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Abstract: Dual-parameter measurements of refractive index and methane concentration based on
electromagnetic Fano resonance are proposed. Two independent Fano resonances can be produced
through electric dipole and toroidal dipole resonance in an all-dielectric metasurface separately.
The linear relationship between the spectral peak-shifts and the parameters to be measured will be
obtained directly. The refractive index (RI) sensitivity and gas sensitivity are 1305.6 nm/refractive
index unit (RIU), −0.295 nm/% for one resonance peak (dip1), and 456.6 nm/RIU, −0.61 nm/%
for another resonance peak (dip2). Such a metasurface has simpler structure and higher sensitivity,
which is beneficial for environmental gas monitoring or multi-parameter measurements.

Keywords: Fano resonance; all-dielectric metasurface; dual-parameter measurement; methane sensor

1. Introduction

Fano resonance is caused by the destructive interference between dark mode and
bright mode in the near field [1,2]. At the Fano resonance position, the system radiation
attenuation can be effectively suppressed. Such a resonance effect will lead to larger
field enhancement and a finer spectrum, which is beneficial for achieving greater sens-
ing sensitivity. A metasurface based on Fano resonance has more and more applications
due to its unique optical properties, and researchers have proposed many metasurface-
based optical devices in different fields, including optical filters [3], optical absorbers [4,5],
encoding images [6], and angle sensors [7]. With the rapid development of nanotechnology,
different metasurface sensors based on Fano resonance also have been reported, such as
refractive index sensors [8–12], biosensors [13–20], and gas sensors [21]. However, quite a
lot of metasurface structures are based on a metal layer [22–25], which would produce
higher Joule losses and lower quality factor. All-dielectric materials can solve the above
problem because they have much lower Joule losses. Besides this, all-dielectric materials
have many other merits, such as low cost, and a simple manufacturing process. In recent
years, all-dielectric metasurfaces have attracted many attentions. In 2018, Liu et al. pro-
posed a metasurface based on a silicon split-ring, with only one Fano resonance in the
transmission spectrum [12]. In 2019, Yildirim et al. proposed a refractive-index sensor in an
all-dielectric metasurface, which was polarization-insensitive and had a high Q-factor [26].
In 2020, Su et al. proposed an all-dielectric metasurface based on asymmetrical elliptical
ring-disks, which had a high figure of merit [27]. In 2021, Wang et al. investigated toroidal
dipole resonances at terahertz frequencies in an all-dielectric metasurface consisting of
an array of high-index tetramer clusters, which achieved an ultra-high sensitivity level of
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489 GHz/RIU [28]. It can be seen that all-dielectric devices have excellent performances.
Based on the reported research, we propose an all-dielectric metasurface based on Fano
resonance. In the transmission spectrum of this metasurface, there exist two uncorrelated
Fano resonances that are excited by the electromagnetic field coupling of electric dipole
or toroidal dipoles. The designed metasurface has simpler structure, a higher quality factor,
and relatively high sensitivity. It can be used for environmental gas monitoring or multi-
parameter measurements. Besides this, based on the previous research [29–31], it has the
potential to be used to integrate with microfluidic channels for sensing of biological analytes.

2. Design and Simulation

Based on the previous research [32–35], the far-field scattering intensity of metasurface

can be expressed by Equation (1), in which
→
P is electric dipole moment;

→
M is magnetic

dipole moment;
→
T is toroidal dipole moment; Q(e)

α,β is electric quadrupole moment’ and

Q(m)
α,β is magnetic quadrupole; the vector

→
j is the current density, respectively; c is the speed

of light; and ω is the frequency of light.

I =
2ω4

3c3 |
→
P |2 + 2ω4

3c3 |
→
M|2 + 4ω5

3c4 (
→
P ·
→
T) +

2ω6

3c5 |
→
T |2+ ω6

5c5 ∑ |Q(e)
α,β|

2
+

ω6

40c5 ∑ |Q(m)
α,β |

2
+ O

(
1
c5

)
(1)

These multipole oscillations can be expressed by Equations (2)–(6), where
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It is worth noting that the resonance characteristics and far-field distributions of
metasurfaces are mainly derived from the interference of these multipole oscillations.
That is, Fano resonance also can be generated by toroidal dipoles. Therefore, we propose
a simple metasurface structure based on electric dipoles and toroidal dipoles together.
Obviously, two uncorrelated Fano resonance peaks will appear in the transmission spectra
due to the interference of the electric dipoles and toroidal dipoles, respectively. These two
different coupling mechanisms provide an effective method for dual-parameter measure-
ment. We designed four metasurface structures having sequential transformation, as is
shown in Figure 1. The Structure-A (SA) is composed of a nanobar, and becomes Structure-
B (SB) by punching an air hole. The Structure-C (SC) is composed of two toroidal frames,
and forms Structure-D (SD) through introducing a nanobar between two frames.

As is well-known, Fano resonance is usually produced through electric dipole reso-
nance, which can be generated by the nanobar. Firstly, we started with SA for the investi-
gation. SA is composed of periodically silicon nanobar on a silica substrate, as is shown
in Figure 2a. The thickness of silicon structure and silica substrate are set as t = 110 nm,
and the length and width of the nanobar are chosen as L = 900 nm, ω = 450 nm. The period
is selected as Px = 1500 nm and Py = 750 nm, respectively.
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We use the FDTD method to analyze the spectral characteristics of the proposed 
structure. Perfectly matched layer (PML) boundary conditions are adopted in the z-direc-
tion, while periodic boundary conditions are selected in both of x and y-directions. The 
incident light is a plane wave, and we define the polarization direction of the electric field 
with respect to the x-axis as θ. The material refractive indexes of silica and silicon are 
reported in Ref. [28]. The transmission spectrum of the metasurface at θ = 0° is shown in 
Figure 2b. It can be seen that a Fano resonance appears at Aλ  = 1559 nm. The spectrum of 
this proposed metasurface can be fitted by the Fano model [11] shown as Equation (9), 
where a1, a2, and b are constant numbers, 0ω  is the oscillation frequency, and γ  is the 
damping factor. Then, the Q factor of Fano resonance can be calculated by the following 
Equation (10). The Q-factor of Fano resonance at 1559 nm is about 329.35 ( 0 V0.9 e1 ω = , 
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Figure 2. (a) The multi-view of Structure-A (SA). (b) The transmission spectrum and electric field
(EZ) distributions of the metasurface SA.

The finite-difference time-domain (FDTD) method [36] can solve Maxwell’s differential

equations as Equations (7) and (8), where
→
E is electric field,

→
D is electrical displacement,

→
H is magnetic field,

→
j is current density, and

→
jm is magnetic current density, Through this

method, we can calculate the electric field and magnetic field in space.
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We use the FDTD method to analyze the spectral characteristics of the proposed
structure. Perfectly matched layer (PML) boundary conditions are adopted in the z-
direction, while periodic boundary conditions are selected in both of x and y-directions.
The incident light is a plane wave, and we define the polarization direction of the electric
field with respect to the x-axis as θ. The material refractive indexes of silica and silicon are
reported in Ref. [28]. The transmission spectrum of the metasurface at θ = 0◦ is shown in
Figure 2b. It can be seen that a Fano resonance appears at λA = 1559 nm. The spectrum
of this proposed metasurface can be fitted by the Fano model [11] shown as Equation (9),
where a1, a2, and b are constant numbers, ω0 is the oscillation frequency, and γ is the
damping factor. Then, the Q factor of Fano resonance can be calculated by the following
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Equation (10). The Q-factor of Fano resonance at 1559 nm is about 329.35 (ω0 = 0.91 eV,
γ = 1.38× 10−3eV).

Tfano =

∣∣∣∣a1 + ia2 +
b

ω−ω0 + iγ

∣∣∣∣2 (9)

Q =
ω0

2γ
(10)

In order to explore the Fano resonance mechanism of SA, we calculated the z-component
of electric field (EZ) distributions of the proposed metasurface at the wavelength of
λA1 = 1554 nm, and λA2 = 1588 nm, respectively, as is shown in Figure 2b. From the
EZ distribution, there are two antiphase modes that appeared in the metasurface at λA1,
and λA2, and the interference between these two antiphase modes led to a Fano resonance
at λA = 1559 nm. It can be seen from the transmission spectrum of SA that the quality
factor was not high. The reason may be that the incident light is difficult to pass through
the silicon nanorods, causing the incident light (dark mode) to resonate with the electric
dipole (bright mode), and interaction is difficult, so the quality factor was not very large.
In order to solve this problem, we added a rectangular air-hole on the nanorods to make it
easier for the light to pass through the metasurface. As is shown in Figure 3a, a ring-shaped
structure SB was formed with a width of 150 nm. We speculated that this new structure
could increase the coupling strength and improve the quality factor effectively. Figure 3b
verifies the prediction and shows that the transmittance and Q-factor were greatly im-
proved. Especially, the spectrum of the structure SB can be fitted well by Equation (8),
and the Q-factor reach up to 741.53 (ω0 = 0.8 eV, γ = 0.53× 10−3eV). The fitted curve
and the calculated curve have the same resonance wavelength; however, the fitted curve is
flatter than the calculated curve. To describe the resonance mechanism of the structure SB
clearly, we plotted the z-component of electric field (EZ) distributions in the metasurface at
the wavelength of λB1 = 1549 nm, and λB2 = 1570 nm, respectively, as is shown in Figure 3c.
It can be seen that two antiphase modes appeared in the metasurface, and the interference
between these two modes led to a sharp Fano resonance appearing at λB = 1552 nm. In ad-
dition, it can be found in Figure 3d,e that the electromagnetic field was completely reflected
at the Fano-like resonance.

Although we have raised the transmittance and Q-factor based on the improved
structure SB, there existed only one resonance peak in the transmission spectrum to realize
a single-parameter measurement. According to the above analysis results, the toroidal
structure can effectively improve the quality factor. Moreover, the toroidal structure can
also excite the magnetic dipole mode under the incident light, and these two magnetic
dipoles can form a toroidal dipole having different characteristics to a conventional electri-
cal dipole. We speculated that the destructive interference of the toroidal dipole and the
incident light in the far field would produce a new Fano resonance. Next, we proceeded to
transform SB into SC to achieve a dual-parameter measurement. As is shown in Figure 4a,
SC was composed of two toroidal frames with a distance of d = 250 nm, and other
parameters were chosen to match those parameters of SB. As is shown in Figure 4b,
two resonance peaks appeared in the transmission spectrum at λC1 = 1552 nm and
λC2 = 1756 nm. Obviously, one peak was caused by the interaction between electric dipoles
and incident light, and the other was caused by the interaction between toroidal dipole and
incident light. To interpret the Fano resonance process of λC1, we plotted the z-component
of electric field (Ez) distributions at the wavelength of λC11 = 1549 nm and λC12 = 1554 nm,
as is shown in Figure 4b. The interference between these two antiphase modes led to
the first resonance peak appearing at λC1 = 1552 nm. Meanwhile, we also obtained the
z-component of magnetic field (Hz) distributions at the wavelength of λC21 = 1749 nm,
and λC22 = 1787 nm, as is shown in Figure 4b. The black arrows indicate the electric field
directions. It can be seen that the magnetic field directions and electric field directions were
in the reverse direction at the wavelengths of λC21 and λC22. The interference between the
two antiphase modes resulted in a sharp Fano resonance at λC2 = 1756 nm.
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Figure 5 indicates that the first resonance peak always exists when the distance
between two toroidal frames d increases from 0 nm to 300 nm. However, the second
resonance peak will gradually disappear due to the decrease of the interference strength
between the toroidal dipole and the incident light. In the case of d = 300 nm, there only exists
the first resonance peak and the second peak completely disappears. When d = 250 nm,
both of the two resonance peaks appear in the transmission spectrum. If we choose
d = 0 nm, there is no gap between the two toroidal frames, and the incident light is difficult
to propagate through the metasurface and interfere with the toroidal dipole. As a result,
the Q-factor is relatively low when d = 0 nm. Since the second Fano resonance may
disappear due to the increased distance d, we must precisely control the distance between
two toroidal frames in the manufacturing process to ensure that two peaks can appear
in the transmission spectrum. So, we considered adding a nanobar in the middle of the
structure. The nanobar acts as an electric dipole antenna and forms a strong coupling with
the incident electric field along the x-direction in free space. Furthermore, it interacts with
the toroidal resonator through near-field coupling to enhance the magnetic field of the
toroidal dipole, and then the disappeared resonance peak can reappear.
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A nanobar was introduced into the center of SC to become SD, as is shown in Figure 6a.
We chose the width of the nanobar Wb = 150 nm, and the length of the nanobar Lb = 600 nm.
Similarly, we plotted the z-component of electric field (EZ) distributions in structure SD
at the wavelength of λD11 = 1553 nm and λD12 = 1568 nm, as is shown in Figure 6b.
The interference between these two antiphase modes led to the first Fano resonance at
λD1 = 1556 nm.

Furthermore, we calculated the z-component of the magnetic field (HZ) distributions
in SD at the wavelength of λD21 = 1820 nm, λD22 = 1831 nm, respectively. Here, the black
arrows in Figure 6b indicate the electric field directions, and the interference between the
two antiphase modes produces the second resonance peak at λD2 = 1825 nm. Figure 6c
describes how when the anapole is produced by the composition of an electric dipole and
a toroid dipole, it can produce a destructive interference of their radiation patterns. For a
comparison between the cases of SC and SD at d = 300 nm, we plotted the transmission
spectra of the two metasurface structures in Figure 6d. It can be found that the missing
second resonance peak reappears after the introduction of the central nanobar. Next, we will
realize a dual-parameter measurement of refractive index and methane concentration based
on the structure D (SD).
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Figure 6. (a) The multiview of SD and (b) the transmission spectrum, electric field (EZ) distributions, and magnetic field
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3. Measurement and Analysis

In this section, we will explore the sensing performance of SD. Considering that the
formation mechanisms of two Fano resonances are different and the resonance peak shifts
linearly with the variation of the surrounding medium, SD can be used for dual-parameter
measurement. Based on above analysis results, we designed a dual-parameter sensor
structure, as is shown in Figure 7. The sensor structure is coated with a methane-sensitive
film with a thickness of 200 nm; the length and width of the film should cover the silicon
structure exactly. We chose a methane-sensitive material UVCFS [37–39], which is not
sensitive to temperature and humidity. Besides this, the refractive index of this methane-
sensitive film decreased linearly with the increase of methane concentration within the
range of 0–3%. For each 1% increase in methane concentration, the refractive index of the
methane-sensitive film decreased by 0.0038 within the range of 1.4478–1.4364, as is shown
in Equation (11). Since the dispersion of this material is relatively small, we can ignore the
influence of dispersion on the refractive index of the material in the simulation calculations,
and only consider the influence of gas concentration on the refractive index of this material
for the verifications.

Neff = 1.4478− 0.0038CCH4 (11)
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Figure 8a,b show the transmission spectra under different values of background in-
dex (n = 1.00, 1.005, 1.01, 1.015, 1.02, respectively) when the gas concentration CCH4 = 0.
Both dip1 and dip2 had a red-shift with the increase of the background index. The RI sensi-
tivities of dip1 and dip2 were 1307.8 nm/RIU and 474.2 nm/RIU, respectively. Figure 8d,e
describe the transmission spectra under different gas concentrations (CCH4 = 0%, 0.5%,
1%, 1.5%, respectively) when the background index n = 1.00. Here, the spectral responses
of dip1 and dip2 had a blue-shift as the gas concentration rises. The gas concentration
sensitivities of dip1 and dip2 were −0.252 nm/% and −0.608 nm/%, respectively.
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In order to get the optimal parameters of the sensor structure, we propose an effective
method to optimize the structural parameters and record the results in Table 1. To make
the structure compact and easy to integrate, we keep Px = Py = 1500nm and analyze the
influence of three typical parameters (t, w, and L) on the gas sensitivity. It can be seen from
Table 1 that the maximum sensitivity of dip1 was −0.295 nm/% at t = 110 nm, w = 500 nm,
L = 950 nm; and the maximum sensitivity of dip2 was −0.683 nm/% at t = 120 nm,
w = 550 nm, L = 950 nm. Since the sensitivity of dip2 was large enough, we chose t = 110 nm,
w = 500 nm, L = 950 nm to maximize the sensitivity of dip1. Under these optimized
structural parameters, we obtained the refractive index sensitivity of 1305.6 nm/RIU for
dip1 and 456.6 nm/RIU for dip2, respectively.
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Table 1. Parameter optimization results.

t/nm W/nm L/nm
Sensitivity/nm/%

Dip1 Dip2

110

450
850 −0.231 −0.52
900 −0.29 −0.527
950 −0.252 −0.608

500
850 −0.252 −0.54
900 −0.291 −0.55
950 −0.295 −0.61

550
850 −0.252 −0.54
900 −0.292 −0.663
950 −0.29 −0.667

120

450
850 −0.248 −0.53
900 −0.252 1.456
950 −0.291 −0.54

500
850 −0.234 −0.55
900 −0.291 −0.56
950 −0.292 −0.679

550
850 −0.237 −0.576
900 −0.236 −0.59
950 −0.292 −0.683

130

450
850 −0.252 −0.54
900 −0.234 −0.55
950 −0.255 −0.553

500
850 −0.252 −0.563
900 −0.237 −0.576
950 −0.256 −0.58

550
850 −0.233 −0.593
900 −0.237 −0.604
950 −0.294 −0.61

Based on the above results, the resonant wavelength variations of the proposed
sensor structure can be calculated through a matrix S, which is defined as Equation (12).
In Equation (12), The matrix elements SI1, SI2, SC1, SC2 represent the RI sensitivity and gas
concentration sensitivity of dip1 and dip2, respectively.

S =

∣∣∣∣ SI1 SC1
SI2 SC2

∣∣∣∣ (12)

The dual-parameter sensor can be expressed through the matrix S, and the resonant
wavelength variations can be obtained from Equation (13), where ∆λ1 and ∆λ2 represent
the resonant wavelength changes of dip1 and dip2, respectively. ∆RI and ∆C represent the
changes of RI and gas concentration, respectively.[

∆λ1
∆λ2

]
= S ·

[
∆RI
∆C

]
(13)

Therefore, the variations of RI and gas concentration can be calculated by Equation (14).[
∆RI
∆C

]
= S−1 ·

[
∆λ1
∆λ2

]
(14)

Then, the matrix coefficients should be brought in as is shown in Equation (15).[
∆RI
∆C

]
=

[
1305.6nm/RIU −0.295nm/1%
456.6nm/RIU −0.61nm/1%

]−1

·
[

∆λ1
∆λ2

]
(15)
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In order to discuss the dual-parameter sensor in detail, we provide the simultaneous
measurement results of RI and gas concentration. As is shown in Table 2, ∆RISET and CSET
represent the changes of presupposed RI and gas concentration, while ∆RICAL and ∆CCAL
represent the changes of calculated RI and gas concentration, which can be calculated
by demodulation matrix Equation (13). We selected three different sets of (∆RISET , CSET)
(a (0.005,1.5%), b (0.005,2%), and c (0.015,3%)) to verify the results calculated by the demod-
ulation matrix, and the results are listed in Table 2. The errors between the calculated value
and the set value are very small and can be neglected. In other words, the proposed model
structure is quite accurate.

Table 2. The calculated results.

Sampling Points ∆RIset ∆Cset ∆λ1 ∆λ2 ∆RIcal ∆Ccal

a 0.005 1.5% 6.06 1.36 0.005 1.5%
b 0.005 2% 5.92 1.05 0.005 2%
c 0.015 3% 18.67 5 0.015 3.01%

4. Conclusions

Four different metasurface structures labeled as SA–SD are proposed for comparison
in this paper. Both SA and SB have only one Fano resonance to realize single-parameter
measurement. In order to achieve dual-parameter measurement, we designed a simple
two-toroidal structure—SC—to produce two different resonance peaks in the transmission
spectrum. One resonance is excited by the coupling of the electric dipole, and the other
is excited by the coupling of the toroidal dipole. However, the second resonance peak
will disappear if the distance between two toroidal frames is too long. That is because the
coupling strength between the toroidal dipoles is too weak. To solve this problem, a nanobar
was introduced into the center of SC to enhance the coupling strength, and it became the
final structure—SD. Through the combined use of gas-sensitive film, we implemented a
simultaneous measurement of refractive index and gas concentration based on the Fano
resonance effect. The proposed sensor has the advantages of simple structure, good stability,
and high sensitivity, which is beneficial for the online monitoring of multiple environmental
parameters.
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