purpose Plant Image Size Features
Perennial ryegrass . Dandelion, ground ivy, 1920 x 1080 It includes 1.7’60.0 positive 1mages (conta.un target wee<.;ls) and
[18] Weed detection and control 15,486 negative images (contain perennial ryegrass with no
and weed spotted spurge, and ryegrass 33,086
target weeds).
Data are from a set of images captured using a UAV and the
[19] Grass-Broadleaf Weed detection by using Soil, soybean, broadleaf, and 4000 x 3000 SLIC algorithm. These images are segmented, and the
ConvNets grass weeds 15,336 segments are annotated manually. The ratio of soil: soybeans:
grass: broadleaf weeds is roughly 3:7:3:1 (Figure 1a).
Each image is provided with an ID and associated with a
[20] Plant seedlings Identifying plant species and 12 weed and crop species of 5184 x 3456 single species. The dataset contains a full image,
dataset weeding in the early growth stage Danish arable land 407 automatically segmented plants, and single plants that are
not segmented.
Classification of multiple weed 8 natl'onally' significant Weed 256 x 256 Each class gontams Petwgen 1009 and 1125 images of the
[21] DeepWeeds . . species native to 8 locations corresponding species, with a total of over 8000 images of
species based on deep learning . 17,509 ot .
across northern Australia positive species classes.
It includes 47 different species of monocotyledonous and
[22] Open Plant Plant detection and classification 47 species of common weeds 1000 x 1000 dicotyledonous weeds in arable crops in Denmark. Several
Phenotype Database algorithms in Denmark 7590 plant species were cultivated in a semifield setting to mimic
natural growth conditions.
Dense semantic classification / Three kinds of multispectral image datasets are included: one
[23] WeedNet . . ! Crops and weeds contains only 132 images of crops, the other has 243 images
vegetation detection 465 . . .
of weeds, and the third one contains 90 images of crop-weed.
Data were recorded 3 times per week until the field was no
[24] Suear beet Plant classification, localization, Sugar beets and 9 different 1296 x 966 longer accessible to the machinery without damaging the
& and mapping types of weed >10,000 crops. The robot carried a four-channel multispectral camera
and an RGB-D sensor.
Rice seedlings and Image segmentation of rice Rice seedlings and weed 912 x 1024 The images were selected in the paddy fields, .and all weeds
[25] : were in early growth stages. The data sample included GT
weeds seedling and weeds background 224 . .
and RGB images (Figure 1c).
Datasets of 14 basic food crops and weeds in controlled
[26] Food crops and weed Crop and weed identification 6 food Cr;)}})jefc?gsd 8 weed 7201?1{1;280 environment and field conditions at different growth stages

and manually annotated images are included (Figure 1d).
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Table 1. Cont.

Reference Datasets Purpose Plant Image Size Features
Instance segmentation for fine Maize, the common bean, 1200 x 2048 The Crops m.clude maize and the common bean. Weeds
[27] Crop and weed . . include cultivated and natural weeds. Each mask is
detection and a variety of weeds 2489 ) .
annotated with the species name of the plant.
. e 1600 x 1200 Each plant has a minimum of 50 leaves and a maximum of 77.
[28] Flavia Plant leaf classification Leaves of 32 plants 1907 The background of the leaf image is white (Figure 1b).
At least 1100 annotated samples per category and vegetables
e . 30 common vegetables and 1000 x 1000 or fruits with different parts and periods of growth are
[29] CropDeep Crop classification and testing fruits 31,147 included. A high degree of similarity exists among certain

categories in the dataset.




Sensors 2021, 21, 3647 50f 23

(0) (d)

Figure 1. Four typical plant datasets: (a) Grass-Broadleaf database [19], with images of soybean, broadleaf weed, grass, and
soil; (b) Flavia dataset [28]; (c) plant seedlings dataset [20]; (d) food crops and weeds dataset [26].

Table 2 further compares the results of different methods under the same dataset. The
comparison results of the three methods are listed under each typical dataset. It can be
seen that with the continuous development of the algorithm, the accuracy is getting higher
and higher.

Table 2. Comparison of different methods under the same typical dataset.

Reference Dataset Method Evaluation Metrics
Chavan et al. (2018) [30] AgroAVNET (A hybrid model of AlexNet and VGGNET) Accuracy: 98.23%
Plant seedlings  Yielding multi-fold training (YMufT) strategy and DNN; ) o
Trong etal. (2021) [31] dataset [20] Min-class-max-bound procedure (MCMB); Resnet Accuracy: 97.18%
Xu et al. (2021) [32] Depthw1se separable convolutional neural network, Accuracy: 99.63%
Xception

Accuracy: 95.1%

Dataset was classified with the ResNet-50 and Inception-v3 .
(Inception-v3)

Olsen et al. (2019) [21] CNN models to establish a baseline level of performance for ) o
comparison. Accuracy: 95.7%
Deepweeds [21] (ResNet-50)
Joint Unsupervised Learning of Deep Representations and
Ferreira et al. (2019) [33] Image Clusters (JULE) and Deep Clustering for Precision: 95%
Unsupervised Learning of Visual Features (DeepCluster)
Hu et al. (2020) [34] GWN (Graph Weeds Net) Accuracy: 98.1%
Naresh et al. (2016) [35] MLBP (Modified Local binary patterns) Accuracy: 97.55%
Mahajan et al. (2021) [36]  Fjavia [28] Support vector machine with adaptive boosting Precision:95.85%

MTD (multiscale triangle descriptor) and LBP-HF (local

Yang C. 2. (2021) [37] binary pattern histogram Fourier)

Accuracy: 99.1%




Sensors 2021, 21, 3647

60f23

3. Traditional Machine Learning Weed Detection Methods

In the early stage, many scholars used machine learning algorithms combined with
image features to conduct weed recognition tasks, achieving the purpose of weed detection.
These traditional ML methods require a small sample size and short training time; they
also have a low requirement for graphics processing units. They can be used in agricultural
machinery and equipment at a low cost, providing an effective method and approach for
realizing plant identification and weed detection based on image-processing technology.

These intelligent technologies rely on the continuous development of machine vision
technology. Machine vision technology uses a series of image-processing methods to
extract the shallow features of weeds and then sends them to a classifier for detection.
Initially, crops or weeds are identified by calculating the texture, shape, color, or spectral
features of images. For example, Le et al. [38] realized the distinction between corn and
single species of weeds on the basis of Local Binary Pattern (LBP) texture features and SVM.
Chen et al. [39] proposed a multi-feature weed reverse location method in a soybean field
on the basis of shape and color features. Zhu et al. [40] proposed a classification method
for five kinds of weeds in farmland on the basis of shape and texture. Zhang et al. [41]
conducted a comparative analysis of the gray distribution of each component in the color
space of RGB, HSV, and HIS of common weeds in a field at the pea seedling stage. They
proposed a method for weed segmentation and extraction in complex background based
on R-B color difference features. Some scholars have used plant height [42] or location
information [43—45] to improve the identification accuracy, but these methods are easily
affected by vibration or other uncontrolled motion in practical application [46]. Moreover,
some research has focused on using a single feature to identify plants, which has low
accuracy and poor stability.

To deal with the problems of a complex field environment and the low accuracy and
poor stability of a single feature, some scholars have also proposed to integrate multiple
features to improve the accuracy. For instance, He et al. [47] integrated multisource
recognition information of different features, such as plant leaf shape, fractal dimension,
and texture. They combined the good classification and promotion capabilities of SVM
in the case of small samples and the advantages of Dempster—Shafer evidence theory
of incomplete and uncertain information. Compared with single-feature recognition,
this multi-feature decision fusion recognition method has better stability and a higher
recognition accuracy. Sabzi et al. [5] proposed a machine vision prototype based on
video processing and meta-heuristic classifiers based on Gray-level Co-occurrence Matrix
(GLCM), color feature, texture feature, invariant moment, and shape feature. They used
them to identify and classify 4299 samples from potatoes and five weed species online,
achieving high accuracy. Deng et al. [48] integrated the color, shape, and texture features
of weed images with a total of 101-dimensional features to solve the problem of the low
recognition accuracy of a single feature of weeds in a rice field. Tang et al. [44] used
a combination of vertical projection and linear scanning in corn farms under different
lighting conditions to identify the centerline of crop rows. This method only recognizes
crop rows, all plants among rows are identified as weeds regardless of their type, and it
is unsuitable for identifying different types of weeds. On the whole, these studies have
provided effective methods and approaches for realizing plant recognition and weed
detection based on image-processing technology in the early stage. However, most of
the studies are only for the identification of different plant leaves rather than the precise
detection of crops or weeds in a field. Few studies exist on the identification and location
of plants and weeds in a complex practical background in a field, and the identification
and detection of weeds in actual farmland require further research.

Table 3 lists some literature on the identification or classification of plant leaves by
using traditional ML methods. These methods achieve their purpose in specific plant
leaves and detection background, but they are unsuitable for large-scale rapid detection or
classification of images in a natural environment.
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Using drone images to classify vegetation and detect weeds on a large scale has
become a hot spot. Object-Based Image Analysis (OBIA) classification has been replacing
traditional classification methods like the pixel-based approach. The difficulty lies in setting
the optimal combination of parameters. In order to solve this problem, Torres-Sanchez et al.
(2015) [49] used unmanned aerial vehicle (UAV) images of different herbaceous row crops
to develop an automatic thresholding algorithm under the OBIA framework, and research
the influence of multiple parameters on vegetation classification, making the algorithm
allow unsupervised classification. UAVs are less constrained by field conditions that may
restrict the access and movement of operators or ground vehicle-based platforms, and
can monitor weed areas on a large scale. Furthermore, UAV imagery offers high image
resolution and high flexibility in terms of timing of image acquisition. The high image
resolution allows detection of low weed densities. Therefore, such methods will have broad
prospects in high-input agriculture.

Table 3. Research status and problems of traditional machine learning methods.

Reference Year Purpose Accuracy Problems
Combining HOG feature with Support Vector o
[50] 2016 Machine (SVM) to identify grape leaves 83.50% Single-feature detection has poor
ifyi i i tability and 1 .
[35] 2016 Identifying d1ffer.ent plant leaves on the basis of 79.35% stability and low accuracy.
improved LBP
Using three shape features to compare the effect of
[51] 2018 SVM or Artificial Neural Network (ANN) on 93.33% . .
. Analysis on the selection of
detecting sugar beets and weeds features is lackin
(52] 2009 Combining GW (Gabor wavelet) and GFD (gradient 93.75% &
: field distribution) to classify different weeds e
[53] 2015 Combining Gabor and Grey-level Co-occurrence 91.60% No actual field images are included,
Matrix (GLCM) to classify 31 plant leaves ' and the dataset is only composed of
Extracting the shape and texture features of an o different plant leaves, without
[54] 2017 . . . 92.51% ’ )
image to classify and recognize plant leaves complex background, such as soil.
. . Nonwhole plants are detected and
[55] 2015 Using improved LBP and GLCM to categorize fresh 94.80% recognized, and only the same kind of

tea in the production line . i
p leaves is classified.

3.1. Traditional Features and Their Advantages and Disadvantages for Common Weed Detection

Most of the traditional weed detection methods based on image processing utilize the
feature differences between plant leaves and weeds to distinguish them. This article mainly
discusses the traditional image features and their advantages and disadvantages for the
detection and recognition of four features of weeds: texture, shape, spectrum, and color.

3.1.1. Texture Features

Texture features are regional features that reflect the spatial distribution among pixels,
which have been widely used in image classification [56-58]. Plant leaves are usually flat,
and different leaves have diverse vein texture and leaf surface roughness information.
The texture information can be used to distinguish crops and weeds effectively. Texture
feature methods can mainly be divided into four categories: (1) statistical method, (2)
structural method, (3) model-based method, and (4) transform-based method [59]. The
most common texture feature descriptors used in weed detection include GLCM [60] and
Gray-level Gradient Co-occurrence Matrix (GGCM) based on statistical texture analysis
methods, LBP based on structural texture analysis methods, fractal dimension based on
model methods, and Gabor based on transformation methods. The LBP feature can reflect
the microstructure among pixels, and the improved LBP feature has the advantages of
rotation and translation invariance. In essence, the Gabor feature has the effect of allowing
the information of a certain frequency band to pass through it, and the remaining sub-
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information is filtered out. GLCM usually contains 10 statistics, which can reflect the spatial
correlation of gray values of any two points in an image. GGCM considers the gradient
information on the basis of GLCM, and it mainly has 15 statistics. The fractal dimension
uses the self-similarity between local and whole research objects, and its methods include
“blanket” algorithm, fractal Fourier, and box-counting dimension [61].

Alarge amount of texture information in crop and weed leaves plays an important role
in recognition and classification tasks [62]. For example, Bakhshipour et al. [63] extracted
52 texture features (GLCM features in four directions) from wavelet multiresolution images
for weed segmentation. Ishak et al. [52] used the combination of Gabor wavelet (GW) and
gradient field distribution (GFD) to extract a new feature vector set based on directional
texture features to classify weed species. Mustapha et al. [64] constructed a method based
on texture feature extraction, which extracts texture features from field images composed
of wide and narrow leaf weeds. However, these techniques cannot reliably and accurately
perform classification tasks in complex natural scenarios, such as high weed density,
overlapping, or obscured weeds and crops.

3.1.2. Shape Features

Shape features play an important role in image analysis for weed detection. They
mainly include shape parameters, region-based descriptors, and contour-based descriptors.
Generally, shape parameters include 11 kinds: perimeter, area, diameter, minor axis length,
major axis length, eccentricity, compactness, rectangularity, circularity, convexity, and
solidity. These parameters are the most intuitive, easy to implement, and unaffected by
lighting. Region-based descriptors include Hu moment invariants and two-dimensional
Fourier descriptors (FDs). Hu moment invariants are a shape descriptor proposed by Hu
(1962) [65]. They are a normalized function based on shape boundary and its internal
region information and contain seven invariant moment parameters in total. They are
independent of geometric translation, scaling, or rotation and are robust to noise. Two-
dimensional FDs describe the shape region by establishing feature points in the region plane
and carrying out Fourier transforms on rows and columns at the same time. Contexture-
based descriptors mainly include spatial position descriptor, curvature scale descriptor,
and one-dimensional FD.

These shape features have been successfully applied in the species recognition task
of plant leaf images [66—68]. For example, Pereira et al. [69] used five shape descriptors,
namely, beam angle statistics, FD, Hu moment invariants, multiscale fractal dimension,
and Tensor Scale Descriptor (TSD), in shape analysis to describe the contour shape of
aquatic weeds. Bakhshipour and Jafari [51] extracted four major shape factors, Hu moment
invariants, and FDs to distinguish weeds and crops on different classifiers. Chen et al. [39]
used eight shape features and Hu moment invariants combined with color features to
detect weeds in a soybean field.

Different species of plants have distinct shape features, but the shape of the leaves can
be distorted by disease, insects, and even human and mechanical damage. Most research
is conducted under the ideal condition of specific leaves without background. In a field
environment, problems of overlap or occlusion of plant leaves occur. Therefore, the task of
weed identification is difficult to complete by only basing on shape features. They should
be combined with other features to improve accuracy.

3.1.3. Spectral Features

Spectral features are an effective method to distinguish plants with different leaf colors.
When the spectral reflectance of weeds is remarkably different from that of crops [70], weeds
and crops can be distinguished using spectral features. The spectral features are robust to
partial occlusion and tend to decrease in calculation [71]. Some scholars have applied visible
light and near-infrared spectra (Vis-NIR) [72,73], multispectral /hyperspectral imaging [74],
and fluorescence [75] in the detection of different plants.
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Pignatti et al. [76] distinguished corn crops and weeds by using the contents of
chlorophyll and carotenoid retrieved using spectral indices or by inverting PROSAIL
(coupled PROSPECT and SAIL radiative transfer models, [77]), as well as the species of
weeds. Some scholars have also used Vis-NIR to classify weeds in crops, but studies are
limited to laboratory feasibility studies and rely extensively on stoichiometry to select
effective wavelengths and establish calibration models [78,79]. Elstone et al. [80] achieved
good results in the identification of weeds and crops by using RGB and multispectral
images in a lettuce field. However, weeds in plateau tropical conditions have different
shapes and grow in large blocks, such that detecting them is difficult. Spectral sensors
(spectrometers) can be used to measure the reflection intensity of multiple wavelengths
and provide sufficient information to distinguish vegetation from soil. Nevertheless, they
hardly distinguish species, especially in the early growth stages when crops and weeds
have similar reflective characteristics [81,82].

During the growth and development stages of plants, the interaction between light
and observed geometry and leaf angle distribution, as well as the variability of the spectral
features of plant species, can affect hyperspectral detection. Capturing a multispectral
image, hence, depends on the climatic conditions of the day, which changes the reflectivity
of plants due to the amount of light absorbed. Although research on the identification
of crop weeds by using sensitive spectral bands has achieved encouraging results, the
accuracy is low under the condition that the spectral difference between crops and weeds
is unobvious or the leaf reflection is affected by moisture, plant disease, growth period,
and other factors [83]. Therefore, a combination of multiple features, such as shape and
texture features, should be considered [84].

3.1.4. Color Features

The accuracy of color-based detection highly depends on the plant being studied
and its color differences. Color is insensitive to the adjustment of scale, size, and position.
In addition, it can provide information about unusable objects. It is a common method
used to segment plants from the background by using the difference in color features.
Hamuda et al. [85] summarized the advantages and disadvantages of plant segmentation
for color index-based methods. Tang et al. [86] proposed to modify the color component
(2G — R — B) and use the excessive green component ExG = 2G — R — B of the RGB color
space to segment. Ghasab et al. [87] and Zhao et al. [88] used the color moments of the
RGB color space (including mean, standard deviation, and skewness) to represent the color
features of plant leaves. Rasmussen et al. [89] used the color difference between green
weeds and senescent cereals to propose a simple, semi-automatic, and robust procedure
for weed detection in pre-harvest cereals, which has strong practical significance.

In addition, R, G, and B components have a high degree of correlation, which is suitable
for color display but not for segmentation and analysis [90]. Therefore, many methods
transform images from the RGB color space to other color spaces, such as HIS, HSV, Lab,
and YCrCb. Tang et al. [44] used the YCrCb color space Cg (Cg = G — ) to describe the
green features of green crops under different illumination conditions. Hamuda et al. [91]
believe that the HSV color space is more in line with human color perception than other
color spaces and has strong robustness to illumination changes. The HSV color space was
used to distinguish weeds, soil, and other residues in cauliflower fields under actual field
conditions. Guo et al. [92] utilized 18 color features (r, g, b; Y, Cb, Cr; H, S, L; H, S, V; L*, a*,
b*; L*, u*, v¥*), which were defined in 6 color spaces (RGB, YCbCr, HSL, HSV, CIEL*a*b*,
and CIEL*u*v*). Knoll et al. [93] and Jin [94] also utilized different color spaces.

Color is the most unstable feature used for plant identification. When the color
difference is unobvious, color-based methods may not be able to distinguish weeds from
crops accurately. These methods can be affected by leaf disease, plant seasonal changes in
color, or different lighting conditions. Table 4 compares the advantages and disadvantages
of four common image features for weed detection.
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Table 4. Comparison of the advantages and disadvantages of four common features.

Features Advantages Disadvantages
Texture Has high accuracy, strong adaptability, Grey-level co-occurrence matrix (GLCM takes a long time and does
and robustness not meet the real-time processing requirements.

Shape Independent of geometric translation, Shapes are deformed by disease, insect eating, and man-made or
p scaling, or rotation; robust to noise mechanical damage and incomplete under overlap and occlusion.
Color Insensitive to the adjustment of proportion, = Crops and weeds with similar color will fail; leaf lesions and plant

size, and position seasonality will change color.

. . tral feat in different th st f plants, il

Spectral Robust to partial occlusion Spectral features vary in different growth stages of plants, are easily

affected by the collection environment, and are unstable.

3.2. Multi-Feature Fusion

The similarity between weeds and crops makes using a single image feature to detect
weeds and crops almost impossible. The commonly used image features can achieve the
purpose of weed detection, but the experimental accuracy is low and the stability is poor in
a nonideal environment due to the complex interference factors in the actual field. Table 4
indicates that the four features are from different perspectives and complement one another
in function. To improve the experimental accuracy, researchers have successively used the
method of multi-feature fusion to solve the problem of weed detection.

Ghazali et al. [95] combined statistical GLCM, structural method fast Fourier trans-
form, and scale-invariant feature transform and achieved more than 80% accuracy in the
real-time weed control system of an oil palm plantation. Li et al. [96] used a method based
on the combination of shape analysis and spectral angle matching to identify weeds in
watermelon fields. Shape and spectral features were used separately, excluding texture
features. Chowdhury et al. [97] focused on vegetation classification on the basis of features
extracted from a local binary model and GLCM and classified images in accordance with
the density of grass to highlight the images with potential fire risks on both sides of the
road. Tang [98] constructed a leaf texture feature extraction algorithm based on GGCM
and an improved leaf color feature extraction algorithm combining K-means and SVM for
plant leaf recognition. However, the problems of extracting leaf images and performing
threshold segmentation under a complex background remain. He et al. [47] extracted
three types of features of plant leaf shape, texture, and fractal dimension on the basis of
field plant image processing. Compared with single-feature recognition, the multi-feature
decision making fusion recognition method has better stability and higher accuracy, but it
does not analyze the problem of feature selection. Chen et al. [99] studied the method of
multi-feature fusion based on field weed detection at the corn seedling stage to analyze the
selection of common feature descriptor combinations. On the basis of 6 feature descriptors
commonly used in recent years (rotation-invariant LBP, HOG, GLCM, GGCM, Hu moment
invariant, and Gabor), 18 multi-feature groups were formed. The combination of rotation-
invariant LBP feature and GGCM showed the highest accuracy. Experiments have also
proven that the average accuracy of multi-feature fusion is not necessarily higher than that
of single-feature fusion. Nursuriati et al. [100] used three single features, namely, shape,
color, and texture, or fusion features of Malaysian herbal plant leaves for identification
experiments. The experimental results showed that when the three features were fused,
the average accuracy was highest, followed by the average accuracy when using only the
texture features. When shape features are combined with texture features, the average
accuracy decreased. Lin et al. [101] studied the feasibility of integrating spectral, shape,
and texture features to identify corn and seven kinds of weeds. They found that from the
perspective of accessibility of crop/weed discriminant features, spectral and shape features
can be used as the optimal features to develop weed identification. Nonetheless, such a
method has not been applied in a complex natural environment, and the method needs
further research. Yang et al. [37] proposed a new shape feature, MTD, which was combined
with the LBP-HF texture feature for leaf classification and retrieval tasks. This method
is efficient and suitable for large-scale plant species identification. However, its features
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should be designed manually and cannot be learned automatically, and other important
features of leaves are not utilized.

In conclusion, these multi-feature fusion methods can solve the problem of weed
detection and improve the accuracy of experiments, but some problems have not been
completely solved. For example, for many interference factors under nonideal conditions,
the accuracy and stability of experiments should be further improved.

3.3. Classifier

SVMs and Artificial Neural Networks (ANNs) have been widely used in crop and weed
classification [102,103]. SVMs can solve the problems of nonlinear and high-dimensional
pattern recognition and have good performance in dealing with small-sample problems
and nonlocal minimum problems. ANNs have a strong learning capability and can classify
untrained data [63]. Other algorithms often involved in the literature include K-nearest
neighbor (KNN) [104] and random forest [105,106], naive Bayesian algorithm [107,108],
Bayesian classifier [109], and AdaBoost [110,111].

In recent years, relevant scholars have continued to study the use of various classifiers
to identify and classify weeds. For instance, Jeon et al. [112] used a weed detection and
image-processing algorithm based on ANN to distinguish weeds and crops in the soil
background under uncontrolled outdoor light. Chen et al. [113] used an improved KNN
weed image classification method combined with GW and regional covariance Lie group
structure to classify four kinds of broad-leaved weed images. The overall recognition
accuracy was 93.13%. Ahmed et al. [84] used SVM to identify 6 weeds in a dataset of
224 images, and the optimal combination of its extractor could achieve 97.3% accuracy.
Rumpf et al. [114] proposed a sequential classification method and used three different
SVM models to distinguish not only weeds and barleys but also weeds of monocotyledon
and dicotyledon plants.

Some literature has utilized multiple classifiers. For example, Bakhshipour and
Jafari [51] evaluated the performance of using SVM and ANN based on shape features
in accordance with the detection problem of four common weeds in sugar beet fields.
The results showed that the overall accuracy of SVM was 95.00%, higher than that of
ANN (i.e., 92.92%). Miao et al. [115] proposed a method based on image segmentation
and reconstruction to solve the problems of low recognition accuracy and invalid shape
feature in the recognition process of overlapping leaves. The recognition results in different
classifiers, such as SVM, KNN, DT, and naive Bayes, were compared using 78-dimensional
features, such as color features, LBP texture features, and fractal box dimensions. The
best was SVM. Ashraf et al. [116] developed two kinds of rice field image classification
technologies based on the density of weeds. The first method was to use GLCM combined
with SVM to achieve a precision of 73%, and the second method was to use invariant scale
and rotation moment based on a random forest classifier to achieve a precision of 86%.
The limitation of the two methods is that they do not target other types of weeds, such
as broadleaf weeds and sedges. Pantazi et al. [117] implemented a machine vision-based
method that can identify 10 types of weeds, including corn plants and specific species. This
method uses a Gaussian classifier, a self-organizing feature map (SOFM), an SVM, and an
autoencoder as the four hybrid classifiers. However, this method can only recognize four
weeds with a maximum accuracy of over 90%. When applied in the field, the system error
is relatively large.

In summary, scholars have focused on improving classifiers based on machine vision
or the corresponding image features of plants, which is of great significance to improve
the accuracy. They can utilize the sample features in the case of small samples and do not
require high hardware. They are conducive to practical deployment and play an important
role in weed identification or classification in common scenes.
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4. Weed Detection and Identification Methods Based on Deep Learning

The great progress and popularization of image-capturing devices have made cap-
turing images easy. Meanwhile, the cost of computer hardware has been greatly reduced,
and the computing power of GPU has been remarkably improved. Deep learning has
been extended to the agricultural field [118-120]. Methods based on deep learning have
achieved good results in weed detection and classification [121]. Although traditional ML
methods are easy to understand and many improvements have been made, most of them
are verified in low-density images. Occlusion, clustering, and changing lighting conditions
in a natural environment remain major challenges in detection and localization [122].

Deep learning has a unique network feature structure, and features extracted us-
ing various deep learning methods are more effective than manually extracted features.
Higher-level features can be obtained by learning local features from the bottom and then
synthesizing those features from the top. Diverse features at different levels can correspond
to various tasks. In the field of weed detection, deep learning methods use spatial and
semantic feature differences to realize the identification and detection of crops and weeds
and effectively improve the accuracy of weed identification and detection. In recent years,
commonly used deep learning networks to solve the problem of weed detection include
CNN s and fully convolutional networks (FCNs). Various methods in semi- and unsuper-
vised fields have also emerged to reduce the labeling cost. In many cases, classification
results obtained using these deep learning algorithms are better than those generated using
traditional algorithms [123]. The use of traditional algorithms to classify different types of
crops with high accuracy is still difficult. Deep learning methods need to rely on a large
number of datasets for training, and the difficulty of collecting crop and weed images also
demonstrates the disadvantages of deep learning methods for weed identification.

4.1. Weed Detection and Identification Methods Based on CNNs

CNNs are increasingly used in weed detection, and methods based on deep CNNs
have achieved good results in weed detection and classification. For instance, Dyrmann
et al. [124], Yu et al. [125], and Olsen et al. [21] used such methods. Potena et al. [126]
adopted two different CNNs to process RGB and NIR images to identify crops and weeds
rapidly and accurately. A lightweight CNN was used for fast and robust vegetation seg-
mentation, then a deeper CNN was used to classify the extracted pixels between crops
and weeds. Beeharry and Bassoo [127] evaluated the performance of two weed detection
algorithms based on UAV images, ANN and AlexNet. The experimental results showed
that the accuracy of AlexNet in weed detection was more than 99%, whereas the accuracy
of ANN on the same dataset was 48%. Ramirez et al. [128] established an aerial image weed
segmentation model and compared it with SegNet and U-Net. The research results showed
that the data balance and better spatial semantic information made the experimental results
more accurate. Patidar et al. [129] proposed an improved Mask RCNN model to extract
early cranesbill seedlings. These weeds can be used as herbal medicines for rheumatic
disease. The proposed method enabled the weeds to be completely separated from the
original image to obtain complete nutrients and increase yield. You et al. [130] proposed a
semantic segmentation method for weed crop detection based on deep neural networks
(DNNSs). Four additional components were integrated to improve the segmentation accu-
racy, which provided enhanced performance for weeds of arbitrary shape in a complex
environment. These methods do not rely on image preprocessing and data conversion and
can independently obtain useful feature information in images. The recognition accuracy
is better than that of manually designed features under traditional ML methods.

CNN frameworks, such as AlexNet [19], ResNet [131,132], VGG [133], Google [134], U-
Net, MobileNets, and DenseNet [135], are also widely used in weed detection. These meth-
ods stand out from other conventional index-based methods. For example, Chechlifiski
et al. [135] measured four different plants in diverse growing places and light conditions,
and their custom framework combined U-Net, MobileNets, DenseNet, and ResNet.
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4.2. Weed Detection and Identification Methods Based on FCNs

FCNs are algorithms that automatically learn features and implement forward and
reverse processes in an end-to-end manner. In recent years, FCNs have made great achieve-
ments in computer vision [136] and remote sensing applications [137,138]. Dyrmann
et al. [139] proposed a method to detect weeds in color images automatically by using an
FCN under severe occlusion. Huang et al. [140] captured a high-resolution UAV image
over a rice field and adopted an FCN for pixel-level classification. Ma et al. [25] proposed a
SegNet semantic segmentation method based on FCNs for the problem of weed detection
in rice fields. Compared with the classic FCN model and U-Net model, the proposed
method exhibited significantly higher accuracy and could effectively classify the pixels
of rice seedlings, background, and weeds in rice field images. To control weeds in the
early stages of growth, Fu et al. [141] proposed a segmentation method based on FCNs
for high-resolution remote sensing images. On the basis of the VGG16 CNN model, a
pretrained FCN was used to fine-tune the object data. This method could effectively im-
prove the segmentation effect. FCNs were used to solve semantic-level image segmentation
and pixel-level classification of images, which further developed the problem of weed
segmentation. However, this method only classified each pixel without considering the
relationship among pixels.

4.3. Weed Detection and Identification Methods Based on Semi- and Unsupervised
Feature Learning

Supervised deep neural networks rely on artificially annotated data; even with the
use of rotation and cropping data enhancement techniques, at least hundreds of anno-
tated images are still required for supervised training. Relevant scholars began to study
semi-supervised learning with only a small amount of labeled data and unsupervised
feature learning without data labeling [142,143]. Hu et al. [34] proposed a new image-based
deep learning architecture called Graph Weed Network (GWN). The purpose is to identify
multiple types of weeds from RGB images collected from complex pastures. GWN can be
regarded as a semi-supervised learning method, which alleviates the complex annotation
task. The evaluation on the DeepWeeds dataset reached the highest accuracy of 98.1% at the
time. Jiang et al. [144] proposed semi-supervised GCN-ResNet101 to improve the recogni-
tion accuracy of crops and weeds in a limited labeled dataset, combining the advantages of
CNN features and the semi-supervised learning capability of the graph. Tang et al. [145]
combined k-means unsupervised feature learning with the advantages of multilayered and
refined CNN parameters as a pretraining process for the identification of weeds in soybean
seedlings. This method replaces the random initialization weights of traditional CNN
parameters, which effectively proves that this method is more accurate than randomly
initialized convolutional networks. Bah et al. [146] proposed an automatic learning method
for weed detection in the UAV images of bean and spinach fields, which was based on CNN
and an unsupervised training dataset. Experimental results proved that the performance
of this method was close to that of supervised data labeling. Ferreira et al. [33] tested two
latest unsupervised deep clustering algorithms by using two public weed datasets. They
proposed to use semiautomatic data labeling for weed identification. Compared with
manually marking each image, semiautomatic data labeling could reduce the marking cost
by hundreds of times. Then, NMI and unsupervised clustering accuracy indexes were used
to evaluate the performance of pure unsupervised clustering. The use of unsupervised
learning and clustering on agricultural issues will continue to be the direction of continuous
development.
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4.4. Other Deep Learning Methods

Researchers have proposed various other deep learning methods to solve the problem
of weed detection and achieved good results. For example, Sadgrove et al. [147] proposed
the Color Feature Extreme Learning Machine (CF-ELM). It is an implementation of the
Extreme Learning Machine (ELM, which is a single-layer feed-forward neural network. It
has a partially connected hidden layer and a fully connected output layer and uses three
color inputs instead of the standard grayscale input. The authors used the inputs in three
different color systems of HSV, RGB, and Y'UV to test and compare the accuracy and time
consumption with those of the standard grayscale ELM. The proposed method performed
well on three datasets: weed detection, vehicle detection, and population detection. It is
highly suitable for use in agriculture or pastoral landscape. Abdalla et al. [148] compared
three transfer learning methods based on VGG16 for semantic segmentation of high-density
weed and oilseed rape images. Annotated images were trained end to end through the
extensive use of data enhancement and transfer learning. The fine-tuning was based on
the VGG16 encoder for feature extraction, and shallow machine learning classifiers were
used for segmentation. Raja et al. [149] proposed a real-time online weed detection and
classification algorithm based on crop signal for lettuce. The spraying mechanism was
combined with a machine vision system to realize the classification task in the case of
high weed density and achieve the purpose of precise spraying of weeds with herbicides.
Khan et al. [150] proposed a small-cascaded encoder-decoder (CED-NET) architecture to
distinguish crops from weeds, in which each level of the encoder and decoder network
was independently trained for crop or weed segmentation. This network was compared
with other state-of-the-art networks in four public datasets. The experiment proved that it
was superior to U-Net, SegNet, FCN-8s, and DeepLabv3.

All in all, in order to further compare deep learning methods. Table 5 summarizes
the five architectures and comparison experiment group. The five frameworks are Convo-
lutional Neural Networks, Regional Proposal Networks, Fully Convolutional Networks,
Graph Convolutional Networks, and Hybrid Networks. The order of comparison experi-
ment accuracy is the order in “Comparison group”. Among them, Osorio et al. only gave
“Precision” but not “Accuracy”. This is different from the calculation formula of “Accu-
racy”. The specific calculation formula needs to check the current work is classification
recognition or semantic segmentation. Researchers could refer to the review written by
Hasan et al. [12], which described 23 evaluation metrics by different researchers of the
related works.
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Table 5. Comparison of the typical deep learning methods.

Ref. Crop Types Architecture Strengths Comparison Group Highest Accuracy
. Propose a low-cost Weed Identification System (WIS) using 1.CNN-WIS o
([2105119]) Not specified RGB Convoilu’ilvtniineural RGB images taken by drones as training data and applying 2.LBP ( Cl\gIlg\f\//\O’IS)
etwo CNN to build the identification model. 3.HOG
[152] Revion pr 1 A false green image was generated, which is the union of 1.Mask R-CNN (Precision) 98Y%
(2020) Lettuce Multis-pectral 8 r(: tvI; (iiosa the red, green, and near infrared bands, in order to highlight 2.HOG-SVM (Mgcks Ig— CNN;
cwo the vegetation. 3.YOLOv3 s
. Proposed a SegNet semantic segmentation method based on 1.SegNet o
(2%?]9) Rice RGB Fully ;Z?Vtgihonal FCN. Could effectively classify the pixels of rice seedlings, 2.FCN (59e2.17\1{:t)
background, and weeds in rice field images. 3.U-Net &
. Used GCN combined with state-of-the-art pre-training 1.GCN-ResNet101 o
([2104240]) Corlf;,;iestﬁuce/ RGB Graphﬁc;rxloorlll(ltlonal network (AlexNet, VGG16 and ResNet-101) to conduct 2.GCN-VGG16 G CN-9R7£1<)Ie +101)
comparative analysis on four datasets. 3.GCN-AlexNet
. AgroAVNET is a hybrid model of AlexNet and VGGNET. 1.Hybrid Network o
[30] Maise, common RGB Hybrid Network The performance is compared with AlexNet, VGGNET and (AgroAVNET) 98.23%
(2018) wheat, sugar beet ’ 2.VGGNet (Hybrid Network)

their variants and existing methods.

3.AlexNet
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5. Weeding Machinery

In addition to the intelligent detection of weeds based on computer vision technology
and to achieve spraying the target variable, autonomous agricultural robots that continu-
ously improve the accuracy and efficiency have also been widely used in weeding fields.
Researchers have relied on powerful computer vision and mechanical techniques to design
various fully automated weed control robots. Robotic weeding uses computer vision to
detect crops and weeds and selectively applies herbicides to the detected weeds [133] or
eliminates weeds among rows [153,154] to achieve the purpose of precision agriculture.
Raja et al. [155] proposed a weed knife control system based on a robot vision-based 3D ge-
ometric detection algorithm. Corresponding mechanical knife devices were also designed
for automatic control of weeds in tomato and lettuce fields, which could work efficiently in
a high-weed density environment. The system proposed by Kounalakis et al. [123] was
mainly used to detect a specific plant on grassland, which would cause health, yield, and
quality problems if eaten by animals. The implementation of this method relied on the de-
sign of a robot platform that could accurately detect the plant. The research of Chechliriski
et al. [135] mapped a weeding device, which would be installed behind a tractor, and the
weeding tool would be installed behind a camera. The weeding tool could be replaced
with insecticide or steam nozzles. Compared with traditional methods, intelligent weeding
machines and equipment save manpower, are efficient, and can increase productivity. The
future development direction of agricultural machinery will be to develop more efficient
and multitask automatic machinery and equipment.

6. Discussion
6.1. Various Weed Detection Tuasks

The tasks of weed detection are diverse. Through literature analysis, they are mainly
reflected in the following aspects:

(1) Different crops and weed species and diverse problems for the detection of various
species. When a crop is similar to associated weeds, the detection is difficult. Relevant
research has only classified and identified the leaves of specific plants rather than
actual field images in a complex background, as shown in Figure 2. When applied to
weed detection in the field, the accuracy is low and the stability is poor.

(2) Different datasets and evaluation indicators. At present, few public datasets are
available. Consequently, many studies have been conducted on the basis of self-built
datasets. Even if the main body of some datasets is the same crop, the portability of
the algorithm is poor under different growth periods, illumination, and actual field
backgrounds. Relevant evaluation indicators are not comparable due to the different
basis of the dataset developed by the algorithm. The actual performance is difficult to
determine.

(a) (b)

Figure 2. Plant leaves in different backgrounds: (a) is the plant leaf image taken in a controlled
laboratory environment; (b) is the plant leaf image obtained from the Deepweeds dataset [21], which
is shot on-site to capture the true view of the whole plant).



Sensors 2021, 21, 3647

17 of 23

6.2. Multiple Complex Factors Affect Weed Detection

The natural properties of weeds are complex, with a wide variety of species, wide
distribution, numerous leaf shapes and sizes, and random growth, forming various texture
features. In the bud stage of weeds, most plants are small in size, vary in appearance, and
have high germination density. As a result, accurate statistics is difficult to perform. The
main factors affecting the performance of weed detection are as follows:

(1) The influence of different growth stages. Most plants change their leaf morphology,
texture, and spectral characteristics in different seasons or growth and development
stages.

(2) The influence of changing light conditions. When light conditions are different,
the shade of the plant canopy and the angle of the sun will affect the color of the
vegetation. Some scholars have used the ultra-green index and the Otsu algorithm to
solve the problems caused by ambient light. In particular, Atrand et al. [156] solved
the problems by using camera filters and different types of cameras. HIS color model
was also applied, and grayscale images with H component were generated to reduce
the impact of uneven lighting on color images [157].

(3) Influence of overlapping leaves and occlusion. The accurate segmentation of plants is
a challenging task. In complex actual field images, overlapping leaves, occlusions,
leaf shadows, dead leaves, and damaged leaves will make it impossible to segment
the leaves effectively when processing the images.

(4) Bottleneck of weed detection. Factors, such as hardware, algorithm complexity,
and plant density, limit the actual detection speed or accuracy. Hence, fast image
processing and accurate weed identification remains extremely important challenges.

7. Summary and Outlook

This article reviews the work of researchers using traditional machine learning and
deep learning methods in computer vision technology in recent years. Four traditional
characteristics and their advantages and disadvantages in traditional ML methods are
analyzed. The respective characteristics of related work based on deep learning algorithms
are introduced. Related public datasets and weeding machinery are also presented. Lastly,
the future work of weed detection is prospected. In the past two decades, weed detection
has made great progress. On the basis of traditional machine learning methods and deep
learning-based weed detection methods, high levels of automatic weed detection and
weeding have been achieved using various platforms and mechanical equipment. These
methods have laid a good foundation for achieving high efficiency and precise weeding
in the future. In the future, weed detection and related fields will have the following
development trends:

(1) Further research on semi- or unsupervised feature learning will be a hotspot of weed
detection in the future. Researchers have obtained good results in diverse specific
background, but they still lack generality and robustness. Deep learning-based meth-
ods show an encouraging promise, but the large number of labeled samples increases
the manual requirements. The verification and comparison of new development algo-
rithms also require sufficient sample size and corresponding ground truth datasets.
Compared with various weeds, field crop images are relatively easy to obtain. In
view of the above reasons, weed detection methods based on semi- or unsupervised
feature learning will continue to be a popular research topic in the future.

(2)  With the use of the technology of weed detection and accumulation to develop an
automatic crop guidance system, agricultural operations can be carried out in various
aspects, such as harvest, weeding, spraying, and transportation. Automatically
guided agricultural vehicles do not fatigue and reduce the labor intensity of the
operator, thus improving efficiency and safety. However, at present, few methods
and devices meet the high requirements of practical applications. Considerable work
should be done to develop equipment with high performance and cost efficiency.
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(3) Traditional and deep learning methods have their own advantages. In the future,
the advantages of the two methods should be fully utilized for further research. To
improve the level of weed detection and weeding, solutions have been proposed to
solve the difficult practical problems, such as plant illumination, overlapping leaves,
occlusion, and classifier or network structure optimization.
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