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Abstract: Complex marine environment has an adverse effect on the object detection algorithm
based on the vision sensor for the smart ship sailing at sea. In order to eliminate the motion blur
in the images during the navigation of the smart ship and ensure safety, we propose SharpGAN, a
new image deblurring method based on the generative adversarial network (GAN). First of all, we
introduce the receptive field block net (RFBNet) to the deblurring network to enhance the network’s
ability to extract blurred image features. Secondly, we propose a feature loss that combines different
levels of image features to guide the network to perform higher-quality deblurring and improve
the feature similarity between the restored images and the sharp images. Besides, we use the
lightweight RFB-s module to significantly improve the real-time performance of the deblurring
network. Compared with the existing deblurring methods, the proposed method not only has better
deblurring performance in subjective visual effects and objective evaluation criteria, but also has
higher deblurring efficiency. Finally, the experimental results reveal that the SharpGAN has a high
correlation with the deblurring methods based on the physical model.

Keywords: image deblurring; object detection; smart ship; GAN

1. Introduction

Smart ships use the equipped sensors to percept the surrounding environment (for
example, obstacles, such as ships, buoys, etc.) without the help of sailors. The perception
information is analyzed and processed through the computer and control system to make
recommendations for ship’s navigation decisions. In addition, smart ships also need to
realize autonomous navigation based on planned navigation routes in different sailing
scenarios and complex environmental conditions such as open waters, narrow waterways,
entering and leaving ports, and docking and leaving docks.

Smart ships can be divided into three modules: the perception module, the decision-
making module, and the control module. The perception module provides obstacles and
ship motion information for the decision-making module by perceiving the ship’s motion
state and surrounding environment. The decision-making module uses the information
provided by the perception module to plan a safe route for the ship’s navigation. The
control module controls the course and speed of the ship according to the route planned by
the decision-making module.

In the perception module, the visual perception based on visible light is the core of
the perception technology of smart ships. Vision sensors (such as cameras) are significant
sensors for detecting and identifying the obstacles. However, the performance of visual
sensors to identify obstacles is obviously degraded by the motion of ship, especially
if the ship is affected by wind, wave, and current, which leads to motion blur of the
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objects in the image and weakens the objects’ feature. This will reduce the accuracy of the
visible light-based obstacle object detection algorithm, which makes it difficult to provide
accurate obstacle avoidance information for the subsequent decision-making module,
thereby reducing the safety performance of smart ships. Furthermore, the ship running on
the water is very different from the car running on the land. Due to the large inertia and
small damping, its movement flexibility is very poor, so it is necessary to detect the obstacle
information in advance as far as possible. Therefore, in order to ensure the navigation safety
of smart ships, effectively removing motion blur from the images is of great significance.

Since the image deblurring problem is ill-posed, the traditional deblurring methods [1–9]
set up some constraints (such as uniform blur/non-uniform blur) and combine the prior
information of the blurred images to establish a corresponding mathematical model to
solve the latent sharp images. These methods have very high computational complexity,
and the deblurring effect of the models also has great dependence on the setting of model
parameters. In addition, since the establishment of the models relies on the corresponding
constraints, these methods are difficult to adapt to the actual deblurring problems. With
the rapid development of deep learning in recent years, many image deblurring meth-
ods based on convolutional neural networks and generative adversarial networks have
been proposed [10–14]. Most of these methods improve the network’s ability to extract
image features by stacking a large number of convolutional layers or ResBlocks (residual
blocks) [15], while obtaining a larger range of receptive fields to improve the quality of
restored images. These methods have achieved good deblurring effects, but the ability of
simply stacked convolutional layers to extract image features is not sufficient. Secondly,
although it is important to improve the clarity of blurred images, it is also necessary to
ensure that restored images, and sharp images have highly similar image features. The
existing deep-learning-based image deblurring method [14] uses the conv_3-3 layer of
the VGG19 (Visual Geometry Group) network [16] to construct the content loss function
to improve the feature similarity between the restored images and the sharp images, but
this does not make full use of the powerful image feature extraction ability of the VGG19
network. Moreover, in actual navigation, the obstacles around the ship are dynamically
updated. New obstacles need to be identified and avoided in time to prevent collisions
between ships and obstacles. Smart ships, especially the small-sized unmanned surface
vehicles (USVs), have limited computing power, which puts forward higher requirements
for the lightweight and real-time performance of the deblurring algorithm in the perception
module. Therefore, a good image deblurring algorithm for smart ships needs to balance
the accuracy and real-time performance of deblurring. However, the existing deblurring
algorithms are difficult to make a trade-off between them. Many algorithms even need ten
seconds or more to deblur a single image [6,7,9,10,13], which greatly affects the real-time
obstacle avoidance of smart ships. Finally, unlike the physical-model-based deblurring
methods, the deblurring methods based on deep learning can directly restore the blurred
images without using the physical model to estimate the blur kernel, but the process of im-
age blurring can be modeled by the physical model. So, there should be a certain relevance
between the two methods that achieve the same goal; however, there is no experiment or
evidence to prove their relevance at present as far as we know.

In this paper, we propose SharpGAN in response to the above mentioned problems.
The contribution can be summarized as follows:

1. In order to enhance the network’s ability to extract image features and maintain better
real-time performance to adapt to the actual autonomous navigation of smart ships,
we introduce the RFB-s module into the deblurring network for the first time. It
combines the advantages of inception and dilated convolution as well as lightweight
structure and is able to effectively extract image features by simulating the perceptual
characteristics of human vision.

2. To make sure the restored images and the sharp images have more similar image
features, we proposed a new feature loss based on image features at different levels.
The feature loss is constructed using the feature maps of multiple convolutional layers
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of the convolutional neural networks (CNN), which makes full use of the powerful
image feature extraction abilities of the CNN and can better guide the deblurring
network to learn deblurring.

3. The experiments conducted on both GOPRO and Singapore Marine Dataset (SMD)
datasets reveal that the SharpGAN can restore sharper images than the existing algo-
rithms and maintain the best prediction efficiency. In addition, it can also significantly
improve the object detection performance of the blurred real sea images.

4. We attempt to reveal the relationship between the SharpGAN and deblurring methods
based on physical model through experiments, and our experimental results show
that there is a certain relevance between the two methods.

2. Related Work
2.1. Image Deblurring

The process of image blurring can be represented by the following model

IB = IS ∗ K + N (1)

where IB is the blurred image, IS is the latent sharp image, K is the blur kernel, and N is the
noise. The latent sharp image IS is convolved with the blur kernel, and noise is added to
produce the blurred image IB. According to whether the blur kernel is known or not, the
methods of image deblurring can be divided into non-blind deblurring methods and blind
deblurring methods.

Most of the early image deblurring methods are non-blind. These methods need to
deconvolve the blurred image under the condition that the blur kernel is known to solve the
restored image, such as the Lucy–Richardson algorithm [1,2], Wiener filter algorithm [17],
and algorithm based on total variational model [18]. Compared with the non-blind de-
blurring method, the blind deblurring method can restore the blurred images under the
condition that the blur kernel is unknown. Since Fergus et al. [3] successfully used the
variational Bayesian method to achieve blind deblurring of images, many blind deblurring
methods have been proposed successively. Shan et al. [4] used a piecewise function to fit
the gradient distribution of the blurred image and then used an alternate iteration method
to estimate the latent sharp image and blur kernel. Krishnan and Fergus [5] employed
the normalized sparsity measure to estimate the blur kernel, and the application of the
regularization term based on the image gradient improved the restoration effect of the
blurred images. Xu et al. [7] proposed the method based on the unnatural L0 norm to esti-
mate the blur kernel. The convolutional neural network and Markov theory were used by
Sun et al. [10] to estimate the blur kernel at the patch level to remove non-uniform motion
blur. Liu et al. [8] calculated the point spread function (PSF) based on angular velocity
of the gyroscope and then combined the Richardson–Lucy (RL) algorithm to iteratively
deblur the star image. The fully convolutional deep neural network was employed by
Gong et al. [13] to estimate the motion flow of the blurred images, and then the method
of [19] was employed to solve latent sharp images. Yan et al. [9] adopted the half quadratic
splitting algorithm to iteratively solve the latent sharp image and blur kernel based on
the light and dark channel theory. Li et al. [20] observed that natural images are full
of self-repetitive structures and can be represented by similar patterns and proposed an
improved sparse representation model for single image deblurring.

With the rapid development of deep learning in recent years, many end-to-end image
deblurring methods have been proposed. Noroozi et al. [11] added the skip connection to
the deblurring network, so that the network only needs to learn the residual between the
blurred image and the sharp image, thereby reducing the difficulty of network learning.
Nah et al. [12] used a large number of ResBlocks [15] to construct a multi-scale convolu-
tional neural network, which gradually deblurred from the low-resolution image to final
high-resolution image. Based on the generative adversarial network [21], Kupyn et al. [14]
proposed an end-to-end image deblurring network (DeblurGAN), which adopted the
PatchGAN [22], as the discriminator and the network was optimized by adversarial loss
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and content loss. Since then, Kupyn et al. [23] proposed a new deblurring method (Deblur-
GANv2) based on conditional generative adversarial network (C-GAN). DeblurGANv2
employed inceptionv2 as the backbone of the generator and combined the feature pyramid
networks (FPN) to assist the network in extracting blurred image features.

2.2. Generative Adversarial Networks

Inspired by the idea of two-person zero-sum game in game theory, Goodfellow et al. [21]
proposed the generative adversarial network (GAN), which mainly includes two archi-
tectures: the generator G and the discriminator D. Among them, the generator G uses
noise data z (z obeys Gaussian distribution or other prior probability distributions) to
generate the generated samples and makes the generated samples as real as possible to
deceive the discriminator D. That is, the generator G tries to make the discriminator D
think that the generated samples are real. The discriminator D improves its discrimination
ability by continuously discriminating generated samples and real samples to prevent itself
from being deceived by generator G, and the discrimination results (difference information
between generated samples and real samples) are fed back to the generator G to make it
generate more real samples. The training process of GAN is a game between the generator
G and the discriminator D, and the loss function of the network can be expressed as:

min
G

max
D

V(D, G) = Ex∼Pdata [log(D(x))] + Ex∼PG(x)[log(1− D(x))] (2)

where Pdata is the data distribution of the real samples, and PG is the data distribution of
the generated samples.

The proposal of GAN is extremely imaginative and creative, but its original network
structure is not perfect, and there are a series of problems such as mode collapse and
vanishing/exploding gradient. The root of these problems is that the loss function of
GAN is to minimize the JS (Jensen–Shannon) divergence between the real samples and the
generated samples. In high-dimensional space, using the JS divergence, it is often difficult
to reflect the difference between the two data distributions, so it cannot provide effective
gradient information for the network. In response to this problem, Arjovsky et al. [24]
proposed Wasserstein GAN (WGAN), which adopted Wasserstein distance to replace the
JS divergence in the loss function of original GAN and effectively reflected the difference
between the real samples data distribution and the generated samples data distribution.
The loss function of WGAN is expressed as follow:

min
G

max
D∈D∗

V(D, G) = Ex∼pdata [D(x)]− Ex∼pG(x)[D(x)] (3)

where D* is the set of 1-Lipschitz functions. In order to make the discriminator meet the 1-
Lipschitz continuity condition, Arjovsky et al. [24] employed the weight clipping method to
limit the weight of the discriminator to the range of [−c, c], but the selection of c can easily lead
to the vanishing/exploding gradient problem. For this reason, Gulrajani et al. [25] proposed
WGAN with gradient penalty (WGAN-GP), which added the gradient penalty term

Ex [||∇xD(x)||−1] 2 (4)

to the loss function of WGAN. This made the training of GAN more stable and effectively
solved the vanishing/exploding gradient problem of WGAN.

3. Proposed Method

Since the problem of image deblurring is highly ill-posed, the blurring effect of images
is affected by factors such as the noise and the relative motion between the visual sensor
and the shooting scene during the shooting process, which makes the restoration very
complicated. The traditional methods obtain the latent sharp image by establishing physical
models [1–9], but the restoration effect is highly dependent on the parameter settings in
the model. So, they are difficult to adapt to the actual deblurring problem. There are also
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some methods that adopt CNN to estimate the blur kernel and motion flow. After that,
the estimated blur information is used to deblur the image [10,13]. The efficiency of these
non-end-to-end deblurring methods are low, and it takes more than ten seconds to process
each image.

In this paper, we propose the SharpGAN based on the generative adversarial net-
work, which includes two parts: generator and discriminator. The network structure of
SharpGAN is shown in Figure 1. The generator uses the blurred image to directly gen-
erate the restored image and makes the restored image as sharp as possible to deceive
the discriminator. It tries to make the discriminator think that the generated restored
image is the sharp image. The discriminator prevents itself from being deceived by the
generator through continuously discriminating the restored image and the sharp image in
the high-dimensional space, and the difference information between them (discrimination
result) is passed to the generator to guide it to generate the higher-quality restored image.
The game between the generator and discriminator improves the deblurring performance
of SharpGAN. In addition, the abstract difference between the blurred image and the sharp
image is difficult to express through specific mathematical models or loss functions. How-
ever, as a generative model, GAN can effectively capture the feature differences between
different data features and achieve effective end-to-end motion deblurring, which has
unique advantages in deblurring tasks.

Figure 1. The architecture of the SharpGAN network. The generator of SharpGAN has 4 convolutional layers, 2 deconvolu-
tional layers and 9 RFB-s modules, and the discriminator is similar to PatchGAN [22].

When the training of SharpGAN is completed, the generator has learned how to
deblur under the guidance of the discriminator during the training process. So, in real
application, we just need to deploy the model of the generator on the smart ship and input
the blurred image to the generator to get the restored image. There is no need for the sharp
image and discriminator.

3.1. Network Architecture
3.1.1. Generator

In the proposed SharpGAN, the generator uses the blurred image as the input to
generate the latent sharp image, as in [14]. The front end of generator uses 3 convolutional
layers to initially extract the blurred image features, and the back end of generator uses 2
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deconvolutional layers and 1 convolutional layer to reconstruct the restored image with the
same resolution as the input. The main difference with [14] is that in the middle part of the
generator, the ResBlocks is replaced by 9 receptive field block net (RFBNet) modules [26],
which makes the generator more powerful in image feature extraction. RFBNet has two
structures: RFB and RFB-s. In order to make generator more lightweight and improve the
real-time performance of deblurring, we chose the RFB-s module with fewer parameters as
the part of the generator, and its network structure is shown in Figure 2.

Figure 2. The architecture of the RFB-s module [26].

The RFB-s module can be divided into 5 branches. Each branch first uses a 1 × 1
convolutional layer to reduce the dimension of the input data, so the network requires less
calculation. Motivated by residual network’s (ResNet) skip connection [15], a branch called
Shortcut is directly connected to the activation layer of the module. Meanwhile, inspired
by the network structure of Inception [27–29], convolution kernels of different sizes are
set in the other branches of the module. The advantages are that convolution kernels of
different sizes can obtain different receptive fields, which are able to enhance the scale
adaptability of the module to input samples and capture different levels of information in
the image. At the end of the branch, the dilated convolution is employed. Compared with
the ordinary pooling process, the dilated convolution expands the receptive field without
reducing the image resolution, which is beneficial to enrich the image features extracted by
the module [30]. After the dilated convolution processing, the four branches are spliced in
the channel dimension and processed by 1 × 1 convolution, then merged with the data of
another branch, and finally, output by the Relu activation layer.

In addition to the RFB-s modules, the generator network has 4 convolutional layers
and 2 deconvolutional layers. Instance normalization is used to normalize the output results
of all convolutional layers to speed up the network training process. Except for the last
convolutional layer, which adopts tanh as the activation function, all other convolutional
layers adopt Relu.

In this paper, referring to the method of [11], the global skip connection is employed
in the generator, which adds the input of the network directly to the output. In this way,



Sensors 2021, 21, 3641 7 of 18

what the generator learns is the residual between the blurred images and the sharp images.
It can be denoted:

IS = IB + IR (5)

where IR is the residual between the latent sharp image IS and blurred image IB. The
principle behind is that, since blurred images and sharp images have many similar image
features in terms of color and style, compared to letting the network learn the mapping
from blurred images to sharp images, only letting it learn the residual between them can
reduce the difficulty of learning and make it converge faster during the training process.

3.1.2. Discriminator

In the proposed network, the discriminator is responsible for discriminating sharp
images and restored images. While continuously improving the discrimination ability, the
discriminator also feeds back the discrimination results (adversarial loss) to the generator
to guide the generator’s learning.

The discriminator in our network is similar to PatchGAN [22]. Different from the
ordinary discriminator, PatchGAN divides the entire image into several patches, and the
output discrimination result is a two-dimensional matrix. Each element in the matrix
represents the discrimination result of the corresponding patch. Obviously, PatchGAN is
able to guide the generator to perform deblurring learning more precisely than the ordinary
discriminators.

3.2. Loss Function

In this paper, the loss function includes three components: adversarial loss, feature
loss, and L2 loss.

3.2.1. Adversarial Loss

Since the adversarial loss of the original GAN has many problems such as mode
collapse and vanishing/exploding gradient, in order to avoid these problems and make the
training process of SharpGAN more stable, the Wasserstein distance [24] with the gradient
penalty [25] is used to represent the adversarial loss, which can be denoted by

Ladv =
N

∑
n=1

(D(IS)− D(G(IB))) + λGP · Ex [||∇xD(x)||−1] 2 (6)

where N is the number of images, D is the discriminator, G is the generator, and G(IB) is
the restored image. The first item in Formula (6) represents the score of the sharp image
and the restored image by the discriminator. In the training process, the discriminator
D maximizes the adversarial loss to improve the score of the sharp image and reduces
the score of the restored image, while the generator G minimizes the adversarial loss to
improve the score of the restored image, as in [21]. That is, the confrontation between them
improves the deblurring performance of the network. The second term of Formula (6) is
the gradient penalty term, and λGP is its weight constant.

3.2.2. Feature Loss

In DeblurGAN [14], the author employed the content loss, which used the features of
conv_3-3 layer extracted from VGG19 network, to improve the feature similarity between
the restored images and the sharp images. Considering that convolutional neural network
has strong image feature extraction abilities, the image feature levels extracted from the
shallow and deep layers of the network are different. The shallow layers of the network
are good at extracting simple color, edge, and texture feature, and the deep layers of the
network are good at extracting high-level semantic feature [31]. Therefore, only using a
certain layer of the deep convolutional neural network to construct the loss function of the
feature does not make full use of the feature extraction ability of the convolutional neural
network.
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In this paper, we proposed the feature loss based on deep convolutional neural
network, which adopts the feature maps of the shallow and deep layers to fuse different
levels of image features to help the network better learn motion deblurring. This is another
major innovation of the SharpGAN. In Figure 3, we take the VGG19 network as an example
to introduce the implementation process of the feature loss.

Figure 3. The feature loss fuses the different layers of features extracted from the VGG19 network.

The VGG19 network has a total of 16 convolutional layers. When calculating the
feature loss, the sharp image and restored image are input to the VGG19 network, respec-
tively, to obtain their feature maps at different layers, and the mean square error of these
featuremaps is calculated to reflect the feature difference between the sharp image and the
restored image. In order to effectively cover the image features of different levels extracted
by the network, conv_2-2, conv_3-3, conv_4-4, and conv_5-4 layers are selected to construct
feature loss.

The features loss function is defined by:

LFi,j =
1

Wi,j Hi,j

Wi,j

∑
x=1

Hi,j

∑
y=1

(ϕi,j(IS)x,y − ϕi,j(G(IB))x,y)2 (7)

where ϕi,j is the feature map obtained by the j-th convolution (after activation) before the
i-th maxpooling layer within the VGG19 network, and Wi,j and Hi,j are the width and
height of the feature maps.

3.2.3. L2 Loss

In order to minimize the pixel error between the restored image and the sharp image,
we add the L2 loss to the loss function, as in [12]. The L2 loss function is as follow:

L2 =
N

∑
n=1

(IS − G(IB))
2 (8)

Combining adversarial loss, feature loss, and L2 loss can get the total loss of our
network:

arg
minG

arg
maxD

L(D, G) = Ladv + λF · LF − λ2 · L2 (9)

where λF is the weight constant of feature loss, and λ2 is the weight constant of L2 loss.

4. Discussion of Relevance between the Two Deblurring Methods

There are two main categories of deblurring methods in the literature as mentioned
above: deep-learning-based and physical-model-based. The former is mostly based on
generative adversarial network (GAN) or convolutional neural network (CNN) to achieve
end-to-end deblurring, and the process of deblurring does not need to estimate the blur
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kernel [11,12,14]. The latter usually can be divided into three parts: estimation of blur
kernel, deconvolution and removing noise, and iterative optimization, as in [4]. The
theoretical basis of these methods is Formula (1), and their deblurring process can be
expressed by the Formula (10), which is the inverse process of Formula (1).

IS= (IB − N) ∗ K−1 (10)

Compared with the deblurring methods based on the physical model, we find that
the deblurring method based on deep learning (SharpGAN) is highly similar to them. We
can also divide the network structure of SharpGAN into three parts. The first part is the
RFB-s modules and the convolutional layers before them in the generator. The second part
is the deconvolutional layers in the generator and the convolutional layers after them. The
third part is the discriminator. The first part can be seen as extracting the features of the
blurred image through continuous convolution to estimate the blur kernel K. The second
part uses the blur kernel K to deconvolve the blurred image and remove noise. The third
part is responsible for identifying the effect of the restored image and iteratively guiding
the deblurring of the first and second parts (generator). Therefore, from a macro point of
view, we believe that the two methods are essentially related, and the process of deblurring
are both based on Formula (10).

It is very interesting to reveal the relationship between these two categories of methods.
In this paper, we take the SharpGAN as an example to build a bridge between these two
methods from couple perspectives: the mapping from the sharp (restored) image to the
blurred image and the residual between the sharp (restored) image and the blurred image.

4.1. Relevance between Blurred Images

Assuming that the essence of SharpGAN is Formula (10). Then, the blurred image IB_G,
which is obtained by implementing Formula (1) (i.e., the inverse process of Formula (10))
on the restored image IG of SharpGAN, as shown in Formula (11), should be highly similar
to the original blurred image IB.

IB_G = IG ∗ K + N (11)

4.2. Relevance between Residuals

Considering that SharpGAN learns the residuals of the blurred image IB and the sharp
image IS, we also attempt to prove the relevance between the SharpGAN and deblurring
method based on the physical model from the perspective of the residuals.

It can be derived from Formulas (1) and (5) that

IR_S = IS − IB = IS − (IS ∗ K + N) (12)

where IR_S is the residual between the sharp image and the blurred image.
We also assume that the essence of SharpGAN is Formula (10). Furthermore, the

residuals IR_G, which is obtained by replacing the sharp image IS in Formula (12) with the
restored image IG of SharpGAN, as shown in Formula (13), should also be highly similar
to IR_S.

IR_G = IG − (IG ∗ K + N) (13)

Due to the complexity of deep-learning-based method, its deblurring process is diffi-
cult to visualize. So, we attempt to prove that the essence of deblurring method based on
deep learning (SharpGAN) is Formula (10) through experiments and then prove that the
two methods are related in Section 6.3.

5. Training

In this paper, the GOPRO [12] and Singapore Marine Dataset (SMD) datasets [32] are
exploited to reveal the performance of the proposed SharpGAN.
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The GOPRO dataset [12], which is widely used in the community of deblurring,
employs high frame rate cameras to record videos of different dynamic scenes. The average
value of multiple consecutive frames in the video is adopted to simulate real blurred
images. There are 2013 and 1111 blurred and sharp image pairs in the training set and the
test set, respectively.

The SMD dataset [32] is taken in the sea area near Singapore port and divided into
two parts: on-shore video and on-board video. We randomly select 3000 images from the
SMD dataset, of which 1500 are employed as the training set, 500 are employed as the test
set, and 1000 are employed as the dataset of relevance experiment. Then, the motion blur
is added to the sharp SMD dataset based on the Formula (1). For smart ships, motion blur
is caused by the swaying motion of the ship in the navigation. This will blur the entire
image captured by the vision sensor, which is a global motion blur. Due to the influence
of wind, waves, and currents, smart ships will undergo heave, trim, roll, pitch, and other
motions during navigation. These motions are random, and the direction and distance of
the motions are variable. To better fit the actual motion blur problem, we set multiple blur
sizes from 16 to 40 pixels, and the blur angle is randomly sampled from 0 to 360◦ with
uniform distribution, as in [33,34]. Finally, we add Gaussian white noise with standard
deviation σ = 0.01 to each blurred image. After the above process, the total images in
the training set, test set, and dataset of relevance experiment are 3000, 1000, and 2000,
respectively.

The training process has a total of 500 epochs for each dataset. The learning rate is set
to 10−4 in the first 250 epochs and linearly decays to 0 in the last 250 epochs. The batch size
in the training stage is set to 1. In order to balance the proportion of each loss in the total
loss, we set the weight constant λGP of gradient penalty term to 10, the weight constant
λ2 of L2 loss to 106, and the weight constant λF of feature loss to 1. Through experiments,
we determined that the conv_2-2, conv_3-3, conv_4-4, and conv_5-4 layers of the VGG19
network [16] accounted for 0.2, 0.4, 0.2, and 0.2 in the feature loss. So, the final feature loss
in the experiment is denoted as:

LF = 0.2LF2,2 + 0.4LF3,3 + 0.2LF4,4 + 0.2LF5,4 (14)

In the training stage, we proposed a multi-scale training method. In each step of
the training process, we randomly select a scale from 256 × 256, 384 × 384, 512 × 512,
and 640 × 640 to crop the images used for network training to adapt to different scales of
motion blur. After that, the random mirror or geometrical flip is employed to the cropped
images to augment the training set.

In order to more clearly reveal the improvement of network performance, we have
successively employed the RFBNet module, the feature loss with multi-level image features,
and the multi-scale training method to the network. The specific information of each model
in the training process is shown in Table 1, where the training of Baseline Model and
Baseline Model+ used image patches with a size of 512 × 512.

Table 1. Components of each model.

Method Components

Baseline Model RFBNet + content loss based on the conv_3-3
layer of the VGG19 network

Baseline Model+ RFBNet + feature loss with multi-level image
features

SharpGAN RFBNet + feature loss with multi-level image
features + multi-scale training

6. Experimental Results

We implement our model with TensorFlow, and all the following experiments are
performed on a single NVIDIA GeForce GTX 2080Ti GPU and 4 Inter Core i3-10100 CPUs.
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The peak signal to noise ratio (PSNR) and structural similarity (SSIM) are selected as the
evaluation criteria of the experiments. The two criteria, respectively, measure the quality of
image restoration in terms of pixel error and structural similarity (brightness, contrast, and
structure). The better the quality of the restored image, the higher the two criteria.

6.1. GOPRO Dataset

In the field of motion deblurring, the GOPRO dataset [12] is one of the most popular
datasets. In order to verify the deblurring performance of SharpGAN, we first compared it
with the existing algorithms on the GOPRO dataset. The experimental results are shown
in Table 2. It can be seen from Table 2, SharpGAN has obvious advantages in PSNR and
real-time performance of deblurring and has a slight gap in SSIM compared with the
method of [12].

Table 2. The experimental results of different methods on the GOPRO dataset.

Method Main Property PSNR SSIM Time Hardware

Whyte et al. [6]

Based on
geometric

properties of
cameras

23.80 0.836 30 min 4 CPUs

Sun et al. [10]
Estimating blur
kernel based on

CNN
24.64 0.843 18 min 4 CPUs

Gong et al. [13]
Estimating motion

flow based on
CNN

26.06 0.863 18 min 4 CPUs

Nah et al. [12] Based on
multi-scale CNN 29.23 0.916 1.13 s Single GPU

Kupyn et al. [23] Based on GAN
and FPN 27.63 0.855 0.18 s Single GPU

SharpGAN

Based on GAN,
RFBNet, feature

loss, and
multi-scale

training

29.62 0.897 0.17 s Single GPU

Figure 4 shows that SharpGAN has the excellent deblurring effect in complex dynamic
scenes. It avoids unnatural visual effects such as edge distortion and excessive sharpening.
Compared with the contrast methods, it has a better ability to restore the texture details of
the objects in the blurred images, such as the outline of pedestrian legs, billboards on the
street, and the edges of petals. Besides, it can also significantly reduce the artifacts of the
restored images. So, the restored images of SharpGAN are more real and natural.

6.2. SMD Dataset

To verify the effectiveness of SharpGAN in removing motion blur of real sea images,
we evaluated it on the SMD dataset [32]. The quantitative results of different methods are
reported in Table 3.



Sensors 2021, 21, 3641 12 of 18

Figure 4. The deblurring results of GOPRO dataset [12]. From top to bottom: blurred images,
the results of Sun et al. [10], Gong et al. [13], Nah et al. [12], Kupyn et al. [23], and the results of
SharpGAN.

In Table 3, the PSNR of Baseline Model is higher than that of all the methods in the
comparison. By introducing the feature loss with multi-level image features and multi-scale
training method to the network, both PSNR and SSIM are gradually improved. Though
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the SSIM of SharpGAN has a very small gap with the method of [12], it produces the
best results on the PSNR criterion. While maintaining the high-quality deblurring, the
proposed method also significantly shortens the deblurring time. It reserves more time
for the subsequent detection algorithm to detect obstacles, which is of great help to the
autonomous navigation of smart ships.

Figure 5 displays some visual examples of the SMD dataset [32]. Compared to the
other methods, SharpGAN can more effectively improve the clarity of the blurred image
and better restore the complex edge and texture of the ships’ mast, hull, and superstructure.
The restored images retain the original detail information well, and there is no obvious
ringing phenomenon.

Table 3. The experimental results of different methods on the SMD dataset.

Method Main Property PSNR SSIM Time Hardware

Xu et al. [7]

Estimating blur
kernel based on

unnatural L0
sparse

representation.

28.59 0.792 18.68 s 4 CPUs

Yan et al. [9]
Based on light and

dark channel
theory

27.24 0.637 10 min 4 CPUs

Nah et al. [12] Based on
multi-scale CNN 30.88 0.856 2.11 s Single GPU

Kupyn et al. [14] Based on GAN 25.75 0.596 0.57 s Single GPU

Kupyn et al. [23] Based on GAN
and FPN 29.05 0.799 0.39 s Single GPU

Baseline Model Based on GAN
and RFBNet 31.71 0.832 0.37 s Single GPU

Baseline Model+
Based on GAN,

RFBNet, and
feature loss

31.84 0.835 0.37 s Single GPU

SharpGAN

Based on GAN,
RFBNet, feature

loss, and
multi-scale

training

31.90 0.837 0.37 s Single GPU

Since object detection is an important part of the visual perception of smart ships,
we adopt the pretrained Single Shot MultiBox Detector (SSD) ship object detection model
of [35] to detect the blurred images, sharp images, and restored images of different methods
to verify the improvement of the object detection effect of SharpGAN.

Table 4 lists the quantitative detection results of different methods. SharpGAN is
superior to its competitors in precision, recall, and F1 score, and there is a slight gap
compared to the results of sharp images.

Table 4. Quantitative detection results of SMD dataset.

Method Precision Recall F1 Score

Blurred images 0.453 0.339 0.388
Nah et al. [12] 0.590 0.429 0.497

Kupyn et al. [14] 0.533 0.372 0.438
Kupyn et al. [23] 0.544 0.403 0.463

SharpGAN 0.622 0.445 0.519
Sharp images 0.625 0.445 0.520

Figure 6 shows that SharpGAN produces the best object detection results. It can better
reconstruct the contour features of the objects compared to all contrast methods, especially
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small objects, so that the detection results of the restored images are able to approach to
that of the sharp images. These qualitative and quantitative results explain that SharpGAN
is of great significance to the visual perception and navigation safety of smart ships.

Figure 5. The deblurring results of SMD dataset [32]. From top to bottom: blurred images, results
of Xu et al. [7], Yan et al. [9], Nah et al. [12], Kupyn et al. [14], Kupyn et al. [23], and the results of
SharpGAN.
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Figure 6. The object detection results of the SMD dataset [32]. From top to bottom: results of blurred
images, Nah et al. [12], Kupyn et al. [14], Kupyn et al. [23], SharpGAN, and the results of sharp
images.

6.3. Relevance between the Two Methods

Based on the discussion in Section 4, we attempt to reveal the relationship between the
deep-learning-based method and the physical-model-based method. We at first generate
the blurred images IB using 1000 sharp images IS in the SMD dataset [32] with Formula (1),
while preserving the corresponding blur kernels K and noise N. The specific technical
information of the blur kernel K and noise N is as stated in Section 5. Secondly, we input
the blurred images IB into SharpGAN trained with a different number of epochs to obtain
a series of restored images IG. The epochs we selected are from 0 to 500 with the interval of
50. Finally, we used the above IS, IG, K, and N to generate corresponding IR_S, IR_G, and
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IB_G based on Formulas (11)–(13). After that, we calculated the SSIM and MSE of IR_S and
IR_G, and SSIM and PSNR of IB and IB_G, respectively.

It can be seen from Figure 7a that when the training epoch of SharpGAN increases, the
SSIM of IR_S and IR_G also increases; in contrast, the MSE gradually decreases. Figure 7b
also shows that as SharpGAN’s training epoch increases, the PSNR and SSIM of IB and
IB_G also increase. The experimental results show that the essence of SharpGAN can be
expressed as the Formula (10) to some extent. So, combined with the discussion in Section 4,
it is reasonable to believe that the deblurring method based on deep learning (SharpGAN)
has a high correlation with the method based on the physical model.

Figure 7. Relevance experiment results. (a) The SSIM and MSE of IR_S and IR_G; (b) the SSIM and PSNR of IB and IB_G.

7. Conclusions

In this paper, we proposed SharpGAN, a new deblurring method based on the gener-
ative adversarial network, and attempted to reveal the relevance between the deblurring
method based on physical model and SharpGAN through experiments. The RFBNet mod-
ule [26] was introduced into the deblurring network, and the feature loss was proposed
to fuse multi-level image features. The experimental results showed that SharpGAN had
outstanding real-time performance while ensuring high-quality deblurring. Compared
with the existing methods, it had obvious advantages in both qualitative and quantitative
aspects and can also improve the object detection effect of blurred real sea images.

By using the real sea image dataset and combining a variety of blur parameters to
construct the experimental training set, the generalization ability of SharpGAN has been
obviously improved, so that it is possible to maintain a certain deblurring effect under
unknown scenes. However, the training set cannot cover all scenarios, i.e., the data cannot
be obtained in advance in all navigation scenarios. Therefore, in future work, we will try
to adopt self-supervised or unsupervised learning methods to better fit the autonomous
navigation of smart ships.
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