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Abstract: In a digital terrestrial multimedia broadcasting (DTMB)-based passive bistatic radar (PBR)
system, the received reference signal often suffers from serious multipath effect, which decreases the
detection ability of low-observable targets in urban environments. In order to improve the target
detection performance, a novel reference signal purification method based on the low-rank and
sparse feature is proposed in this paper. Specifically, this method firstly performs synchronization
operations to the received reference signal and thus obtains the corresponding pseudo-noise (PN)
sequences. Then, by innovatively exploiting the inherent low-rank structure of DTMB signals,
the noise component in PN sequences is reduced. After that, a temporal correlation (TC)-based
adaptive orthogonal matching pursuit (OMP) method, i.e., TC-AOMP, is performed to acquire the
reliable channel estimation, whereby the previous noise-reduced PN sequences and a new halting
criterion are utilized to improve channel estimation accuracy. Finally, the purification reference
signal is obtained via equalization operation. The advantage of the proposed method is that it can
obtain superior channel estimation performance and is more efficient compared to existing methods.
Numerical and experimental results collected from the DTMB-based PBR system are presented to
demonstrate the effectiveness of the proposed method.

Keywords: passive bistatic radar (PBR); compressive sensing (CS); signal reconstruction; low-
observable target

1. Introduction

PBR systems have been extensively studied for the last several decades due to the
several advantages they offer over active radars. Since PBRs do not require an addi-
tional frequency channel, they are virtually undetectable to surveillance receivers [1].
Further, PBRs have superior low-altitude coverage capability. PBR exploits available
non-cooperative transmitters as its illuminators of opportunity, such as frequency modu-
lation (FM) radio [2], digital audio broadcasting (DAB) [3,4], digital video broadcasting
(DVB) [5,6], global navigation satellite system (GNSS) [7,8], digital terrestrial multimedia
broadcasting (DTMB) [9,10], etc. Among these illuminators of opportunity, DTMB has
attracted much attention for its high range resolution and wide coverage area.

DTMB is a digital television terrestrial broadcasting (DTTB) international standard
developed by China, which has been widespread in Chinese towns and cities. Further,
the power of DTMB is large (1–5 kW) and stable. Therefore, it has the natural advantage
of network cooperative and far distance detection. The DTMB adopts the time-domain
synchronous orthogonal frequency division multiplexing (TDS-OFDM) as the baseline
modulation technology [11]. TDS-OFDM uses three pseudo-noise (PN) sequences padding
modes as a guard interval (GI) as well training sequences for both single and multi-carrier
block transmissions, which is an advantage for synchronization and channel estimation [12].
With the better range resolution, of about 40 m, DTMB enables improved target localization
compared with GSM and FM [13]. Moreover, DTMB is tilted towards the ground, there-
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fore DTMB-based PBR has the natural advantage of low-altitude detection characteristics,
such as UAV and drone detection.

In PBR systems, target detection is committed by calculation of cross-ambiguity
function (CAF) of the surveillance and reference signal [14]. The surveillance signal
is collected by an antenna directed towards a specific area of interest. In addition to
target returns, the surveillance signal also inevitably includes the direct illumination
signal originating from the transmitter, reflections from other objects, such as ground,
hills, and buildings, which are called clutter, and noise [15]. Since the sidelobes of those
clutters can completely mask target returns, adaptive filtering is employed to remove
unwanted components (clutter) before the application of CAF [16,17]. In the processing
scheme of adaptive filtering and CAF, the reference signal plays a crucial role. In theory,
the reference signal is a perfect replica of the direct illumination signal. Even though PBR
systems do not have a direct access to the direct illumination signal, they can obtain the
reference signal directly from the transmitter by using a directional antenna towards the
transmitter [18,19]. However, the received signal is always noisy and multipath clutter-
polluted, which results in clutter remaining in the adaptive filtering process, and therefore
leads to deterioration of the target detection performance [20]. Particularly, for the low-
observable target, such as unmanned aerial vehicle (UAV) detection, the impact of impure
reference signal is more serious because of the low radar cross-section (RCS) [21]. Therefore,
to obtain the desired target detection ability in DTMB-based PBR, the reference signal
should be as pure as possible.

A popular approach is to reconstruct the direct illumination signal by demodulating
the impure reference signal to the bit level and then modulating it again, and therefore
a nearly perfect replica of the direct DTMB signal is obtained [22,23]. In this approach,
channel impulse response (CIR) estimation and equalization play a crucial role in refer-
ence signal reconstruction, which is used to eliminate the multipath effect. Generally,
CIR estimation develops in three directions. The first one exploits the good autocorrelation
characteristics of PN sequence, such as iterative subtraction [24]. In real PBR systems, how-
ever, the system sampling rate is not an integer multiple of the baseband symbol rate Ts
(non-Ts-spaced), because of hardware resource constraint [25]. Non-Ts-spaced will induce
a reduction in autocorrelation characteristics, and therefore worsen the CIR estimation
performance. Hence, symbol synchronization should be performed before the PN correla-
tion. However, its CIR estimation still contains many false estimations due to the mutual
interference between channels and the influence of noise. The second direction is based
on the least-squares (LS) criterion, such as the least mean square (LMS), recursive least
square (RLS) algorithm [26,27]. Since the LS algorithm is based on the dense distribution
of CIRs, a large number of training sequences are required to estimate CIRs. This means
LS will suffer from high calculation costs and is more susceptible to noise. The third is
a CS-based signal recovery algorithm, such as the orthogonal matching pursuit (OMP)
algorithm, aims to estimate the CIR due to the practical wireless channel being sparse
in nature [28,29]. However, the scheme suffers from noise effect and it usually adopts
the fixed number of iterations, which decreases the CIR estimation accuracy. Moreover,
this popular reconstruction approach increases the complexity of the PBR signal processing
and is not practical due to the 170/510 frames delay caused by de-interleaving and forward
error correction (FEC) decoding.

To tackle the problems in the aforementioned method, the received reference signal
model with the multipath effect is constructed and a novel signal purification method
based on low-rank and sparse features is proposed. More specifically, synchronizations,
including symbol, carrier, and sampling rate synchronization, are performed to reference
signal at first, and the corresponding PN sequences can be obtained. After that, we inno-
vatively exploit the inherent low-rank structure of DTMB signals and utilize the singular
value decomposition (SVD) algorithm to suppress the noise in PN sequences. Furthermore,
the temporal correlation (TC)-based adaptive OMP method, i.e., TC-AOMP, is proposed to
estimate the sparse CIR, in which the previous noise-free PN sequences and a new halting
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criterion defined based on TC result are utilized to further improve the channel estima-
tion accuracy. In the end, the purification reference signal is obtained via equalization
operation. Generally speaking, the proposed method has several attractive advantages.
Firstly, the proposed method exploits the low rank of DTMB signal and sparse feature of
the practical channels, which significantly decreases the false alarm of the CIR estimation
compared with PN correlation and RLS methods. Secondly, unlike the conventional OMP
signal recovery method, the proposed method leverages the low-rank structure of DTMB
signal for noise reduction and the halting criterion is determined adaptively, which greatly
enhances the CIR estimation accuracy. Eventually, the effectiveness of the proposed method
is verified using numerical data and measured data from an experimental DTMB-based
PBR system.

The rest of the paper is organized as follows. The signal model is established and ana-
lyzed in Section 2. Relevant synchronization operations are introduced in Section 3. A joint
low-rank and sparse method for reference signal purification is proposed in Section 4.
In Sections 5 and 6, the effectiveness of the proposed method is demonstrated using simu-
lated and measured data, respectively. Relevant summary and conclusions are given in
Section 7.

2. System Model of DTMB-Based PBR

Figure 1 shows the observation model of PBR. The DTMB transmitter is an omni-
directional antenna in azimuth angle. The PBR receiver collects both a reference signal via
a line-of-sight (LOS) path direct from the transmitter and a surveillance signal reflected
from target of interest. Besides this, several attenuated replicas of the direct signal at short
delay because of static multipath (clutter) are introduced at the receiver. β denotes the
bistatic angle.
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Figure 1. PBR system model.

2.1. Frame Structure of DTMB Signal

The DTMB adopts the TDS-OFDM as the baseline modulation technology. In the
physical layer transmission of the DTMB standard, a signal frame consists of frame header
(FH) and frame body (FB), as presented in Figure 2a [30]. The PN sequence, namely FH,
is padded as the guard interval (GI) to FB for either multi- or single-carrier block transmis-
sion. The PN padding structure can not only contribute to the frame synchronization but
also improve the spectrum efficiency due to the perfect knowledge of PN sequence that
can be obtained in advance. The baseband symbol rate Ts for both FH and FB is 7.56 MS/s.

In FH, three types of PN sequences, PN420, PN595, and PN945, are defined. The FB
consists of a preamble, an m-sequence, and a postamble in the case of PN420 or PN945
is used in a signal frame. The m-sequence is generated with a Fibonacci-type linear feed-
back shift register (LFSR), while its cyclic extensions constitute preamble and postamble.
Figure 2b shows the FH structure. In FB, there are two kinds of options on the number of
subcarrier C, C = 1 for single-carrier (the corresponding FH is PN595) and C = 3780 for
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multi-carrier mode (the corresponding FH is PN420 or PN945). Without loss of generality,
only multi-carrier mode is analyzed in this paper.
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The transmitted signal that includes one TDS-OFDM symbol, i.e., one signal frame,
is given as

g(t) =
{

pn (m− 1)Te < t ≤ (m− 1)Te + Tp
s(t) (m− 1)Te + Tp < t ≤ mTe

(1)

where Te is the duration of one signal frame; Tp is the duration of the FH, i.e., the PN
sequence pn; m = 1,2, . . . , M denotes the frame index, M is the number of the frame in
the transmitted signal. s(t) is the OFDM data block, i.e., the frame body signal, which is
expressed as

s(t) =
C−1

∑
c=0

ac exp(j2πc∆ f t) (2)

where c indexes the carriers, C is the total carriers; ac is the complex modulation value for
carrier c; ∆f is the subcarrier frequency spacing.

2.2. Signal Model

In this section, a reference signal model with noise and multipath clutter is established.
We consider the multipath fading channel as an Ltap-order FIR filter and enough length
of FH to mitigate the multipath effect. Therefore, the interference between two adjacent
OFDM data blocks can be avoided in the DTMB system [31]. Since the location of the
transmitter and receiver are fixed in the PBR system, we assume that CIR does not vary
within one signal frame. The CIR can be expressed as

h(t, τ) =
Ltap−1

∑
l=0

hlδ(t− τl) (3)

where Ltap denotes the multipath channel taps number, and hl and τl are the complex
amplitude and time delay of the lth tap in the CIR. It is assumed that the CIR in each path
is independent.

After passing through the multipath channel, the received reference signal can be
represented as a linear convolution between the transmitted signal and the CIR, as

r(t) = g(t) ∗ h(t, τ) + n(t) (4)

where (*) denotes the convolution operation; n(t) is the additional white Gaussian noise.
In practice, we work with sampled signals, and for simpler analysis, a discrete single

frame signal is considered. Therefore, the received signal can be represented as

rm = gm ∗ hm + nm (5)

where gm = [gm[0], gm[1], · · · , gm[L− 1]]T , which consists of FH, i.e., PN sequences
pn = [pn[0], pn[1], · · · , pn[Lpn − 1]]T and OFDM data block sm = [sm[0], sm[1], · · · ,
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sm[Ls − 1]]T ; hm = [hm[0], hm[1], · · · , hm[Ltap − 1]]T ; L, Lpn, and Ls are the total samples
number of each signal frame, PN sequence, and OFDM data block, respectively.

For the sake of obtaining the transmitted signal gm from received signal rm, accurate
CIR estimation is required. In DTMB system, CIR estimation is realized according to
the time-domain received FH pnrec−m = [pnrec−m[0], pnrec−m[1], · · · , pnrec−m[Lpn − 1]]T

expressed as

pnrec−m =



pn[0] sm−1[Ls − 1] · · · sm−1[Ls − Ltap + 1]
pn[1] pn[1] · · · sm−1[Ls − Ltap + 2]

...
...

. . .
...

pn[Ltap − 1] pn[Ltap − 2] · · · pn[0]
...

...
. . .

...
pn[Lpn − 1] pn[Lpn − 2] · · · pn[Lpn − Ltap]


hm + ñm (6)

where ñ is the AWGN vector. In Equation (6), it is clear that the received FH suffered multi-
path effect and was polluted by the interference caused by the preceding OFDM data block.
Further, we note that the priori informationof the transmitted FH is known in the DTMB
system and there is an inter-block interference (IBI)-free region of size B = Lpn − Ltap + 1 at
the end of the received FH [32]. This IBI-free region is the premise of the CIR estimation
method based on the sparse feature, which is illustrated in detail in Section 4.

2.3. Radar Ambiguity Function

The ambiguity function (AF) for the transmitted signal g(t) is a 2-D autocorrelation
function given by the following [33,34]:

χgg(τ, fd) =
∫ ∞

−∞
g(t)g∗(t− τ) exp(−j2π fdt)dt (7)

where τ and fd are the time delay and frequency offset, respectively. In the radar field,
AF is an effective way to analyze the illumination signal characteristics, such as detection
ability, ambiguous peaks, resolution, etc. Particularly, the DTMB signal AF can be treated
as a thumbtack-like shape in a specific region of interest (ROI). For example, in the case of
detecting UAV target, the detecting size is usually set to 38 m/s and 3 km, which is within
the unambiguous range of DTMB signal AF [35].

For PBR system application, the target range delay and Doppler frequency can be
estimated by cross-correlating (matched filtering) the reference signal r(t) with surveillance
signal e(t), given as

χ(τ, fd) =
∫ ∞

−∞
e(t)r∗(t− τ) exp(−j2π fdt)dt (8)

In practice systems, there are more than one component present in the surveillance
signal. It is a result of the fact that target returns are much weaker than clutters; therefore,
adaptive filtering is used before matched filtering. In the processing scheme mentioned
above, the reference signal is used in clutter canceling and matched filtering. The quality
of the reference signal directly affects the detection ability of the PBR system, and therefore
the reference signal should be purified in advance.

3. Synchronizations
3.1. Sampling Rate Synchronization

In real DTMB system, the sampling rate is not an integer multiple of the baseband
symbol rate Ts = 7.56 MS/s due to the constraint of the PBR receiver, which will cause phase
offset of symbols. To keep the sampling rate and baseband symbol rate consistent, a method
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of cascading interpolator and decimator is implemented in this paper. The resampling
reference signal is given as

rss−m[n] =
L−1

∑
l=0

hID

[
nD−

⌊
nD

I

⌋
+ l I

]
rm

[⌊
nD

I

⌋
− l
]

(9)

where n = [0,1, . . . ,N] denotes the samples index of resampling reference signal, and N
denotes the total samples number of a frame signal after resampling; I and D are the
interpolation and decimation factor, respectively; hID(·) is the cascade filter shown in [36];
b·c is the round-down operator.

3.2. Symbol Synchronization

Symbol synchronization, via the perfect autocorrelation property of FH, is performed
to localize the precise start index of the FFT window. Generally, this operation can be
realized by calculating the sliding correlation between the resampling reference signal and
the local PN sequences, given as

Rs[n] =
Lpn−1

∑
i=0

pn[i]r∗ss−m[n + i] (10)

where Lpn is the samples number of PN sequence.
Further, the symbol start index n̂ can be obtained:

n̂ = argmax
n
|Rs| (11)

3.3. Carrier Synchronization

The orthogonality between each sub-carrier helps to extract the information of the
signal. When the oscillator frequency of the transmitter and receiver are inconsistent, i.e.,
carrier frequency offset (CFO), serious carrier interference will be caused. The specific
effect of CFO is the rotation of the constellation diagram phase. The purpose of carrier
synchronization is to estimate and then compensate for CFO.

In this paper, we adopt the matched filtering method to estimate the CFO. The output
of the matched filter for CFO is described by the following equation:

Rc−m[ξ
′] =

Lpn−1

∑
i=0

pnrec−m[i]pn∗[i] exp(−j2πiξ ′) =
Lpn−1

∑
i=0

pn[i] exp(j2πiξm)pn∗[i] exp(−j2πiξ ′) (12)

where ξ ′ is normalized Doppler frequency, and ξm is the CFO of the receiver. Further,
the estimated CFO ξ ′′ can be obtained by

ξ ′′ = argmax
ξ ′
|Rc−m| (13)

The reference signal after carrier synchronization is given by

rcs−m[n] =
N−1

∑
n=0

rss−m[n] exp
(
−j2π

nξ ′′

N − Lpn

)
(14)

4. CIR Estimation Based on the Low-Rank and Sparse Properties

In this section, the detailed processes of the proposed CIR estimation method based
on the low-rank and sparse property are introduced.

4.1. Compressed Sensing (CS) Channel Model

Numerous theoretical analyses and experimental results have verified that wireless
channels associated with a number of scattering environments tend to exhibit sparse
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structures at high signal space dimension when working at large bandwidths and/or
symbol durations and/or with a large plurality of antennas [37,38]. In other words, in a
number of different communication applications, i.e., in the CIR model (3), the order Ltap
of the CIR may be large, but the number of active paths K with significant power is usually
small (K�Ltap). This observation motivates us to derive an accurate estimation of the
sparse CIR under the new framework of CS theory.

As a new signal sampling and reconstruction algorithm, CS allows for the recon-
struction of large-scale signals from limited samples. Different from the conventional
sampling theory, the signal acquisition and compression are combined into one step in the
CS theory [39]. Meanwhile, according to the CS theory, if the large-scale signal is sparse,
or it is sparse in a certain transform domain, it can be projected onto the low dimensional
space by using the dictionary matrix or sparse basis, thereby reducing the signal storage
space. Assume an acquired raw signal x ∈ RQ can be represented as

x =
Q

∑
i=1

ψiθi = Ψθ (15)

where Ψ = [ψ1, ψ2, · · · , ψQ]
T ∈ RQ×Q is the dictionary matrix or sparse basis; θ = [θ1,

θ2, · · · , θQ]
T ∈ RQ is the transform domain coefficient vector. The acquired signal x

is called K-sparse in basis Ψ if θ has at most K ≤ Q non-zero values, i.e., ‖θ‖0 ≤ Q,
where ‖θ‖0 ≤ | supp(θ)|, | supp(θ)|= {i|θi 6= 0, i = 1, · · · , Q} is the support of θ, and for
a discrete set |·| denotes its cardinality.

Then the signal x can be reconstructed with high probability using a small number of
sampled values projected onto the low dimensional space, which can be expressed as

y = Φx = ΦΨθ = Θθ (16)

where y ∈ RP is the compressed signal, which contains main information of the raw signal;
Φ of size P × Q (P ≤ Q) is the measurement matrix, which is used to reduce the dimension
of x; Θ = Φ× Ψ is the sensing matrix, which usually needs to satisfy the restricted isometric
property (RIP) conditions.

Note that the DTMB signal purification in urban areas is considered in this paper.
Firstly, in an urban environment, the actual channel length Ltap is usually much smaller
than the inserted PN sequence length Lpn [38]. This means that even though the received
PN sequence will be contaminated by the preceding OFDM data, there exists an IBI-free
region of length B = Lpn − Ltap + 1 immune from the IBI at the postamble of the received PN
sequence. Further, the number of resolvable propagation path K in an urban environment-
occupied major power is relatively small (K�Ltap). Therefore, the IBI-free region of the
received PN sequence is used to recover CIR in the DTMB system based on CS technology.
Specifically, we set the IBI-free region of the received PN sequences with length B as the
compressed signal, i.e., y = [pncs-m[Ltap−1], pncs-m[Ltap], · · · , pncs-m[Lpn−1]]T, in which
pncs-m is the PN sequence in the synchronized reference signal rcs-m; the sensing matrix Θ

can be constructed by using the linear shift of the local PN sequences pn as a row vector,
which can be represented as

Θ =


pn[Ltap − 1] · · · pn[1] pn[0]

pn[Ltap] · · · pn[2] pn[1]
...

. . .
...

...
pnloc[Lpn − 1] · · · pn[Lpn − 1] pn[Lpn − Ltap]

 (17)

Solving the following optimization problem, we can obtain the sparse CIR:

min ‖θ‖0, s.t. y = Θθ (18)

where θ denotes the sparse CIR hm to be solved.
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Generally, to solve the optimization problem (Equation (18)), there exist two changes
in the current stage. The first one is that in conventional CS theory, to obtain the accurate
recovery of the original signal, the sensing matrix is usually optimized, or the CS signal
recovery algorithms are modified, but the noise effect on compressed signal y is not
considered. Second, among the current CS signal recovery algorithms, such as OMP,
its implementation requires the sparsity level of the signal, which is variable and unknown
in practical systems. The following two sections address those issues based on the DTMB
inherent feature.

4.2. SVD Based on Low-Rank Property

In the practical DTMB system, the noise component is inevitably included in the
received reference signal. Its existence will degrade the CIR estimation accuracy and thus
deteriorate the target detection ability. Therefore, the noise in the reference channel should
be reduced.

At present, most commercial digital illuminators and non-cooperative radars transmit
signals have an inherent low-rank property [40]. For the illuminator with amplitude
or phase modulation, the transmitted signal contains a periodic repetition of the same
content several times in a transmitting interval, which is used to aid communication.
Similarly, in the DTMB system, the transmitted signals also have a periodic repetition
waveform due to the fixed PN sequence with 4 quadrature amplitude modulation (4-QAM)
repeatedly inserted into the frame header, thereby giving rise to low-rank signal subspace.
According to exploiting this low-rank structure, the singular value decomposition (SVD) is
utilized to decrease the noise effect in the following CIR estimation.

For the sake of using the periodic repetition structure of DTMB, the reference signal
within one coherent processing interval (CPI) is reshaped to multiple frames according
to the symbol synchronization result firstly. Then the inserted PN sequences (FHs) are
divided from these frames. Finally, a combined matrix can be obtained by stacking the
divided FHs:

PNcs = [pncs−1; pncs−2; · · · ; pncs−M]T (19)

where pncs-m is the received PN sequence in rcs-m.
The SVD-based noise reduction method in the DTMB system is composed of three steps:

(1) Applying SVD for matrix PNcs, Equation (19) can be expressed as

PNcs = UΣVH (20)

where U and V are the Lpn × Lpn right and M ×M left singular matrix, respectively;
Σ= [diag(σ1, σ2, · · · , σM), 0] is a Lpn ×M diagonal matrix, where σm is the singular
value, and 0 is the null matrix.

(2) Exploiting the potential low-rank property of DTMB signal, the optimal approxima-
tion matrix of PNcs can be calculated by performing the inverse operation of SVD,
which is given as

PNsvd = UΣCoVH (21)

where Co = [Io,0]T is a Lpn ×M matrix, Io is a o × o unit matrix, and o is the dominant
singular value number, which is set to 1 in the DTMB system.

(3) Splitting the matrix PNsvd, we can obtain the noise-reduced PN sequences pnsvd-m.
Consequently, the IBI-free region of pnsvd-m with length B is treated as the compressed
signal, i.e., y = [pnsvd-m[Ltap−1], pnsvd-m[Ltap], . . . , pnsvd-m[Lpn − 1]]T.

Compared with signal matrix PNcs, the noise component in the PNsvd has been greatly
compressed. Figure 3a,b depict the PN sequences constellation diagram before and after
noise reduction. It is noticeable in Figure 3b that the constellation diagram becomes more
clustered, which means the SNR increases. Note that, in fact, the frame header with phase
rotation is also used in the DTMB system. Therefore, when the frame header with phase
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rotation is considered, the dominant singular value number o is set to 113, which is also
makes sense in noise reduction, as shown in Figure 4.
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4.3. TC-AOMP Algorithm

For the sake of obtaining an accurate signal recovery, there are a number of algo-
rithms that have been proposed based on CS theory. Among the currently available CS
signal recovery algorithms, OMP is widely adopted in the practical system due to its high
reconstruction accuracy and fast convergence. The conventional OMP algorithm is to
screen out the optimal-matching atoms iteratively; the signal can be recovered until the
K atoms are selected, i.e., K serves as the halting criterion, where K denotes the non-zero
values (sparsity level) of the CIR [41]. Therefore, K plays a crucial role in the reconstruction
performance of OMP. However, K is generally variable and unknown in practical systems.
The important CIR component will be missed if K is set relatively small, or the noise portion
will be introduced into the estimated CIR if K is set relatively large. Both of these conditions
will deteriorate the performance of sparse CIR estimation. Therefore, it is necessary to
design a suitable halting criterion.

In this section, by fully exploiting the distinct self-correlation feature of the DTMB signal,
we propose a novel TC-AOMP method to solve the optimization problem (Equation (18)).
As mentioned in Section 2.3, the AF of the DTMB signal shows the thumbtack-like feature in
a specific ROI. However, a series of sidelobes occur in the DTMB signal AF in the case that
the received reference signal suffers the multipath effect. Inspired by this, the integrated
sidelobe ratio (ISLR) is introduced in this paper. This parameter is defined as the ratio
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of the mean power of all sidelobes contained in a specific ROI to the power in mainlobe,
expressed as

ISLR = 20lg
Emain

Eside
= 20lg

Ξ[0]

1
LROI

LROI
∑

l=1
Ξ[l]

= 20lg
LROI

N−1
∑

n=0
req−m(n)r∗req−m(n)

LROI
∑

l=1

N−1
∑

n=0
req−m(n)r∗req−m(n + l)

(22)

where Emain and Eside are the energy of mainlobe and sidelobe, respectively; Ξ[·] is the
TC result of the equalized reference signal; LROI is the detection range cell numbers, i.e.,
the size of ROI; req-m is the equalized signal based on the estimated sparse CIR.

We focus on a specific detecting range region, where the reference signal TC result
shows the standard thumbtack characteristic in theory. Therefore, the ISLR provides an
indication about the multipath effect on the reference signal, i.e., the ISLR can be regarded
as a halting condition for judgment of whether the sparse reconstruction has reached a
steady-state solution. The larger the ISLR, the better the CIR estimation performance.
Finally, when the ISLR reaches the desired value, i.e., the iteration halting threshold ε,
the optimal sparse CIR estimation can be obtained. Particularly, in the DTMB-based PBR
system, the threshold ε can be obtained according to the noise floor of the TC result of
the received reference signal. The summarized framework of the TC-AOMP algorithm is
given in Algorithm 1, while all the purification processes of the reference signal proposed
in this paper are shown in Figure 5. Note that, since the demodulation error rate of a com-
munication system is typically low under normal operating conditions [42], the proposed
method considers that the PBR system only performs synchronization, CIR estimation,
and equalization operations, which is more efficient and suitable for real systems.

Algorithm 1. Summarize: The main procedures of the TC-AOMP algorithm.

0

Parameter specification: wk is the residual; the iteration number k; ∅ denotes the empty set;
Λk is the index set in k iterations; zk is the selected index in k iterations; Ωk is the optimal
atomic set selected from the sensing matrix Θ; the iteration termination threshold ε; θ is the
estimation CIR; <·,·> denotes the inner product operator;

1
Initialization: set the residual w0 = y; k = 1; the total iteration number
K = Lpre (Lpre is preamble length of PN sequence) Ω0 = ∅; Λ0 = ∅; θ0 = ∅;

2 Optimal sparse CIR estimation: Go through each k in [1 K]with interval 1;

3

for k = 1,· · · ,K do
Calculate the inner product of the sensing matrix Θ and w0, and then find the index
corresponding to the maximum inner product value, which given as
zk = argmax

l
|< Θl , wk−1 >|, l = 1, 2, · · · , Ltap, l 6= zk−1;

4 Update the index set Λk = Λk−1 ∪ zk and the atomic matrix Ωk = Ωk−1 ∪Θzk ;
5 Calculate the CIR via least squares at k iterations, as θk(Λk) = (ΩH

k Ωk)
−1

ΩH
k y;

6 Equalize the signal rcs-m via the estimated CIR θk, obtain the equalized signal req-m;
7 Perform temporal correlation of the equalized signal req-m, and then calculate its ISLR;

8
If ISLR ≥ ε or k > K, jump out of the loop, output the equalized signal req-m;
otherwise continue iteration;

9 Update the residual wk = y−Ωkθk(Λk);
10 End
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5. Simulation Results

In this section, numerical simulations are provided to demonstrate the effectiveness
of the proposed purification method. In order to carry out the comparison experiments,
several popular CIR estimation methods, i.e., PN correlation, RLS, and conventional OMP
methods, are presented. Further, the mean square error (MSE) and symbol error rate (SER)
performance is also evaluated. The main simulation parameters of the DTMB-based PBR
system are shown in Table 1, which are based on the Chinese DTMB standard. Two typical
urban broadcasting channel models were chosen, i.e., Brazil A and COST207, to emulate
the wireless channel in the practical system. The power delay parameters of Brazil A
and COST207 are shown in Table 2, from which we note that the sparsity level of both
channels is 6. It is assumed that each multipath is subject to an independent Rayleigh
fading, and overall multipath SNR losses are normalized. Moreover, the reference signal
was precisely synchronized before channel estimation.

Table 1. Parameters of PBR system.

Description Parameter Value

Total subcarriers K 3780
Carrier frequency fc 666 MHz
Sample frequency fs 8 MHz

Bandwidth B 8 MHz
polarization mode - vertical

Power - 1 kW
Carrier spacing ∆f 2 kHz

Sample rate 1/Ts 7.56 MSPS
Signal constellation - 16 QAM
Frame header mode - PN420

Table 2. Parameters of channel models.

Description Brazil A COST207

Tap 1 2 3 4 5 6 1 2 3 4 5 6
Delay (µs) 0 0.15 2.22 3.05 5.86 5.93 0 0.2 0.6 1.6 2.4 5.0

Power (−dB) 0 13.8 16.2 14.9 13.6 16.4 3 0 2 6 8 10

5.1. CIR Estimation Results

In this simulation, CIR estimation ability for the two typical channel models via the
proposed method is analyzed. Firstly, the guard interval length of Lpn = 420 is adopted due
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to the FH mode is PN420. The tap number Ltap is set to 330, which is enough to combat
the urban multipath cases, so the size of the IBI-free region is 90. The SNR of reference
signal is set at 10 dB. The TC results of the received reference signal are shown in Figure 6,
where the reference signal in Brazil A, COST207 channel model and the ideal reference
signal are shown in Figure 6a–c, respectively. It is observed from Figure 6a,b that serious
range sidelobes occur due to the multipath effect and the noise floor raise compared with
Figure 6c. Based on this, the ISLR is defined and used as the CIR estimation criterion in
this paper. Then, for comparison, four methods, i.e., the proposed method, PN correlation,
conventional OMP, and RLS, were also performed to estimate Brazil A and COST207 CIR.
The CIR tap for PN correlation and RLS methods was set to 64; the iteration termination
threshold for conventional OMP was set to 0.01. For Brazil A and COST207 channels, the
iteration termination thresholds were set to −50 dB and −48 dB in the proposed method,
respectively. The thresholds were adaptively obtained according to the TC results of the
reference signal.
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Brazil A channel estimation results of the four methods above are shown in Figure 7.
In particular, Figure 7a shows the CIR estimation result of the proposed method. It can
be seen that a very exact CIR estimation result, compared with the actual channel, can be
produced. With the purpose of contrast, Figure 7b shows the estimation CIR of PN correla-
tion method and it contains many false estimations due to the mutual interference between
channels and the influence of noise. Figure 7c gives the estimation CIR of conventional
OMP, from which we can find that the results introduced extra tap coefficients because of
the fixed number of iterations. Figure 7d shows the result of RLS; it can be seen that the
estimation CIR contains lots of noise portion since the original CIR is sparse. The COST207
channel estimation results of the aforementioned methods are given in Figure 8. Specifically,
Figure 8a shows that the proposed method can produce precise CIR estimation. In order to
make a comparison, Figure 8b shows the result of the PN correlation method, which cannot
achieve the desired CIR due to the decrease of the PN autocorrelation property caused by
the mutual interference between channels and the influence of noise. Figure 8c shows the
estimation CIR of conventional OMP. Since the iteration time is fixed, the result contains
many false CIR estimations. Figure 8d gives the estimation results of the RLS method,
in which many false taps occur because of the sparsity of the original CIR model. Conse-
quently, the simulation results verify the superiority of the proposed method, which greatly
facilitate the following signal processing. Besides, the correlation results of the equalized
reference signal via the proposed method are given in Figure 9. It can be seen that the
range sidelobes are suppressed greatly; meanwhile, the noise floor decreases.

5.2. CIR Estimation Performance Analysis

In this section, in order to verify the superiority of the low-rank feature in the SNR
improvement of PN signal, the proposed method is conducted with different input SNR.
The input SNRs vary from 5 to 35 dB. The relationship between the SNR gains of the
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PN signal and input SNR is given in Figure 10a. It can be seen that for different input
SNR, the proposed method can obtain corresponding SNR gains based on the low-rank
feature. Notably, the maximum SNR gain is greater than 5 dB in low-input SNR, which is
an advantage for CIR estimation. Then, the impact of low-rank characteristics on CIR
estimation performance is evaluated by MSE. The MSE performance of the proposed TC-
AOMP CIR estimation method with and without the low-rank processing is performed in
different SNRs, respectively. The results are given in Figure 10b, from which we can note
that after the low-rank processing, the CIR estimation capacity is greatly improved under
the condition of low SNR. Note that the COST207 channel model is used in this simulation.
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Finally, we compared the MSE and SER performance of the proposed method with
its counterparts PN correlation, conventional OMP, and RLS methods for Brazil A and
COST207 channel estimation via the Monte Carlo trials. It is worth noting that the sim-
ulation signal parameters in Table 1 were used and Gaussian noise was added to the
reference signal. Figure 11 shows the MSE and SER of the abovementioned methods in
different SNRs. In Figure 11a,b, it is clear that the proposed method precedes the other
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three methods in the case of low SNR, and with the SNR increase, the MSE performance of
all methods tends to stabilize. Meanwhile, it can be seen from Figure 11c,d that the pro-
posed method offers improvement of the SNR performance in both Brazil A and COST207
channels. Remarkably, the proposed method presents its superiority in the case of low SNR
compared with the other methods.
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6. Field Experimental Results

In this section, the field experimental data collected from a DTMB-based PBR system is
used to demonstrate the purification performance of the proposed method. Figure 12 shows
the geometry of the experiment, in which Figure 12a,b show the real geometric model and
the analytical model, respectively. The experiment was performed on 20 July 2020, near an
open space at Xidian University. Xi’an television tower was the transmitter, which is based
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on TDS-OFDM modulation, and the polarization method was vertical emission with the
power of 1 kW. The detailed system parameters are shown in Table 1. The baseline L,
bistatic angle β and the look angle of the receiver θR were about 13.1 km, 30◦, and 110◦,
respectively, RR was the distance between the target and receiver. The receiving antenna
was a uniform linear array with eight elements. To improve the signal power, nine beams
were formed by weighting the uniform linear array to receive reference and surveillance
signals, where the beam coverage area was a sector varied from −60◦ to 60◦. The receiving
antenna was also vertically polarized, and the CPI was 0.2 s. The aim of this experiment
was to examine the performance of the proposed method in detecting the weak target.
Further, the UAV (DJI INSPIRE 2) with RCS σ = 0.1 m2 was used as the detection target in
this field experiment, and the UAV flies away from the receiver along the normal direction
of the antenna with a velocity 20 m/s and an altitude of 100 m.
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After the synchronization operation of the received reference signal, its TC result
is described in Figure 13a, from which we can find that serious range sidelobes occur
due to the multipath effect, and the power of maximum range sidelobe is −8.594 dB,
as marked in the figure. Then, the purified reference signal was obtained via the proposed
method, and its TC result is given in Figure 13b. It can be seen from this figure that all
range sidelobes are suppressed greatly. In particular, the first sidelobe is decreased to
−35.1 dB, and we can clearly note the noise floor is also decreased. Besides, the spectrum
comparison results between the reference signal before and the after purification are given
in Figure 14. It is noted that the purified reference signal spectrum becomes smoother
compared with the original spectrum. These measurements show that the multipath
effect in the received reference signal has been sufficiently reduced. After the purification
operation, the purified reference signal is used for clutter suppression. In order to make a
comparison, the reference signal before purification is also utilized for clutter suppression.
The clutter suppression comparison results are given in Figure 15. It is noted that after
the purification, the clutter suppression result was reduced by more than 5 dB. In order
to fully demonstrate the performance of the proposed method, the clutter suppression of
different reference signal purification methods was also performed. The clutter elimination
ratios of different purification methods are given in Table 3. It is worth noting that the
clutter suppression performance of the proposed method exceeds the PN correlation, OMP,
and RLS methods, which contributes to improving the target SNR. Note that the clutter
ratio of reference signal without purification is 5.4 dB.

Finally, range-Doppler processing was performed to detect the UAV target, and the
integrated results of these methods are represented in Figure 16. It can be observed that all
the purification methods can improve the target SNR compared with the reference signal
without purification. More specifically, among these purification methods, the proposed
method has the largest increase in SNR, about 5 dB, which makes target detection easier,
and the real range RR of UAV target is 1.52 km according to the real geometry.



Sensors 2021, 21, 3607 16 of 20

Sensors 2021, 21, x FOR PEER REVIEW 16 of 20 
 

 

correlation, OMP, and RLS methods, which contributes to improving the target SNR. 

Note that the clutter ratio of reference signal without purification is 5.4 dB. 

Finally, range-Doppler processing was performed to detect the UAV target, and the 

integrated results of these methods are represented in Figure 16. It can be observed that 

all the purification methods can improve the target SNR compared with the reference 

signal without purification. More specifically, among these purification methods, the 

proposed method has the largest increase in SNR, about 5 dB, which makes target detec-

tion easier, and the real range RR of UAV target is 1.52 km according to the real geometry. 

 

UAV

Transmitter

Receiver

θR=110°

bistatic 
bisector

 
(a) (b) 

Figure 12. Geometry of the experiment: (a) the real geometric model; (b) the analytical model. 

Table 3. Clutter suppression ratio of different purification method. 

Method PN Correlation OMP RLS Proposed Method 

Clutter suppression ratio 7.8 dB 8.7 dB 8.1 dB 10.6 dB 

 

 

(a) 

 

(b) 

Figure 13. Correlation results: (a) reference signal before purification; (b) reference signal after purification. Figure 13. Correlation results: (a) reference signal before purification; (b) reference signal after purification.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 20 
 

 

 

Figure 14. Spectrum comparison of reference signal before and the after purification. 

 

Figure 15. Clutter suppression result comparison of reference signal before and the after purifica-

tion. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 14. Spectrum comparison of reference signal before and the after purification.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 20 
 

 

 

Figure 14. Spectrum comparison of reference signal before and the after purification. 

 

Figure 15. Clutter suppression result comparison of reference signal before and the after purifica-

tion. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 15. Clutter suppression result comparison of reference signal before and the after purification.

Table 3. Clutter suppression ratio of different purification method.

Method PN Correlation OMP RLS Proposed Method

Clutter suppression ratio 7.8 dB 8.7 dB 8.1 dB 10.6 dB



Sensors 2021, 21, 3607 17 of 20

Sensors 2021, 21, x FOR PEER REVIEW 17 of 20 
 

 

 

Figure 14. Spectrum comparison of reference signal before and the after purification. 

 

Figure 15. Clutter suppression result comparison of reference signal before and the after purifica-

tion. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Sensors 2021, 21, x FOR PEER REVIEW 18 of 20 
 

 

 
(e) 

 
(f) 

 
(g) 

Figure 16. Target detection results of measured data using different purification method: (a) reference signal before pu-

rification in the range dimension; (b) reference signal before purification in the Doppler dimension; (c) the proposed 

method in the range dimension; (d) the proposed method in the Doppler dimension; (e) PN correlation method; (f) OMP 

method; (g) RLS method. 

7. Conclusions 

In this paper, a novel sparse CIR estimation scheme for reference signal purification 

in DTMB-based PBR systems is proposed. By leveraging the low-rank structure of DTMB 

signal and the sparsity feature of wireless channels, the proposed method can acquire 

reliable channel estimation and thus improve the target detection performance. More 

specifically, synchronizations, including symbol, carrier, and sampling rate synchroni-

zation, are performed to reference signal at first, and the corresponding PN sequences 

can be acquired. After that, by exploiting the inherent low-rank structure of DTMB sig-

nals, the noise component in PN sequences is suppressed. Further, the TC-AOMP 

method is proposed to estimate the sparse CIR, in which a new halting criterion is de-

fined based on the TC result to further improve the channel estimation accuracy. In the 

end, the purification reference signal is obtained via equalization operation. Compared 

with the existing methods, the proposed method can obtain superior CIR estimation 

performance, especially in low SNR conditions. Simulated and experimental results were 

carried out to verify the effectiveness of the proposed method in detail. Although the 

proposed method can achieve satisfactory performance in the DTMB-based PBR system, 

the large and time-varying delay spread (greater than GI) is often considered in the PBR 

system as well. Combining the DTMB-based PBR feature with the more complicated 

multipath effect is an interesting topic and will be part of our future study. 

Author Contributions: The work described in this article is the collaborative development of all 

authors. L.Z. and J.W. contributed to the idea of data processing and designed the algorithm. L.Z. 

and T.Z. made contributions to data measurement and analysis. L.Z. participated in the writing of 

the paper. Z.C. revised the writing of the paper. All authors have read and agreed to the published 

version of the manuscript. 

Figure 16. Target detection results of measured data using different purification method: (a) reference signal before
purification in the range dimension; (b) reference signal before purification in the Doppler dimension; (c) the proposed
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7. Conclusions

In this paper, a novel sparse CIR estimation scheme for reference signal purification in
DTMB-based PBR systems is proposed. By leveraging the low-rank structure of DTMB sig-
nal and the sparsity feature of wireless channels, the proposed method can acquire reliable
channel estimation and thus improve the target detection performance. More specifically,
synchronizations, including symbol, carrier, and sampling rate synchronization, are per-
formed to reference signal at first, and the corresponding PN sequences can be acquired.
After that, by exploiting the inherent low-rank structure of DTMB signals, the noise com-
ponent in PN sequences is suppressed. Further, the TC-AOMP method is proposed to
estimate the sparse CIR, in which a new halting criterion is defined based on the TC result
to further improve the channel estimation accuracy. In the end, the purification reference
signal is obtained via equalization operation. Compared with the existing methods, the pro-
posed method can obtain superior CIR estimation performance, especially in low SNR
conditions. Simulated and experimental results were carried out to verify the effectiveness
of the proposed method in detail. Although the proposed method can achieve satisfactory
performance in the DTMB-based PBR system, the large and time-varying delay spread
(greater than GI) is often considered in the PBR system as well. Combining the DTMB-
based PBR feature with the more complicated multipath effect is an interesting topic and
will be part of our future study.
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