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Abstract: Owing to the increasing use of permeable pavement, there is a growing need for studies that
can improve its design and durability. One of the most important factors that can reduce the function-
ality of permeable pavement is the clogging issue. Field experiments for investigating the clogging
potential are relatively expensive owing to the high-cost testing equipment and materials. Moreover,
a lot of time is required for conducting real physical experiments to obtain physical properties for
permeable pavement. In this paper, to overcome these limitations, we propose a three-dimensional
microstructure reconstruction framework based on 3D-IDWGAN with an enhanced gradient penalty,
which is an image-based computational system for clogging analysis in permeable pavement. Our
proposed system first takes a two-dimensional image as an input and extracts latent features from
the 2D image. Then, it generates a 3D microstructure image through the generative adversarial
network part of our model with the enhanced gradient penalty. For checking the effectiveness of our
system, we utilize the reconstructed 3D image combined with the numerical method for pavement
microstructure analysis. Our results show improvements in the three-dimensional image generation
of the microstructure, compared with other generative adversarial network methods, and the values
of physical properties extracted from our model are similar to those obtained via real pavement
samples.

Keywords: 3D microstructure reconstruction; permeable pavement; deep learning; generative adver-
sarial networks

1. Introduction

In recent years, permeable pavement has been widely used in developed countries as
part of low-impact development practices [1]. The main benefit of permeable pavement
is that it can allow rainwater to pass through its pores into the ground below by filtering
rainwater over the distinct layers, thereby reducing the excessive volume of waterlogging.
The runoff volumes and discharge rates can be reduced from paved surfaces and the
high risk of downstream flooding can be decreased. Additionally, permeable pavement
contributes water quality enhancement. It can trap stormwater pollutants and prevent
them from reaching downstream receiving waters [2]. Other benefits of using this special
pavement are skid resistance, noise control, and surface temperature reduction [3].

However, there are some drawbacks to using permeable pavement. First, it is expen-
sive owing to its special design. Permeable pavement consists of aggregate components
with different materials such as concrete mixtures with cement, polymer, and plastic [4].
Second, it has a high maintenance cost, especially for cleaning the pavement. An industrial
vacuum is needed to remove the particles that can block the spaces in the pavement. If it
is not maintained properly, the water and pollutants can run off the surface, which can
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cause flooding. Finally, it is prone to the clogging problem that is closely related to the
maintenance issue. Clogging is the reduction in porosity and permeability when fine parti-
cles, sand, or clay block the spaces or pores between the pavers. The quality of permeable
pavement can be measured using the clogging potential value. Clogging potential is the
ratio of porosity or permeability reduction because of clogging to the initial porosity or
permeability in the unclogged state [5].

Several experimental studies related to clogging in permeable pavement have been
reported by researchers over the years to develop an ideal pavement design [6–9]. A good
permeable pavement should have a small clogging potential value. According to the
researchers, we need to understand the effects of different pore structures to yield a
permeable pavement that is less susceptible to clogging [5].

To analyze the clogging potential in permeable pavements, some important proper-
ties of pavement microstructure need to be measured. Microstructure is the small-scale
structure of a material that can be viewed through a microscope. The properties of mi-
crostructure are very important for understanding the material structure and studying the
mechanical behavior of a material. In permeable pavement, three crucial properties for
analysis are (1) porosity, (2) permeability, and (3) hydraulic conductivity [5,10]. Porosity is a
fraction of the volume of pores over the total volume of a material. It is considered as a most
important property since it affects the flow rates in a permeable pavement. Permeability is
defined as the ability of a porous material to transmit fluids, and hydraulic conductivity is
the ease with which a fluid (water) can move through porous surfaces [11]. Along with
these properties, some morphological aspects also need to be carefully measured to study
the clogging phenomenon in a porous medium like the permeable pavement [12].

Traditionally, to measure the clogging potential properties, we needed to conduct
field experiments [6,13] using real physical materials. These are high in cost because
the experiments require several samples and instruments that must be installed in the
real field. The setting of a test area is another aspect that can be expensive, especially
for conducting a large-scale field experiment. It is also time consuming, especially in
large-scale experiments, owing to the equipment setup, material selection, and test-area
preparation, which involves an intricate process. Thus, a more efficient method to measure
the clogging potential properties is needed. Alternatively, they can be measured through
visual experiments with image analysis and computer simulation.

A virtual experiment is another alternative to estimate the clogging potential proper-
ties [14,15]. It is more efficient in comparison to field experiments because it uses fewer
samples and equipment for the experiment, and the required time is also not high as
required in a field experiment. For this type of experiment, the most important aspect is
the preparation of a good three-dimensional model for computer simulation. Before the
upsurge of deep learning in image processing, researchers used statistical methods and
some basic machine learning techniques such as support vector machines and the genetic
algorithm [16,17] to reconstruct a 3D microstructure. Another method uses stochastic
models such as a Gaussian random field [18] combined with hybrid optimization that gen-
erates a 3D porous material structure using a two-point correlation function and a cluster
correlation function. The most common method for 3D reconstruction is the two-point
correlation method [19–21]. It characterizes the microstructure based on certain statistical
features and then performs an optimization process to build a 3D structure that matches
those statistical features.

However, there are some limitations to the basic machine learning techniques and
statistical approach. They require predefined knowledge of the materials [19], many
different samples, and the generated model sometimes does not resemble the real sample.
In the statistical case, there is a possibility that two materials with different properties
may share first- and second-order statistical information and chord-distribution functions.
Therefore, it has failed to yield good estimates of the macroscopic properties [20]. In brief,
previous approaches did not yield realistic 3D microstructure reconstruction due to lack of
(1) many different samples and (2) a good generative model.
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To overcome these limitations, we propose a deep-learning-based 3D microstructure
reconstruction framework for permeable pavement analysis as a virtual experiment method.
Our system first takes a two-dimensional image to extract the latent features of the image.
Then, it generates the corresponding 3D microstructure image that can be obtained through
the concept of the generative adversarial network [22,23]. Since it is hard to achieve stability
in the original generative adversarial network during the training process, we decided
to implement a 3D improved Wasserstein generative adversarial network (3D-IWGAN)
[24,25] with an enhanced gradient penalty. One of the main advantages of utilizing this
generative adversarial network is that it can produce sharper, even degenerate distributions,
while other 3D GAN-based methods show instability in generated results. Thus, compared
to other methods [22], our framework achieves high profit from the enhanced gradient
penalty and keeps the stability during the training process.

The main contributions of this paper are summarized as follows:

• We propose a deep-learning-based 3D microstructure reconstruction framework for
permeable pavement analysis. Our proposed framework can effectively reconstruct
a 3D microstructure image after taking only one 2D image. For this purpose, our
framework applies several image preprocessing techniques to the input 2D images
and extracts the latent features from them via the variational autoencoder (VAE)
method.

• In comparison to other generative adversarial network methods, we obtained more
realistic 3D microstructure images of porous pavements and stable outputs. This
stability is the main result of using 3D-IWGAN with an enhanced gradient penalty.

• The accuracy of our results has been verified by evaluating some physical properties
extracted from the generated 3D samples. On observing nine different output samples,
the average error difference in hydraulic computation was found to be less than 5%.

The remainder of this paper is organized as follows. Section 2 provides a brief
overview of related research work. Section 3 presents some preliminaries of GANs.
In Section 4, the 3D model generation and analysis of the generated model are explained
in detail. The experiment and evaluation of the experimental results are discussed in
Section 5. Finally, the conclusion of our work and future work are presented in Section 6.

2. Related Work

In this section, we provide a brief review of the related work. There are three categories
to be discussed: (1) microstructure reconstruction approaches, (2) general 2D/3D object
reconstruction approaches, and (3) deep-learning-based microstructure reconstruction ap-
proaches.

2.1. Microstructure Reconstruction

Microstructure is the small-scale structure of a material that can be viewed through a
microscope. In the fields of materials science and civil engineering, microstructure properties
are very important to understand the structure of a material and study its mechanical be-
havior.

The most common and earlier work for 3D microstructure reconstruction uses the
two-point correlation method [19–21]. It characterizes the microstructure based on certain
statistical features and then performs an optimization process to build a 3D structure that
matches those statistical features. After this, statistical methods and basic machine learning
algorithms were applied for reconstruction of 3D microstructure. Some of the well-known
machine learning methods include support vector machines (SVMs) [16] and the genetic
algorithm [17]. Among others, stochastic methods have shown better results for the given
tasks. For example, Jiang et al. [18] proposed a method that exploits a Gaussian random
field with the combination of hybrid optimization. It uses a two-point correlation function
and a cluster correlation function to generate a 3D porous material structure.
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2.2. General 2D/3D Object Reconstruction

After the successful results shown by convolutional neural networks (CNNs) in the
field of image classification and computer vision, researchers started considering using
CNNs and other deep learning methods in their research on permeable pavement.

Since the core functionality of GAN enables us to generate a set of realistic (2D)
images from the given sample, thus it is extended to generate 3D images (objects) [26].
Although GAN can accurately visualize the results, it suffers from a major drawback:
the instability of GAN training. To guarantee the stability of GAN training, researchers
proposed to leverage the Wasserstein distance (WGAN) [27] and to further improve training
of the WGAN (IWGAN) [24].

Table 1 lists the different methods for object reconstruction (microstructure and non-
microstructure). It shows that the deep learning method is more common in 2D object
reconstruction than 3D object reconstruction. More specifically, there is still no application
of GAN in pavement microstructure. Therefore, we attempt to fill this gap by designing a
GAN for this case.

Table 1. 2D/3D object reconstruction methods with statistical and deep learning approaches.

Approach Method Application Output

Statistics Two-point Correlation geometry reconstruction, analysis 2D/3D microstructure
Deep Learning CDBN 2D microstructure reconstruction 2D microstructure
Deep Learning 3DGAN 3D object reconstruction 3D objects (non-microstructure)
Deep Learning DCGAN 2D object reconstruction 2D microstructure
Deep Learning IWGAN 2D/3D object reconstruction 2D/3D objects (non-microstructure)
Deep Learning 3D-IWGAN (enhanced GP) 3D microstructure reconstruction 3D microstructure

2.3. Deep-Learning-Based Microstructure Reconstruction

There were a few research works on deep learning applications for microstructure
reconstruction before the GAN technique. One example of such applications is a research
work by Cang, Ruijin, et al. [28]. It proposed a convolutional deep belief network (CDBN)
to reconstruct heterogeneous materials. Recently, Tran and Tran [29] introduced a 2D
microstructure reconstruction framework based on the image inpainting method to solve
the microstructure reconstruction problem in three different contexts.

Owing to the proliferation of GAN, several research approaches exploit the generative
power of GAN. Since GAN is used for microstructure reconstruction [30], it suffers from the
intrinsic instability issue. We published the preliminary results of a deep-learning-based
microstructure reconstruction using IWGAN [31].

Recently, more complex methods have been combined with GAN-based methods [32–34].
An end-to-end three-dimensional reconstruction framework of porous media from a single
two-dimensional dataset has been proposed [32]. Shams et al. [33] introduces coupled
generative adversarial and autoencoder neural networks to overcome instability for the
reconstruction of realizations of three-dimensional data. The model gains efficient results
by applying a gradient-descent-based optimization method for training and stabilizing
the neural networks. A transfer learning technique [34] is exploited to integrate statistical
descriptors with feature maps from a pre-trained deep neural network into an overall loss
function for an optimization-based reconstruction procedure.

Our proposed system is different from the aforementioned recent approaches in the
following aspects. First, we focus on reconstructing the 3D microstructure of permeable
pavements and obtaining 3D images with a given 2D image. In this regard, an end-to-
end framework [32] has the same goal as our system. However, our system exploits the
characteristics of 3D-IWGAN, whereas an end-to-end framework uses the modified version
of BicycleGAN [35], which is mainly for 2D-to-2D translation. Second, we provide the
more detailed steps for pre-processing and the pavement analysis methods for checking
the effectiveness of generated 3D images.
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3. Preliminaries
3.1. GAN

The generative adversarial network (GAN) is a deep learning method that learns the
representation of high-dimensional probability from a given dataset, and was introduced
by Ian Goodfellow et al. [22]. For image microstructure reconstruction, the dataset is a set
of training sample images of the probability distribution underlying the image space.

GAN is a generative system that comprises two networks, a generator network and
a discriminator network. The generator network converts latent vectors with a normal
distribution into samples that can be classified as either real or fake by the discriminator
network. The training process is stopped and the discriminator is discarded after a proper
sample image is obtained from the generator. GAN follows a minmax game with a loss
function that is formally defined as

min
G

max
D
{Ex∼pdata [logD(x)] +Ez∼pnoise [log(1− D(G(z)))]} (1)

where x is a real object input in discriminator D and z denotes the normally distributed
latent vectors that represent the random input for generator G′ as illustrated in Figure 1.

Figure 1. Generative adversarial networks. The discriminator network tries to distinguish between
real and fake images, while the generator network tries to fool the discriminator by generating
real-looking images.

3.2. 3D-IWGAN

In the original GAN method, the Kullback–Leibler divergence is minimized when
training the networks to generate 3D objects. The drawback of using this method is the slow
and unstable training process. A recent study introduced a method called 3D-improved
Wasserstein GAN (3D-IWGAN) [25] that attempted to fix this issue and aimed to generate
more realistic 3D objects by minimizing the Wasserstein distance between the data and
generated distributions. The distance formula is

W(pr, pg) = inf
γ∼Π(pr ,pg)

E(x,y)∼γ[‖x− y‖] (2)

where Π(pr, pg) is the set of all possible joint probability distributions between pr and pg
and γ ∈ Π(pr, pg) is the set of joint distributions in the continuous probability space. In the
definition of Wasserstein distance, the infimum (greatest lower bound) indicates that we
are only interested in the smallest cost.

The deviation of the discriminator’s gradients is penalized from unity in 3D-IWGAN.
It provides a more essential method for enforcing the Lipschitz constraint. The gradients of
a differentiable function are at most one if and only if it is a 1-Lipschitz function. In the
formal definition, the loss function for the discriminator in 3D-IWGAN is written as

Ex̂∼pg [D(x̂)]−Ex∼pr [D(x)] + λEx̂∼px [(
∥∥∇x̂D(x̂)

∥∥
2 − 1)2] (3)

where λ is the gradient penalty, pg is the generator distribution, pr is the target distribution,
and px is the uniform distribution sampling.
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The issue of the instability of GAN training can be tackled by employing the IW-
GAN method. Our system utilized the IWGAN with an enhanced gradient penalty for
3D microstructure reconstruction. In comparison to previous approaches, our system
demonstrated more stable results in training of the GAN. Table 2 displays the comparison
between our enhanced gradient penalty and other GAN gradient penalties. A detailed
explanation of this gradient penalty will be covered in Section 4.

Table 2. Gradient penalty comparison of different GAN methods. This measures the squared difference between the norm
of the gradient of the predictions with respect to the input images and 1 in all cases.

Method Gradient Penalty Objective Function

3DGAN none Ex∼pdata [logD(x)] +Ez∼pnoise [log(1− D(G(z)))]

3D-IWGAN (1-GP) λEx̂∼px [(
∥∥∇x̂D(x̂)

∥∥
2 − 1)2] Ex̂∼pg [D(x̂)]−Ex∼pr [D(x)] + λEx̂∼px [(

∥∥∇x̂D(x̂)
∥∥

2 − 1)2]

3D-IWGAN (enhanced-GP) λEx̂∼px [(
∥∥∇x̂D(x̂)

∥∥
2)

2] Ex̂∼pg [D(x̂)]−Ex∼pr [D(x)] + λEx̂∼px [(
∥∥∇x̂D(x̂)

∥∥
2)

2]

A latent vector is needed as an input to the generator network in the 3D-IWGAN
system. In a general way, this latent vector is generated randomly using normal or uniform
distribution. Meanwhile, our system generates this latent vector using a variational autoen-
coder (VAE). A VAE [36] consists of two parts: an encoder and a decoder. Its main task in
our system is to encode material microstructures into a lower-dimensional latent space and
to decode samples from the latent space back into microstructures. A full schematic view
of the VAE architecture is given in Figure 2 Our VAE’s decoder network is simultaneously
used by the generator network to reproduce the original sample.

Figure 2. VAE encoder architecture. It encodes data into a lower-dimensional latent space.

4. Proposed System
4.1. System Architecture

The proposed system for the virtual experiment consists of three components: pre-
processing, 3D model generator, and pavement analysis. The architecture of the system is
illustrated in Figure 3.

In this section, we provide a brief overview of each component of the system. The pre-
processing part has several tasks such as cropping, converting, downsizing, and resampling
the images. In the model generation part, we use an adversarial network to generate a
3D image from the 2D images of the porous pavement microstructure. This 3D image is
used as the input for pavement analysis, which further provides the numerical values of
physical properties such as porosity, permeability, and hydraulic conductivity.
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Figure 3. System architecture. This consists of three steps: preprocessing, 3D model generation, and
pavement analysis.

4.2. Preprocessing

Before implementing the 3D-IWGAN, we need to prepare the image data to be fixed
with the requirement of GAN input. The first step of preprocessing is binary image
conversion. In this step, the raw CT images of the microstructure are converted into binary
images with the dimension of 1130× 1130 pixels. This binary conversion is based on Otsu’s
thresholding method.

In the second step, the image is cropped into a square with the dimension of 800 ×
800 pixels, which is the maximum square size inside the circle of the converted binary
image. The squared image is then resized into a smaller size of 300 × 300 pixels to fit the
system requirement. This is the third step, known as image downsizing. The illustration of
binary conversion, image cropping, and downsizing is shown in Figure 4.

Figure 4. Binary conversion and image cropping. Input data are converted to binary versions, then
converted and resized to fit the requirement of system.

The fourth step of preprocessing consists of volumetric image construction. In this
step, a 3D microstructure image is created by stacking the binary images. The stack consists
of 800 images of the permeable pavement microstructure and the size of each image is
800 × 800 pixels. The volumetric image of this generated microstructure is shown in
Figure 5.
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Figure 5. Volumetric image of permeable pavement sample. This consists of 800 images each of
800 × 800 pixel size.

Image resampling is the fifth step of preprocessing. Since we only have one training
image per sample for the generator network, we need to create appropriate images for the
training process by extracting sub-volumes from the voxelized binary images. For this
experiment, we made approximately 24,389 images of 202 voxels from a single sample
image of 3003 voxels, illustrated in Figure 6. These generated images were used as the
training images in the generator network.

Figure 6. Volumetric image resampling. Overall, 24,389 images of 202 voxels are taken from a single
3003 voxel image.

4.3. 3D Model Generation

In this subsection, we shall present details of the 3D model generation including the
3D-IWGAN process and enhanced gradient penalty.

4.3.1. 3D-IWGAN

The 3D model of the pervious pavement microstructure is generated using GAN
in the first part of our system (3D model generator). The network takes a 2D image as
the input in the generator network. This 2D image is transformed into a 3D image by
the deconvolutional neural network. From the generator, the image is delivered to the
discriminator network and it is tested against the real sample image of the microstructure
to check whether the generated 3D model is real or fake using the discriminator.

The 3D-IWGAN network architecture used for 3D microstructure reconstruction in
module one consists of two independent networks, the generator G and discriminator
D. A 400-dimensional latent vector with normal distribution serves as the input for the
generator network. Figure 7 shows the architecture of the generator network.

The latent vector was generated using the VAE, whose architecture is identical to
that of discriminator network in the 3D image generation of GAN. Figure 8 illustrates the
architecture of the VAE. This input passes through a fully connected layer with 2048 nodes.
After getting through the fully connected layer, it passes through four deconvolutional
layers whose length of stride and kernel size are 1 and 5, respectively. The first three
deconvolutional layers in the generator network have a batch normalization layer and use
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the rectified linear unit (ReLU) as their activation function to address the vanishing gradient
problem and promote sparse activations, while the fourth layer uses a hyperbolic tangent
(tanh) as its activation function to make sure that our generating samples are in the range
[−1, 1]. The output of the generator network is a 3D image of size 20 × 20 × 20 voxels.

Figure 7. Generator network. It takes a fixed-length 400-dimensional latent vector as the input and
generates a sample in the domain.

Figure 8. VAE architecture.

The discriminator network D takes an input image of size 20 × 20 × 20 voxels. This
input passes through four 3D convolutional layers, followed by a final fully connected layer.
It is then condensed to a single value known as the discriminator output. The features of
the architecture of the generator and discriminator networks are listed in Tables 3 and 4,
respectively.

Table 3. Generator network architecture. The first three layers use ReLU activation functions and the
last layer uses the Tanh activation function.

Layer Type Filters Stride Padding Batchnorm Activation Function

1 Deconvolution 3D 128 1 0 Yes ReLU
2 Deconvolution 3D 64 2 1 Yes ReLU
3 Deconvolution 3D 20 2 1 Yes ReLU
4 Deconvolution 3D 1 1 1 No Tanh
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Table 4. Discriminator network architecture. All layers use the LeakyReLU activation function and
no batch normalization is used.

Layer Type Filters Stride Padding Batchnorm Activation Function

1 Convolution 3D 1 1 1 No LeakyReLU
2 Convolution 3D 32 2 1 No LeakyReLU
3 Convolution 3D 64 2 1 No LeakyReLU
4 Convolution 3D 128 1 0 No LeakyReLU

4.3.2. Enhanced Gradient Penalty

Various types of gradient penalty are used to improve the convergence and stability
of GAN training. One of the most commonly used gradient penalties is the one-centered
gradient penalty [24], which is described as

Ex̂∼pg [D(x̂)]−Ex∼pr [D(x)] + λEx̂∼px [(
∥∥∇x̂D(x̂)

∥∥
2)

2] (4)

In this paper, we used an enhanced gradient penalty for our 3D-IWGAN system.
The original 3D-IWGAN gradient penalty is being modified to enhance the training stability
of our GAN. Its formal definition is as follows:

λEx̂∼px [(
∥∥∇x̂D(x̂)

∥∥
2 − 1)2] (5)

The gradient penalty used in this study is a form of zero-centered gradient penalty.
In the zero-centered gradient penalty, we want to set the gradient to zero as the generator
distribution (pg) approaches the target distribution (pr). When pg = pr, the gradient in
connection to all datapoints on the line segment between a pair of real and fake samples
should be zero.

4.4. Pavement Analysis

In the final part of our system, we analyzed the physical properties of the microstruc-
ture, such as porosity and permeability, using the 3D model output from the model
generator part. The pavement analysis comprised two sub-parts: (1) PermSolver and
(2) MorphAnalyzer.

PermSolver is an open-source framework developed by NIST [37]. It takes a 3D image
of the microstructure as the input, converts it into x-y-z velocity and pressure components,
then solves the Stokes equation using a finite difference scheme. By solving this equation,
we can get the computed permeability of the porous microstructure.

Other than permeability values, we can also calculate the hydraulic conductivity (K)
with this equation:

K = k
ρg
µ

(6)

where k is the permeability value (from Permsolver), ρ is the density of fluid, g is the
acceleration due to gravity, and µ is the dynamic viscosity of the fluid. In the following
Section 5 the results of computing the hydraulic conductivity are described.

MorphAnalyzer is a tool that is used to compute the important characteristics of mi-
crostructure morphology. In our model we use three characteristics: porosity, specific area,
and Euler characteristic. Porosity is calculated using the total number of pores based on the
output of the 3D model reconstruction module. The specific area and Euler characteristic
are obtained by using ImageJ [38]. The values extracted in this part are important in the
investigation of the adsorption process and pore network connectivity of the permeable
pavement microstructure.

5. Implementation and Evaluation

In this section, we present the performance evaluation of our system.
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5.1. Experimental Setup
5.1.1. Hardware and Software

To evaluate the proposed system, we used one commodity machine. This machine
is equipped with an Intel Xeon(R) CPU E5-2609 v4 @ 1.70 GHz x 16, with 64 GB memory,
NVIDIA GeForce GTX 1060 6 GB, and runs on a 64-bit Ubuntu 16.04 operating system.

We implemented our approach in Python 2.7 using Tensorflow-GPU 1.2.1 performed
with CUDA Toolkit 8.0 and cuDNN 6.0.

5.1.2. Dataset

The dataset used for this work was extracted from nine different samples of permeable
pavement. The sample image was scanned using a CT machine with a voxel size of
88.194 µm. The size of one sample image after binary conversion to 8-bit resolution was
3003 voxels. We resampled this image to 24,389 images with a size of 203 voxels. The size
of this dataset was approximately 14.4 GB.

5.2. Experimental Results
5.2.1. 3D Pavement Reconstruction

The reconstruction process started by defining some hyperparameters for the generator
and discriminator networks. We set 10−4 as the generator learning rate. Thus, it learns every
5 batches with batch normalization in all layers except the final layer. For the discriminator
network, the learning rate is set to the same value as the generator network but it learns on
each batch. The stochastic gradient descent using the Adam optimizer was used to perform
the learning process, with momentum β1 = 0.5 and β2 = 0.9 for both networks.

We trained the network and calculated the loss for the discriminator network. The cal-
culated loss is used to track the convergence and quality of generated objects, depicted
in Figure 9. The first plot on the left is the GAN discriminator loss, the second plot in the
center is the calculated loss for the original 3D-IWGAN, while the third plot is that of the
3D-IWGAN (with enhanced gradient penalty) discriminator loss. From the plots, we can
see that the discriminator loss of 3D-IWGAN (enhanced GP) has a bouncing value in the be-
ginning but it has relatively stable values after 600 iterations. Meanwhile, the discriminator
loss of GAN and original GAN increase until 1000 iterations. Although our result shows
that this value does not converge to zero, it is more stable in comparison to other methods.
The stability in GAN’s loss is also important to prevent the collapse and failure modes.
To check the accuracy of our model, we added the computation of physical properties to
display the similarities between our generated 3D model and the real sample. The result of
this computation is presented in Permeable Pavement Analysis, Section 5.2.2.

Figure 9. Discriminator loss comparison. The convergence and quality of generated objects are tracked by the calculated loss.

The result of the 3D reconstructed image using GAN is displayed in Figure 10a.
Figure 10b illustrates the image generated using the original 3D-IWGAN, and the image
generated using 3D-IWGAN (enhanced GP) is presented in Figure 10c. The images gener-
ated using the GAN method have more pores in comparison to those generated using the
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original 3D-IWGAN and our 3D-IWGAN, while the images generated by the original IW-
GAN have more solid phases in comparison to other methods. Among the three methods,
the 3D-IWGAN (enhanced GP) shows more realistic images of the pavement microstruc-
ture.

(a) 3D-GAN (b) 3D-IWGAN (c) 3D-IWGAN (enhanced GP)

Figure 10. Comparison of voxelized 3D Images. Images are reconstructed by GAN, 3D-IWGAN, and 3D-IWGAN (enhanced
GP) methods.

We reconstructed the microstructure for nine different samples, whose results are
presented in Figure 11.

(a) 3D-GAN (b) 3D-IWGAN (c) 3D-IWGAN (enhanced GP)

Figure 11. Comparison of generated 3D images.

5.2.2. Permeable Pavement Analysis

The final part of our system is pavement analysis. After obtaining the 3D image of the
pavement microstructure, we attempted to analyze the physical properties of the gener-
ated images. We attempted to evaluate five properties: porosity, permeability, hydraulic
conductivity, specific surface area, and Euler characteristic.

In porous media such as permeable pavement, flow properties can be related to poros-
ity, which is required to determine other properties such as permeability and hydraulic
conductivity. Therefore, it needs to be estimated first. According to the ASTM standard,
the porosity for permeable pavement is approximately 15–35% . Figure 12 shows the calcu-
lated porosity for the nine images generated using the IWGAN method. In comparison to
the result of the previous GAN model, the proposed model shows better results for the
values of porosity. The calculation results of the porosity from our generated 3D images
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shows that 66.67% of our samples are in the correct range of the standard value. Our
method is better than the other methods, including none of the samples that fall within the
appropriate range of standard values. The porosity values of the generated images from
3D-IWGAN (enhanced GP) illustrate a 66.67% improvement over the previous methods
(3D-GAN and 3D-IWGAN).

Figure 12. Computed porosity of 9 different samples. Our proposed method shows the highest result
for the value of porosity among other methods.

We also calculated other properties such as the specific surface area and Euler number.
The specific surface area is used to define the adsorption and dissolution processes in
porous media, while the Euler number is used to characterize the connectivity of porous
media. This is an important factor that determines the ability of fluids to flow. A less
negative Euler number indicates a reduction in pore network connectivity. The values of
surface area and Euler number are presented in Table 5. According to the ASTM standard,
permeable pavement has a value of surface area approximately in the range 5–15%. Our
results demonstrate that all samples are in the correct range (5–15)% of the surface area.

Table 5. Computed surface area and Euler number of 9 samples.

Sample Specific Surface Area Euler Number

1 7.37% −1.27 × 103

2 8.93% −4.53 × 102

3 9.45% −3.21 × 102

4 8.77% −5.25 × 102

5 10.93% −2.19 × 102

6 8.65% −4.16 × 102

7 7.91% −5.98 × 102

8 14.26% −1.09 × 102

9 6.17% −6.26 × 102

After measuring the morphological values, we tackled the final part in our system:
computing the permeability and hydraulic conductivity for each sample. The results of
this computation can be used to determine the clogging potential of permeable pavement.
The result for hydraulic conductivity is illustrated in Figure 13. It shows that the error
difference in the nine different samples ranges between 1.9% and 5.6% or an average of
approximately 3.54%.
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Figure 13. Computed hydraulic conductivity. The errors range between 1.9% and 5.6% among nine
different samples.

The results of pavement analysis demonstrate that the proposed 3D model yielded
better values than the model generated using 3D-GAN and original 3D-IWGAN. From the
nine different samples, the average error difference in hydraulic conductivity computation
was found to be below 5%. Moreover, the values of physical properties extracted through
the proposed 3D model using our GAN method are closer to the baseline (theory) values
than other GAN methods.

5.3. Discussion

We summarize our two major finding based on our experimental results. First, our
framework can successfully generate 3D images of porous pavement microstructure from
a single 2D image using 3D-IWGAN with enhanced GP. Figures 10 and 11 illustrate the
generated 3D microstructure images as a visualization. Second, the generated 3D images
are realistic in terms of the physical properties of permeable pavement extracted from our
generated images. From Figure 12 and Table 5, we observe that the computed values of
porosity and surface area fall in the correct ranges of the standard values. Figure 13 also
displays a low error value of about 3.54% on average in nine different samples.

There are some limitations that restrain us from obtaining 100% accuracy despite
getting decent results in 3D image generation and the computations of physical properties.
Some limitations arise from the limited 2D image dataset as the input whereas others
arise from the computational resources for our proposed framework. To provided a
2D input image for our framework, scanned images of pavement microstructure are
needed at the pre-processing step. Since we only had a limited set of scanned images, we
applied image resampling to obtain enough 2D images for our experiments. Powerful
computational resources are important for generating 3D images with high resolution.
For future experiments, several machines can be utilized as a distributed way to obtain
large 3D images with higher resolutions.

6. Conclusions

Although permeable pavement has been extensively used to allow rainwater to pass
through the pores into the ground, to control water quality, and to reduce the surface
temperature, it has some obstacles during utilization: obtaining samples, maintenance cost,
and clogging issues.

To overcome above-mentioned problems, in this paper, we proposed a three-dimensional
microstructure reconstruction framework for permeable pavement analysis as one of the
virtual experiment solutions. Since we utilized the generative model of 3D-IWGAN with
an enhanced gradient penalty, our framework can effectively generate 3D microstructure re-
construction from a single 2D image of permeable pavement. To the best of our knowledge,
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3D-IWGAN has not been used for the 3D model reconstruction of permeable pavement
materials. From the visualization of the generated 3D microstructure images from nine
samples, we have observed that our framework generates realistic 3D images.

When analyzing the flow in porous media, it is crucial to improve the values of
porosity. Incorrect values of porosity will affect the other physical properties of permeable
pavements such as permeability and hydraulic conductivity. These two properties are
also important to assess the quality of generated images that are later used for pore
network analysis. We have demonstrated that our framework generates more realistic
3D microstructure images, maintaining the values of these physical properties within the
range of the standard values. In particular, the porosity values of the generated 3D images
from 3D-IWGAN with enhanced GP were improved by 66.67% compared to the previous
methods (3D-GAN and 3D-IWGAN).

Our proposed 3D microstructure reconstruction framework can be extended in two
directions. First, we can add an additional module that generates and analyzes the pore
network to conduct comprehensive virtual experiments. Second, we can combine some
empirical methods with our framework to increase the quality of the generative model and
avoid random errors.
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