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Abstract: Cellular network operators are predicting an increase in space of more than 200 percent to
carry the move and tremendous increase of total users in data traffic. The growing of investments
in infrastructure such as a large number of small cells, particularly the technologies such as LTE-
Advanced and 6G Technology, can assist in mitigating this challenge moderately. In this paper, we
suggest a projection study in spectrum sharing of radar multi-input and multi-output, and mobile
LTE multi-input multi-output communication systems near m base stations (BS). The radar multi-
input multi-output and mobile LTE communication systems split different interference channels. The
new approach based on radar projection signal detection has been proposed for free interference
disturbance channel with radar multi-input multi-output and mobile LTE multi-input multi-output
by using a new proposed interference cancellation algorithm. We chose the channel of interference
with the best free channel, and the detected signal of radar was projected to null space. The goal is
to remove all interferences from the radar multi-input multi-output and to cancel any disturbance
sources from a chosen mobile Communication Base Station. The experimental results showed that
the new approach performs very well and can optimize Spectrum Access.

Keywords: interference cancellation; spectrum sharing; massive MIMO; signal detection; channel op-
timization

1. Introduction

In recent years, Radar and Mobile communication systems have been exposed to
situations in which the two systems have to share the same spectrum. This has opened
the flow gate to research interest and scientific dissertation. Over a decade, spectra were
mainly shared within the system by applying opportunistic techniques through cognitive
radio [1,2]. These techniques were made feasible through spectrum sensing [3] and data
management localization [4] by combining the two techniques through radio mapping [5].
Recently, there is improvement in co-existence spectrum sharing with a secondary network
element [6,7]. However, in co-channel interference (CCI), spectrum sharing for mobile
communication systems and the radars have received very little attention. This is often due
to policy problems and spectrum law enforcement challenges. A decade ago, commercial
mobile services were not permitted to share spectrum bands with radar communications
systems. This is mainly as a result of the interference disturbance that the radar may
cause to the mobile system [8]. The United States, through the Federal Communications
Commission, recently suggested the use of the 3550–3650 MHz for business broadband [9].
This band, according to these authors, must be shared by satellite, radar and commercial
communications systems [8,10]. The radio frequency (RF) spectrum will be shared among
many different systems, including radar and cellular systems, because in the future it will
be very important to access the interference scenario of these communications systems.
Certainly, radars will cause interference to communications systems and vice versa if
proper interference mitigation methods and novel spectrum sharing algorithm are not
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deployed. Meanwhile, considerable improvement has been noted recently in literature
regarding interference-mitigation-based spectrum sharing between radar and commercial
communications systems [11]. An interference-mitigation technique for radar and commer-
cial communications systems based on a primal-dual subgradient ascent method has been
proposed. This tends to find the maximum data transmission strategy for communications
and the optimal information extraction waveform for radar. These systems perform well
by minimizing target parameter estimation error of radar and data estimation error of
communications. But it is challenged by the limitation of the Lagrange function of unique
optimal weight, convexity, and its complexity on evaluating the duality [12]. In addition,
by considering the sensitivity of the radar system, the wireless communication signal may
deteriorate the radar detection performance, as emphasized by [13]. In works conducted
by [14], it was revealed that an average intersystem interfence at the radar system that goes
from commercial base stations can be presented mathematically with a zone of exclusion.
The commercial base stations’ communications systems are assumed to be equipped with
many antennas, and the locations of cellular base stations are analyzed as a Poisson point
process. A technical method based on random chance-constrained optimization has been
presented in a study conducted by [15] to ensure a minimum performance of radar systems,
while maximizing the performance of cellular systems. Particularly, the transmit power
adaptation of the commercial cellular base stations were considered. In a study by [16],
radar and communication systems are both optimized to maximize the probability of de-
tection of radar while guaranteeing the transmission power budget of the base station and
signal- to-interference plus noise ratio of communications systems. Moreover, in the same
study, a method based more on the view of beamforming optimization constructive inter-
ference was proposed [16]. Only the base station’s beamforming is optimized to minimize
transmission power while ensuring the received noise ratio at user equipment (UE) and
interference threshold to radar or to minimize interference to radar subject to receive noise
ratio constraint. However, in these two studies [16,17] only a downlink communication
scenario is considered. However, there is a high probability that radar can be affected by
uplink communication signals when the radar is deployed near the user equipment. An
interference-cancellation-based interference alignment technique in wireless communica-
tion systems was proposed by [18,19]. The main idea of interference alignment is to confine
interference from other user equipment into a predefined linear space at the receiver on
the UE of interest and to separate the desired signal space from the interference space.
Additionally, an opportunistic interference-alignment method was proposed for effectively
combining the interference alignment (OIA) technique with a UE scheduling approach for
both multiuser downlink and uplink networks communications [20–27], and all this work
is cellular-communication-centric. An opportunistic interference alignment approach for
spectrum-shared radar and uplink cellular communications systems was proposed in [28],
where both systems were equipped with multiple antennas. To achieve good performance,
the author put more focus on the uplink of the user equipment (UE) of the base stations,
rather than the radar that carries heavy frequencies and often causes disturbance in the
sharing performance [8].

In this paper, we addressed spatial technique on spectrum access for massive multi-
input multi-output radar and massive multi-input multi-output mobile communications
systems by considering numerous numbers of the base stations. Here the radar and mobile
communication systems exchange much interferences on each other. We then proceeded on
the estimation of radar-detected signals according to the null space projection channel on
radar and mobile systems by applying an interference-channel-collection estimation. Our
objective is to analyze the cancellation of all interference schemes on the space. The selection
of the best cancellation channel is made possible based on the maximum estimation of
mathematical null space and radar projection wave into the cancellation channel. In the
present study, we focused more on the radar. For instance, often in the scenario of radar
and mobile communications systems, it is obvious that the radar causes more harmful
interferences to the long-term evolution (LTE) communications systems, and this is often
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due to its high frequency range. At the same time, delicate analyses have to be performed
so that losses on the radar side can be reduced significantly by thoroughly choosing the best
channel and preserving the ith mobile communication base station. Through a systematical
inquiry and analytical results, we demonstrate that the dropping of the radar scheme is
smaller when it comes to choosing the appropriate channel of interference and handed
down to choose the good channel that the radar signals’ detection is estimated. Secondly,
we have discussed the challenges of localizing a targeted point of a radar that has spread
its waves in the null space interference channel. Obviously, our objective here is to reduce
interference on the LTE cellular network. Our scenario is a radar massive multiple-input
multiple-output and an LTE mobile massive multiple-input multiple-output. We consider
that the wireless mobile cellular system has many base stations. Two spectrum access
methods were selected for this purpose. First, we consider the case where on the radar
side the accessible degrees of freedom are not sufficient to localize the chosen targeted
point and reduce the interferences of the mobile base stations at the same time. Here, we
chose one cellular mobile base station as a sample, to do our projection optimization, with
a consideration of maintaining as little degradation as possible. Secondly, we considered a
scenario where on the radar side, the accessible degrees of freedom are sufficient to localize
the chosen targeted point and reduce the interferences of the mobile base stations at the
same time. We analyzed the proficiency of the chosen target detection projection wave and
performed hand-to-hand comparisons of the two waves. We get the advantage of the use
of the generalized likelihood ratio (GLR) for its flexibility and less computation to perform
the detection and to obtain test statistics of the null space projection and orthogonal wave
signal. The signal target detector execution for both waves was investigated based on
theoretical level as well as practical level throughout Monte Carlo simulations.

The present work is organized as follows. In Section 2 we talk about massive multi-
input multi-output (MIMO) radar, selection of channel target, orthogonal waves signal,
channel interference, the chosen mobile system model, the cooperative RF environment,
and architecture. We have analyzed spectrum sharing for both massive MIMO radar and
mobile communications systems. Its performance includes matrix projection and a target
Detection Decision Test.

In Section 3, we talk about numerical results and analyses. In Section 4, we talk about
projection algorithm and discussion. Section 5 is the conclusion of the paper.

2. Materials and Methods
2.1. System Model

In this section, we presented the chosen detection point target of MIMO radar, in
a far-end site, the orthogonal waves, interference channel, and massive mobile cellular
network. In the present work, we have considered a radar that is a colocation massive multi-
input multi-output radar with M variable of transmitter and receiver antennas grouped
inside a military base station. We consider that our colocated multi-input multi-output
radar antenna array is half observation of the wave. An additional study of the massive
multi-input multi-output radar is deeply placed where components are well-positioned,
which produces strength to the spatial distinctiveness [29,30]. The colocated scanned
massive radar brings a very good spatial intent parameter point of the target recognition
analysis if we tried to compare it with wide-spaced radar [31]. Consider x(t) to be the signal
transmitted by M massive multi-input multi-output radar input presented here,

x(t)=
[
x1(t)eJwctx2(t)eJwct . . . xM(t)eJwct

]T
(1)

where xk(t)eJwct represents non-modulated signal band of kth transmitted radar antenna
with ωc which represent the frequency jagged or redirected in Hertz, t ∈ [0,T0], with T0
being the observation time. We define the transmit steering vector as,

aT(θ)=
[
e−JwcτT1(θ)e−JwcτT2(θ) . . . e−JwcτTM(θ)

]T
(2)
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Then, the transmit-receive steering matrix can be written as,

A(θ) , aR(θ)aT
T (3)

By considering M transmitter and receiver, we can then define, aT(θ) , a(θ) , aR(θ).
For flexible reasoning, we assume that the path attenuation of the wave α is the same

for the transmitter and receivers’ antennas; we use this inference because of the backside
site [32]. The tilt θ represents the angular azimuth of the chosen point. A summary of
notations presented in this paper can be found in Table 1. The signal received from a single
point, in far-end with constant velocity υr at an angle θ can be written as,

y(t) = αA(θ)x(t) + n(t) (4)

where α is the loss path as well as the breeding loss and the reflection measurement, and
n(t) represents additive complex Gaussian noise. On the receiver side, we set the following
inference:

Table 1. Summary table of Notations.

Notations Values

x(t) Radar Wave Transmitted
aT(θ) Steering Vector Transmitted of Target angle θ
aR(θ) Steering Vector Received of Target angle θ
A(θ) Transmit-Receive Steering Matrix
y(t) Received Radar Wave
Rx Matrix of Correlation

sUE
i (t) Transmitted signal of jth UE in ithBS
LUE

i Total Number of UEs in ithBS
Ҡ Total Number of BSs
M Radar Transmit Antenna

NBS BS Transmit/Receive Antenna
Hi Interference Channel between Radar andithBS
Hi,j Channel between jthUE and ithBS
ri(t) Received Signal at ithBS

Pi Projection Matrix for the ithChannel

−θ and α are deterministic unknown parameters and is the entrance orientation of the
chosen target and complex magnitude of the target, respectively. We denote the move of
trajectory noise by n(t), and is independent, zero-mean, we consider it to be well-known,
complex Gaussian and converged matrix, Rn = σ2

nIM, i.e., n(t)~ Nc(0M, σ2
nIM), where Nc

represents the CGND (Complex Gaussian Normally Distributed). By Considering Equation
(4) hypothesis, the receiver signal can be represented,

y(t) ∼ Nc
(

αA(θ)x(t),σ2
nIM

)
(5)

And the orthogonal waveforms transmitted by the massive MIMO radars can be
written,

Rx =
∫

T0

X(t)XH · dt = IM (6)

The quadratic transmission signals of massive MIMO radars advantages in context
of selecting one specific receiver from the transmission side and generate end-to-end
inclusion system to ameliorate the angle of resolution, increase the cluster hole more
on virtualization, also enlarge the number of solvable targets, reduces earlobes [33], and
decrease the probability of head off if we tried to compare it to the rational signal waves [34].
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2.1.1. Mobile Communication System

A TDD massive multi-input multi-output mobile LTE communications system has
been considered for Ҡbase stations; each is supplied by an NBS transmitter and receiver
element, shielded by ith base station and LUE

i user equipment. The user equipment likewise
are multi-input and output systems categorized by NUE transmitter and receiver element.
By conceding that sUE

i (t) is the transmitted signal of jth user equipment to the ith unit, the
receiver signal at the end base station can be described,

ri(t) = ∑
j

Qc,jH
NBSx NUE

j Pc,jsUE
i (t) + Qc,jwj(t) 1 ≤ j ≤ LUE

i (7)

where Hj represents the matrix in jth user equipment communication system, wj(t) rep-
resents the white additive Gaussian noise. Qc,j, Pc,j represents the linear decoding and
precoding matrices. The goal of designing the jth precoder and decoder is to find a null
space spanned by the columns of a decoder matrix in order to align the interfering sig-
nals [11,35–37].

2.1.2. Co-Existence RF Environment

In communication wireless system model theory, we generally assumed that the
transmission (which is from the base station) carried the States Space Channel Information
(SSCI) from the receiver (known as the user equipment) in Frequency Division Duplex
communication systems. On the other hand, they can exchange each other’s transmission
channel in Time Division Duplex communication systems [38]. Response and exchange
traffic are well-grounded, feasible as much as the response has an understandable and
consistent time and radio frequency channel and greater than the reciprocity traffic time,
respectively. For instance, when radar channels are sharing spectrum with mobile cellular
structure, one way for getting the SSCI is that the radar shall measure Hi according
to the estimation sent from the base station (BS) [39]. A different method is that the
radar gets the advantage of mobile cell concerning carrier estimation, assisted by the
low-power signal, and the carrier estimation is filtered to the radar. For instance, by
considering radar detected signal as an interference on the mobile cellular side, the channel
can be classified as an intrusion channel and consider the internal information as intrusion
channel state information. The propagation of the spectrum between radar and LTE mobile
cellular system networks can be visualized in two main ways, first as the radars’ military
network system. Splitting their spectrum within military base stations, we denote it Mil-to-
Mil spectrum sharing. The second way is the radars’ military base station sharing their
spectrum with a business or mobile cellular commercial network. This was denoted as the
Mil-to-Com spectrum sharing. In this paper, we focused more on the Mil-to-Com case. The
intrusion channel state information can be obtained by allowing impulse of commercial
network. The largest impulse scheme is the null-pilot and shelter that came from the radar
interference. In the two scenarios, notwithstanding the sharing scheme, Mil-to-Mil or
Mil-to-Com, we have the intrusion channel state information for the reason of reducing
radar interference at the mobile commercial network.

2.1.3. Construction

We harmonized the coexistence between the two schemes as illustrated in Figure 1, in
which the military-based massive radar multi-input multi-output is splitting Ҡinterference
carriers with its neighbor mobile system. By considering this scenario, the detected signal
on the receiver side at the ith base station can be represented as,

ri(t) = HNBSx M
i x(t) + ∑

j
Qc,jH

NBSx NUE

j Pc,jsUE
i (t) + Qc,jwj(t) (8)
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Figure 1. Spectrum-sharing description for massive MIMO radar and target point at the same time
splitting spectrum with massive MIMO mobile cellular network.

Hi represents interference channel between mobile Cellular base station and the radar.
And i = 1,2, . . . , k, where Hi can be written,

Hi=


h(1,1)

i · · · h(1,M)
i

...
. . .

...

h(NBS, 1)
i · · · h(NBS,M )

i

(NBS ×M
)

(9)

Here h(l,k)
i denotes the coefficient carrier of kth radar’s base station antenna to the

lth LTE mobile antenna of the ith base station. The components of Hi are independent,
identically distributed, moreover annular proportional and randomly distributed equiv-
alent to complex Gaussian with zero-mean, hence accepting Rayleigh dispersion. Fur-
thermore, meticulous and comprehensive analysis of interference channel for radar and
mobile communications systems, along with more than two special channels, are presented
in [28,33,40]. Our goal here is to map x(t) toward null space interference Hi, by canceling
interference at ith base station, such as Hix(t) = 0, so that ri(t) should be Equation (7)
instead of Equation (8).

2.2. Radar Mobile System Spectrum Sharing

In this section, we deal with spectrum sharing of radar multi-input multi-output
and that of mobile communication, and included Ҡbase stations. Both systems share
the same numbers of interferences (Ҡ) that lead us to Hi (i = 1, 2, . . . , k). The detected
signal of radar is estimated by projecting it to the map of zero interference channel and
connecting the two communications systems (radar and mobile) by utilizing our suggested
interference-channel-collection inference, in sequence of having removed all interferences
from the radar multi-input multi-output. The selection of interference channel is done with
respect on maximizing zero map projection, represented as argmax

1≤i≤K′
dim[N(Hi)] and project

the detected signal of the radar in null space of this scheme.

2.2.1. Performance

We used theorem of Cramer bound and the maximum likelihood estimation to eval-
uate the slope of the targeted point of entrance as our statistical scheme of the network.
Attention also was put on analyzing the deterioration approximation of the arrival angle of
the chosen point, suitable to project the wave of the radar in null space. Cramer bound of
an isolated chosen point study was well analyzed in [40],

CB =
1

2 SNR

(
MR

.
aH

T (θ)RT
x

.
aT(θ) + aH

T (θ)R
T
x aT(θ)‖

.
aR(θ)‖2 −

MR
∣∣aH

T (θ)RT
x

.
aT(θ)

∣∣ 2

aH
T (θ)R

T
x aT(θ)

)−1

(10)
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For instance, the maximum likelihood of no interference of a single targeted point can
be represented as,

(
θ̂, τ̂, ω̂D

)
ML= argmax

θ,τ,ωD

∣∣∣aH
T (θ)E(τr, ωD)

.
a∗T(θ)

∣∣∣ 2

MRaH
T (θ)R

T
x aT(θ)

(11)

where,
.

aR(θ) =
daR(θ)

dθ
.

aT(θ) =
daT(θ)

dθ

Rx =
∫

T0
X(t)XH(t) · dt

E(τr, ωD) =
∫

T0
y(t)XH(t− τr) · dt

where τr is the two-way breeding hold up connecting the chosen point and the reference
point, and we denote ωD as the Doppler frequency transfer. Furthermore, we consider the
performance measurement such as the Cramer bound and maximum likelihood; we are
more concerned with the constant changes that occurred in the beampattern of radar wave
projection. The response of beampattern measurement for a chosen point is controlled by θ
as presented in [40],

G(θ, θD) = Ω

∣∣aH
T (θ)RT

x aT(θD)
∣∣ 2

aH
T (θD)RT

x aT(θD)

∣∣aH
R (θ) aR(θD)|

2

MR
(12)

Here Ω represents the constant of harmonization, and θD is the processor-driving
rudder of the primary beam. In this research, we studied two spectrum-sharing methods
and analyzed them as follows:

Case 1 (M < ҠNBS and M > NBS). A case where the radar has only a few beam antennas
in comparison with the interconnected, which is Ҡ-BS where M <ҠNBS. On the other
hand, radar antennas are greater than the base station antennas beam, where M > NBS. In
a situation like this, it is impossible for the radar to reduce interferences at once in all the
antennas as Ҡ-Base station inside the system structure are due to poor applicable degrees
of freedom. Moreover, the accessible degrees of freedom can grant us target detection
and interference reduction at once, and that means only upon one selected base station
inside the network of Ҡbase stations. For the selection of the base station by the radar,
this will depend on the optimization operation of the radar. This paper seeks to study
how to reduce interference in a maximum manner on the side of the mobile base station
with the least possible deterioration performance of the radar operation. The defect is
that the interferences cannot significantly be reduced by removing one base station on
the network; therefore, the radar will have to use a very high-power level in order to
have a good performance. However, this can increase the probability gain of interference
on the mobile base stations which are not included in the mitigation study scenario.
In [41,42], the technique explained that by applying resource allocation and dual-cell
approaches we can change Ҡ –1 base stations to nonradar frequency ranges. In M <ҠNBS

conventional colocated multi-input multi-output radar and cellular system, applying the
Zero Interference Projection (ZIP) technique, is not an effective way of reducing significant
interference because ZIP has a limited number of parameters to stabilize the two systems.
By so doing, it will lead to low performance of the radar. Although we can also modify the
structure of the radar system into a superposed multi-input multi-output radar structure,
the transmitted wave range of colocated radar will have to be divided into numerous
sub-rages which can be acceptable by superposed. A superposed radar waves structure
increases the degree of freedom of the transmitted wave, and as result the massive multi-
input multi-output radar can perform very well. At the same time, we have significantly
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reduced interferences at the LTE mobile base station without compromising the radar’s
transmitted parameters requirement.

Case 2 Where M >ҠNBS. Let us examine a case where the massive multi-input multi-
output radar has many antenna elements and this increases the beam, in comparison with
a mixed antenna element with Ҡbase stations. In such a situation, it is possible that the
massive multi-input multi-output radar can reduce considerable interference to every
single K base station in the network, while ensuring good signal detection of the chosen
targets. Here we have enough degree of freedom which makes our scenario possible. In
this case, the mixed interference shared in the networks between massive multi-input
multi-output radar and LTE mobile base stations system can be written as;

H = [H1, H2 . . . HK′ ] (13)

2.2.2. Matrix Projection

At this point, we structure the prediction array for Scenarios 1 and 2.
1st Prediction Scenario, where M <ҠNBS and M > NBS: Here, the prediction algorithm

for the first scenario is presented. At this point, the schemes of radar detection are estimated
over null space of interference transmission trajectory Hi. We suppose that the MIMO radar
has the information of each channel state of Hi interference channels, over the response,
in Mil-to-Mil or Mil-to-Com scheme, considering the performance of a unique evaluation
of decomposition (UED) to estimate the interference cancellation and therefore build the
projection matrix. Let us estimate first EUD of Hi,

Hi = Ui Σi VH
i (14)

And,
Σ̃i , diag

(
σ̃i1, σ̃i2, . . . , σ̃ip

)
(15)

where p, min (NBS, M) and σ̃i1 > σ̃i2 > · · · > σ̃iq > σ̃iq+1=σ̃iq+2 = · · · = σ̃ip = 0 are the
singular values of Hi. From here we can define,

Σ̃i
′
, diag

(
σ̃i1
′, σ̃i2

′, . . . , σ̃iM
′) (16)

where,

σ̃i,u
′ ,

{
0 , ∀ u ≤ q ,
1, ∀ u > q,

Given aforementioned definitions, we are able to determine projection matrix,

Pi , Vi Σ̃i
′

VH
i (17)

In order to verify that Pi is a suitable matrix projection, these two conditions have to
be met:

Condition 1 Pi ∈ CM×M is an appropriate projection matrix if, ∀ Pi ⇔ PH
i =P2

i ,
Proof, Pi = PH

i , considering Hermitian of Equation (17) we have,

PH
i =

(
Vi Σ̃i

′
VH

i

)H
= Pi (18)

P2
i = Vi Σ̃i VH

i ×Vi Σ̃i VH
i = Pi (19)
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Vi VH
i = I, here it is form orthogonal matrices where

(
Σ̃i
′)2

= Σ̃i
′
. Based on Equation

(18) as well as (19) is follows that, Pi = PH
i = P2

i . We can also show Pi is a projector matrix if
∀ v ∈ rang (Pi), then Piv = v; and w, v = Piw, then,

Piv = Pi(Piw) = Pi
2w = Piw = v

Moreover, Piv− v ∈ null(Pi), and

Pi(Piv− v) = Pi
2v− Piv = Piv− Piv = 0

This confirms our first property.
Condition 2 Pi ∈ CM×M is the null space orthogonally projected matrix Hi ∈ CNBS×M.
Proof, Pi = PH

i ,we can write,

HiPH
i = UiΣ̃iVH

i ×Vi Σ̃i
′

VH
i = 0 (20)

Σ̃iΣ̃i
′
= 0 (by structure).

In ‘Prediction Scenario 1′, we have a total of Ҡinterference channels. Hence, we must
choose the channel that leads to a minimum deterioration of radar wave in the lowest level
as possible,

imin, arg max
1≤i≤K′

||Pix(t)− x(t)||2 (21)

Pimin , P̌

After the projection matrix has been determined, we can now estimate the signal of
radar over the null space of intrusion channel,

x̌(t) = P̌x(t) (22)

The statistical matrix between the two waves can be written as,

Rx̌ =
∫

T0

x̌(t)x̌H(t) · dt (23)

The projection does not preserve its perpendicularity, which means it is not identical
anymore and is classified according to the projection matrix.

2nd Prediction Scenario, where M > K′NBS: Here, the prediction algorithm for the
second scenario is presented. At this point, the schemes of radar detection are estimated
over null space of mixed interference trajectory H. It can be written as,

H = U Σ VH (24)

And,
Σ̃ , diag

(
σ̃1, σ̃2, . . . , σ̃p

)
(25)

where p, min (NBS, M) and σ̃1 > σ̃2 > · · · > σ̃q > σ̃q+1=σ̃q+2 = · · · = σ̃p = 0 are the
singular values of H. We define,

Σ̃i
′
, diag

(
σ̃1
′, σ̃2

′, . . . , σ̃M
′
)

(26)

where,

σ̃u
′ ,

{
0 , ∀ u ≤ q ,
1, ∀ u > q,

Considering the present assumption, we can then extend the projection matrix as
follows,

P , V Σ̃
′

VH (27)
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At this point we can now conclude that P is an accurate projection matrix based on
Conditions 1 and 2.

2.3. Target Detection

In this point, we expended a numerical detection test to improve the decision with
respect to orthogonal wave of radar, including Null-space projection waves. Our objective
here is a comparative test scheme of the waveforms through analyzing decision test
statistics, that is, if the targeted point is present or not in the scope of Doppler shift
needed. By considering the target detection and evaluation we analyzed by considering
the hypothesis estimation test, wherefrom we decide to pick between two hypotheses: the
zero hypothesis
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z=1

 (32) 

associating the case where the target is absent, and hypothesis
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associating the case where the target is present. For one model, the hypothesis test as in
Equation (4) can be presented as,

y(t)=

{
n(t) :
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𝑄(𝑡, 𝜃) = ∑ Qz(𝜃)ψz(𝑡)

∞

z=1

𝑛(𝑡) = ∑ nzψz(𝑡)

∞
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 (32) 

(Absent) 0 ≤ t ≤ T0

αA(θ)x(t) + n(t) :
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(Present)0 ≤ t ≤ T0
(28)

We used the generalized likelihood ration test because α and θ are unknown param-
eters but deterministic. The benefit of utilizing the generalized likelihood ration test is
that we can substitute the hidden parameters with their maximum likelihood computation.
The maximum likelihood estimations of α and θ can be found for different signal schemes,
point targets, and noise sources here in [40,43] where the orthogonal signals are used. In
this paper, we examine a system with one target, and we did not consider the source of
interference so we can better analyze the effect of NSP on target sensing. Consequently,
we put forward an easier method of the maximum likelihood and generalized likelihood
ration test estimation. The detection scheme of Equation (4) can then be represented,

y(t) = Q(t, θ)α + n(t) (29)

And,
Q(t, θ) = A(θ)x(t) (30)

We take the advantage of Karhunen–Loève algorithm to derive the log-likelihood func-
tion on evaluating α and θ. We consider Ω to be the set, where elements are {y(t),Q(t, θ),n(t)}.
We denote ψz, z = 1, 2, . . . , are the orthonormal function of Ω meeting the requirement,

〈ψz(t),ψz′(t)〉 =
∫

T0

ψz(t),ψ
∗
z′(t) = δzz′

where δzz′ represents a function of Krönecker. This next series of elements of Ω, can be
expressed to develop the system, y(t), Q(t, θ)}, and n(t),

y(t) =
∞

∑
z=1

yzψz(t) (31)

Q(t, θ) =
∞

∑
z=1

Qz(θ)ψz(t)n(t) =
∞

∑
z=1

nzψz(t) (32)

Here yz, Qz, and nz repesent weighed rate of Karhunen–Loève estimation in the
view of the process gained by considering the matching internal production through the
basic function ψz(t). Therefore, a corresponding discrete scheme of Equation (29) can be
written as,

yz = Qz(θ)α + nz, z = 1, 2 (33)

Considering the white annular complex Gaussian can be represented as:
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And our hypothesis testing model as in Equation (28), it becomes then, 

𝐿𝑦 = max
𝜃,𝛼

{log 𝑓𝑦(𝑦, 𝜃, 𝛼; Ԣ1)} − 𝑙𝑜𝑔𝑓(𝑦; Ԣ0 )

Ԣ0 

≶
Ԣ1 

δ (38) 

where 𝑓𝑦(𝑦, 𝜃, 𝛼; Ԣ1) and 𝑓(𝑦; Ԣ0 ) are the result of the hypothesis test Ԣ0 and Ԣ1 re-

spectively, which is the probability density functions of the receiver. Hence, the general-

ized likelihood ration test can be expressed as, 

[n(t)nt-nτ(t)] = σ2
nIM δ(τt), [2] the array is i.i.d and nz~ Nc(0M, σ2

nIM). From here, the
function of log-likelihood can be expressed,

Ly(θ, α) =
∞

∑
z=1

(
−Mlog

(
πσ2

n

)
− 1
σ2

n
||yz −Qz(θ)α||2

)
(34)

By Maximizing Equation (34),

Ly(θ, α̂) = Γ− 1
σ2

n

(
Eyy − eH

QyE−1
QQeQy

)
(35)

where,
Γ , −Mlog

(
πσ2

n
)

Eyy ,
∞
∑

z=1
||yz||

2 ⇒
∫

T0
||yz||

2dt

eQy ,
∞
∑

z=1
QH

z yz ⇒
∫

T0
QH(t, θ)y(t)dt

E−1
QQ ,

∞
∑

z=1
QH

z Qz ⇒ EQQ =
∫

T0
QH(t, θ)Q(t, θ)dt

It must be noted that Equation (35), aside of the constant Γ, the other additions lead to
infinite. However, because of the noncontribution of highest rank condition, the evaluation
of θ and α their total sum can be finite by applying the equality,

∫
T0

V1(t)VH
2 (t)dt =

∞

∑
z=1

V1zVH
2z

And Vi(t) =
∞
∑

z=1
V1zψz(t), i = 1, 2. We can describe fth element of eQy, after bringing Q

(t, θ) to Equation (30). [
eQy
]

f = aH
(

θ f

)
ETa

(
θ f

)
(36)

where, E =
∫

T0
y(t)xH(t)dt, the same way, we can describe f gth element of EQQ writ-

ten here, [
EQQ

]
f g = aH

(
θ f

)
a
(
θg
)
aH
(

θ f

)
RT

x a
(
θg
)

(37)

Since, eQy and EQQ does not depend on the receiver, then the statistical estimation
of θ and α can be taken from Equations (36) and (37). Now the maximum log-likelihood
function can be represented as a vector estimation,

Ly
(
θ̂ML

)
= argmax

θ

∣∣aH(θ̂ML
)
Ea∗

(
θ̂ML

)∣∣2
MaH

(
θ̂ML

)
RT

x a
(
θ̂ML

)
And our hypothesis testing model as in Equation (28), it becomes then,

Ly = max
θ,α

{
log fy

(
y, θ, α;
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 (32) 
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− log f

(
y;

Sensors 2021, 21, x FOR PEER REVIEW 11 of 22 
 

 

σ�̃�′ ≜ {
 0 , ∀ u ≤ q ,
1, ∀ u > q,

  

Considering the present assumption, we can then extend the projection matrix as fol-

lows, 

𝑃 ≜ 𝑉 Σ̃′ 𝑉𝐻 (27) 

At this point we can now conclude that P is an accurate projection matrix based on 

Conditions 1 and 2. 

2.3. Target Detection  

In this point, we expended a numerical detection test to improve the decision with 

respect to orthogonal wave of radar, including Null-space projection waves. Our objective 

here is a comparative test scheme of the waveforms through analyzing decision test sta-

tistics, that is, if the targeted point is present or not in the scope of Doppler shift needed. 

By considering the target detection and evaluation we analyzed by considering the hy-

pothesis estimation test, wherefrom we decide to pick between two hypotheses: the zero 

hypothesis Ԣ0 associating the case where the target is absent, and hypothesis Ԣ1 asso-

ciating the case where the target is present. For one model, the hypothesis test as in Equa-

tion (4) can be presented as, 

y(t)={
 n(t)                            ∶ Ԣ0  (Absent)  0 ≤  t ≤  T0   

𝛼𝐴(𝜃)𝑥(𝑡) + 𝑛(𝑡) ∶ Ԣ1 (Present)0 ≤  t ≤  T0 
 (28) 

We used the generalized likelihood ration test because 𝛼 and 𝜃 are unknown pa-

rameters but deterministic. The benefit of utilizing the generalized likelihood ration test 

is that we can substitute the hidden parameters with their maximum likelihood computa-

tion. The maximum likelihood estimations of 𝛼 and 𝜃 can be found for different signal 

schemes, point targets, and noise sources here in [40,43] where the orthogonal signals are 

used. In this paper, we examine a system with one target, and we did not consider the 

source of interference so we can better analyze the effect of NSP on target sensing. Conse-

quently, we put forward an easier method of the maximum likelihood and generalized 

likelihood ration test estimation. The detection scheme of Equation (4) can then be repre-

sented, 

𝑦(𝑡) = 𝑄(𝑡, 𝜃)𝛼 + 𝑛(𝑡) (29) 

And, 

𝑄(𝑡, 𝜃) = 𝐴(𝜃)𝑥(𝑡) (30) 

We take the advantage of Karhunen–Loève algorithm to derive the log-likelihood 

function on evaluating 𝛼  and 𝜃 . We consider 𝛺  to be the set, where elements are 

{y(t),Q(t, 𝜃),n(t)}.We denote ψz, z=1,2,…, are the orthonormal function of 𝛺 meeting the 

requirement, 

< ψz(𝑡), ψz′(𝑡) >= ∫ ψz(𝑡),
T0

ψ𝑧′
∗ (𝑡) = 𝛿zz′  

where 𝛿zz′ represents a function of Krönecker. This next series of elements of 𝛺, can be 

expressed to develop the system, y(t), Q(t, 𝜃)}, and n(t), 

𝑦(𝑡) = ∑ 𝑦𝑧𝜓𝑧(𝑡)

∞

𝑧=1

 (31) 

𝑄(𝑡, 𝜃) = ∑ Qz(𝜃)ψz(𝑡)

∞

z=1

𝑛(𝑡) = ∑ nzψz(𝑡)

∞

z=1

 (32) 

)

Sensors 2021, 21, x FOR PEER REVIEW 11 of 22 
 

 

σ�̃�′ ≜ {
 0 , ∀ u ≤ q ,
1, ∀ u > q,

  

Considering the present assumption, we can then extend the projection matrix as fol-

lows, 

𝑃 ≜ 𝑉 Σ̃′ 𝑉𝐻 (27) 

At this point we can now conclude that P is an accurate projection matrix based on 

Conditions 1 and 2. 

2.3. Target Detection  

In this point, we expended a numerical detection test to improve the decision with 

respect to orthogonal wave of radar, including Null-space projection waves. Our objective 

here is a comparative test scheme of the waveforms through analyzing decision test sta-

tistics, that is, if the targeted point is present or not in the scope of Doppler shift needed. 

By considering the target detection and evaluation we analyzed by considering the hy-

pothesis estimation test, wherefrom we decide to pick between two hypotheses: the zero 

hypothesis Ԣ0 associating the case where the target is absent, and hypothesis Ԣ1 asso-

ciating the case where the target is present. For one model, the hypothesis test as in Equa-

tion (4) can be presented as, 

y(t)={
 n(t)                            ∶ Ԣ0  (Absent)  0 ≤  t ≤  T0   

𝛼𝐴(𝜃)𝑥(𝑡) + 𝑛(𝑡) ∶ Ԣ1 (Present)0 ≤  t ≤  T0 
 (28) 

We used the generalized likelihood ration test because 𝛼 and 𝜃 are unknown pa-

rameters but deterministic. The benefit of utilizing the generalized likelihood ration test 

is that we can substitute the hidden parameters with their maximum likelihood computa-

tion. The maximum likelihood estimations of 𝛼 and 𝜃 can be found for different signal 

schemes, point targets, and noise sources here in [40,43] where the orthogonal signals are 

used. In this paper, we examine a system with one target, and we did not consider the 

source of interference so we can better analyze the effect of NSP on target sensing. Conse-

quently, we put forward an easier method of the maximum likelihood and generalized 

likelihood ration test estimation. The detection scheme of Equation (4) can then be repre-

sented, 

𝑦(𝑡) = 𝑄(𝑡, 𝜃)𝛼 + 𝑛(𝑡) (29) 

And, 

𝑄(𝑡, 𝜃) = 𝐴(𝜃)𝑥(𝑡) (30) 

We take the advantage of Karhunen–Loève algorithm to derive the log-likelihood 

function on evaluating 𝛼  and 𝜃 . We consider 𝛺  to be the set, where elements are 

{y(t),Q(t, 𝜃),n(t)}.We denote ψz, z=1,2,…, are the orthonormal function of 𝛺 meeting the 

requirement, 

< ψz(𝑡), ψz′(𝑡) >= ∫ ψz(𝑡),
T0

ψ𝑧′
∗ (𝑡) = 𝛿zz′  

where 𝛿zz′ represents a function of Krönecker. This next series of elements of 𝛺, can be 

expressed to develop the system, y(t), Q(t, 𝜃)}, and n(t), 

𝑦(𝑡) = ∑ 𝑦𝑧𝜓𝑧(𝑡)

∞

𝑧=1

 (31) 

𝑄(𝑡, 𝜃) = ∑ Qz(𝜃)ψz(𝑡)

∞

z=1

𝑛(𝑡) = ∑ nzψz(𝑡)

∞

z=1

 (32) 

≶

Sensors 2021, 21, x FOR PEER REVIEW 11 of 22 
 

 

σ�̃�′ ≜ {
 0 , ∀ u ≤ q ,
1, ∀ u > q,

  

Considering the present assumption, we can then extend the projection matrix as fol-

lows, 

𝑃 ≜ 𝑉 Σ̃′ 𝑉𝐻 (27) 

At this point we can now conclude that P is an accurate projection matrix based on 

Conditions 1 and 2. 

2.3. Target Detection  

In this point, we expended a numerical detection test to improve the decision with 

respect to orthogonal wave of radar, including Null-space projection waves. Our objective 

here is a comparative test scheme of the waveforms through analyzing decision test sta-

tistics, that is, if the targeted point is present or not in the scope of Doppler shift needed. 

By considering the target detection and evaluation we analyzed by considering the hy-

pothesis estimation test, wherefrom we decide to pick between two hypotheses: the zero 

hypothesis Ԣ0 associating the case where the target is absent, and hypothesis Ԣ1 asso-

ciating the case where the target is present. For one model, the hypothesis test as in Equa-

tion (4) can be presented as, 

y(t)={
 n(t)                            ∶ Ԣ0  (Absent)  0 ≤  t ≤  T0   

𝛼𝐴(𝜃)𝑥(𝑡) + 𝑛(𝑡) ∶ Ԣ1 (Present)0 ≤  t ≤  T0 
 (28) 

We used the generalized likelihood ration test because 𝛼 and 𝜃 are unknown pa-

rameters but deterministic. The benefit of utilizing the generalized likelihood ration test 

is that we can substitute the hidden parameters with their maximum likelihood computa-

tion. The maximum likelihood estimations of 𝛼 and 𝜃 can be found for different signal 

schemes, point targets, and noise sources here in [40,43] where the orthogonal signals are 

used. In this paper, we examine a system with one target, and we did not consider the 

source of interference so we can better analyze the effect of NSP on target sensing. Conse-

quently, we put forward an easier method of the maximum likelihood and generalized 

likelihood ration test estimation. The detection scheme of Equation (4) can then be repre-

sented, 

𝑦(𝑡) = 𝑄(𝑡, 𝜃)𝛼 + 𝑛(𝑡) (29) 

And, 

𝑄(𝑡, 𝜃) = 𝐴(𝜃)𝑥(𝑡) (30) 

We take the advantage of Karhunen–Loève algorithm to derive the log-likelihood 

function on evaluating 𝛼  and 𝜃 . We consider 𝛺  to be the set, where elements are 

{y(t),Q(t, 𝜃),n(t)}.We denote ψz, z=1,2,…, are the orthonormal function of 𝛺 meeting the 

requirement, 

< ψz(𝑡), ψz′(𝑡) >= ∫ ψz(𝑡),
T0

ψ𝑧′
∗ (𝑡) = 𝛿zz′  

where 𝛿zz′ represents a function of Krönecker. This next series of elements of 𝛺, can be 

expressed to develop the system, y(t), Q(t, 𝜃)}, and n(t), 

𝑦(𝑡) = ∑ 𝑦𝑧𝜓𝑧(𝑡)

∞

𝑧=1

 (31) 

𝑄(𝑡, 𝜃) = ∑ Qz(𝜃)ψz(𝑡)

∞

z=1

𝑛(𝑡) = ∑ nzψz(𝑡)

∞

z=1

 (32) 

δ (38)

where fy

(
y, θ, α;
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 (32) 

respec-
tively, which is the probability density functions of the receiver. Hence, the generalized
likelihood ration test can be expressed as,

Ly
(
θ̂ML

)
= argmax

θ

∣∣aH(θ̂ML
)
Ea∗

(
θ̂ML

)∣∣2
MaH

(
θ̂ML

)
RT

x a
(
θ̂ML
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δ (39)
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The statistic of L
(
θ̂ML

)
for both the hypotheses can be found in [44].

L
(
θ̂ML

)
∼
{
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: X2
2

Sensors 2021, 21, x FOR PEER REVIEW 11 of 22 
 

 

σ�̃�′ ≜ {
 0 , ∀ u ≤ q ,
1, ∀ u > q,

  

Considering the present assumption, we can then extend the projection matrix as fol-

lows, 

𝑃 ≜ 𝑉 Σ̃′ 𝑉𝐻 (27) 

At this point we can now conclude that P is an accurate projection matrix based on 

Conditions 1 and 2. 

2.3. Target Detection  

In this point, we expended a numerical detection test to improve the decision with 

respect to orthogonal wave of radar, including Null-space projection waves. Our objective 

here is a comparative test scheme of the waveforms through analyzing decision test sta-

tistics, that is, if the targeted point is present or not in the scope of Doppler shift needed. 

By considering the target detection and evaluation we analyzed by considering the hy-

pothesis estimation test, wherefrom we decide to pick between two hypotheses: the zero 

hypothesis Ԣ0 associating the case where the target is absent, and hypothesis Ԣ1 asso-

ciating the case where the target is present. For one model, the hypothesis test as in Equa-

tion (4) can be presented as, 

y(t)={
 n(t)                            ∶ Ԣ0  (Absent)  0 ≤  t ≤  T0   

𝛼𝐴(𝜃)𝑥(𝑡) + 𝑛(𝑡) ∶ Ԣ1 (Present)0 ≤  t ≤  T0 
 (28) 

We used the generalized likelihood ration test because 𝛼 and 𝜃 are unknown pa-

rameters but deterministic. The benefit of utilizing the generalized likelihood ration test 

is that we can substitute the hidden parameters with their maximum likelihood computa-

tion. The maximum likelihood estimations of 𝛼 and 𝜃 can be found for different signal 

schemes, point targets, and noise sources here in [40,43] where the orthogonal signals are 

used. In this paper, we examine a system with one target, and we did not consider the 

source of interference so we can better analyze the effect of NSP on target sensing. Conse-

quently, we put forward an easier method of the maximum likelihood and generalized 

likelihood ration test estimation. The detection scheme of Equation (4) can then be repre-

sented, 

𝑦(𝑡) = 𝑄(𝑡, 𝜃)𝛼 + 𝑛(𝑡) (29) 

And, 

𝑄(𝑡, 𝜃) = 𝐴(𝜃)𝑥(𝑡) (30) 

We take the advantage of Karhunen–Loève algorithm to derive the log-likelihood 

function on evaluating 𝛼  and 𝜃 . We consider 𝛺  to be the set, where elements are 

{y(t),Q(t, 𝜃),n(t)}.We denote ψz, z=1,2,…, are the orthonormal function of 𝛺 meeting the 

requirement, 

< ψz(𝑡), ψz′(𝑡) >= ∫ ψz(𝑡),
T0

ψ𝑧′
∗ (𝑡) = 𝛿zz′  

where 𝛿zz′ represents a function of Krönecker. This next series of elements of 𝛺, can be 

expressed to develop the system, y(t), Q(t, 𝜃)}, and n(t), 

𝑦(𝑡) = ∑ 𝑦𝑧𝜓𝑧(𝑡)

∞

𝑧=1

 (31) 

𝑄(𝑡, 𝜃) = ∑ Qz(𝜃)ψz(𝑡)

∞

z=1

𝑛(𝑡) = ∑ nzψz(𝑡)

∞

z=1

 (32) 

: X2
2(ρ)

(40)

Whereby,

— X2
2(ρ) represents the chi-squared noncentral dispensations, having 2 as degrees of

freedom (DoF),
— X2

2 represents centralized chi-squared dispensations, having 2 as degrees of freedom
(DoF). ρ represents the noncentral parameter; it can be written as,

ρ =
α2

σ2
n

∣∣∣aH(θ)RT
x a(θ)

∣∣∣2
Based on a chosen probability of false alarm, for a given signal detection, a ration δ

must be generated,
Pf = Pr

[
L(y) > δ\
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]
(41)

δ = F−1
X2

2

(
1− Pf

)
Whereby F−1

X2
2

represents the inverse dispensations function with 2 as DoF. Then the

signal detection estimation can be presented as,

PD = Pr
[

L(y) > δ\
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PD = 1− FX2

2(ρ)

[
F−1

X2
2

(
1− Pf

)] (42)

Whereby FX2
2(ρ)

is the noncentral dispensations function including its parameter ρ.

2.3.1. PD for Orthogonal Waveforms

For orthogonal waveforms RT
x = IM, therefore, the generalized likelihood ration test

can be expressed as,

LO
(
θ̂ML

)
=

∣∣aH(θ̂ML
)
Ea∗

(
θ̂ML

)∣∣2
MaH

(
θ̂ML

)
a
(
θ̂ML

)
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{y(t),Q(t, 𝜃),n(t)}.We denote ψz, z=1,2,…, are the orthonormal function of 𝛺 meeting the 
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< ψz(𝑡), ψz′(𝑡) >= ∫ ψz(𝑡),
T0

ψ𝑧′
∗ (𝑡) = 𝛿zz′  

where 𝛿zz′ represents a function of Krönecker. This next series of elements of 𝛺, can be 

expressed to develop the system, y(t), Q(t, 𝜃)}, and n(t), 

𝑦(𝑡) = ∑ 𝑦𝑧𝜓𝑧(𝑡)

∞

𝑧=1

 (31) 

𝑄(𝑡, 𝜃) = ∑ Qz(𝜃)ψz(𝑡)

∞

z=1

𝑛(𝑡) = ∑ nzψz(𝑡)

∞

z=1

 (32) 

≶
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 (32) 

δO

and the estimation of L
(
θ̂ML

)
for this scheme can be written,

LO
(
θ̂ML

)
∼
{
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: X2
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: X2
2(ρO)

where,

ρO =
M2|α|2

σ2
n

δO is defined following a required probability of false alarm,

δO = F−1
X2

2

(
1− Pf−Ort

)
And then we can determine the detection for orthogonal waves as follows,

PD−Ort = 1− FX2
2(ρO)

[
F−1

X2
2

(
1− Pf−Ort

)]
(43)
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2.3.2. PD for NSP Waveforms

For spectrum-sharing waveforms RT
x = RT

x̌ , therefore, the generalized likelihood
ration test can be expressed as,

LNSP
(
θ̂ML

)
=

∣∣aH(θ̂ML
)
Ea∗

(
θ̂ML

)∣∣2
MaH

(
θ̂ML

)
RT

x̌ a
(
θ̂ML

)
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)
for this scheme can be written,

Here,

LNSP
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θ̂ML

)
∼
{
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requirement, 

< ψz(𝑡), ψz′(𝑡) >= ∫ ψz(𝑡),
T0

ψ𝑧′
∗ (𝑡) = 𝛿zz′  

where 𝛿zz′ represents a function of Krönecker. This next series of elements of 𝛺, can be 

expressed to develop the system, y(t), Q(t, 𝜃)}, and n(t), 

𝑦(𝑡) = ∑ 𝑦𝑧𝜓𝑧(𝑡)

∞

𝑧=1

 (31) 

𝑄(𝑡, 𝜃) = ∑ Qz(𝜃)ψz(𝑡)

∞

z=1

𝑛(𝑡) = ∑ nzψz(𝑡)

∞

z=1

 (32) 

: X2
2(ρNSP)

ρNSP =
α2

σ2
n

∣∣∣aH(θ)RT
x̌ a(θ)

∣∣∣2
δNSP is also defined following a required probability of false alarm,

δO = F−1
X2

2

(
1− Pf−Ort

)
And we can then determine the detection for orthogonal waves as follows,

PD−NSP = 1− FX2
2(ρNSP)

[
F−1

X2
2

(
1− Pf−NSP

)]
(44)

3. Numerical Results

For better analysis of the detection sequence execution of each spectrum propagation
for the massive multi-input multi-output radars, the Monte Carlo execution was performed
by simulation on manipulating radar’s parameter as presented in [45].

3.1. Analysis of Scenario 1

For this scenario, we generated ҠRayleigh channels interference at every run of
the Monte Carlo simulation. We have the dimensions NBS ×M, and computed the null
spaces and built matching projection matrix by applying Algorithm 2. We decided the
finest channel to carry out projection of radar signal scheme on applying Algorithm 1,
transmit Null Space Projection signal scheme based on the received signal detection. We
calculated the parameters estimation of θ, α, and estimated the detection signal sequence
for orthogonal and NSP waves.

We performed Algorithm 1 and 2. In Figures 2 and 3, we demonstrate the importance
of the two algorithms (1 and 2), in enhancing the detection target point where many BSs
are in use on the detection scheme of the radar. It has to correctly detect the target point
while not disturbing the sensing signal environment of the mobile LTE system scheme
concerned. A summary of test environment parameters are presented in Table 2. For
instance, we examined the case with five base stations (BSs) and the radar will have to
choose the best projection channel with a minimum degradation scheme waveform within,
while consequently maximizing the contingency of target detection.

In the scenario with N(Hi) = 1 as shown in Figure 2, we presented results of five
different Null Space Projection detection signals. This means that radar’s waves are
projected with five base station signals at the same time. Here we noticed that for a good
detection scheme of 90%, we will need from 3 dB to 6 dB of more gain of signal-to-noise
ratio. This is by comparing with the orthogonal wave, and depending on the chosen
channel. With the use of Algorithms 1 and 2, we can choose the interference channel that
leads to a least deterioration of the radar wave and produce a better output by improving
the execution of the detection. At the same time, minimizing additional gain in SNR is
needed. In this instance, the two algorithms (1 and 2) will choose BS3 and because of this
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condition, the NSP wave needs the lowest gain of signal-to-noise ratio to reach a perfection
detection, probably over 90 percent in comparison to the other base stations.

Figure 2. PD when dimension N(Hi) = 1. And 3 to 6 dB more gain in NSR is needed to achieve 90%
of target detection.

Figure 3. PD when dimension N(Hi) = 6. And 2.3 to 2.6 dB is needed to achieve 90% of target detection.

Table 2. Massive MIMO Radar Parameters for Test Environment.

Parameters Notations Values

Radar & LTE Communication RF Band - 3550–3650 MHz
Radar Antenna Tx/Rx M 10/4

LTE Communication System Antennas NBS 5
Carrier Frequency f 3.55 GHZ

Wavelength λ 8.5 cm
Antenna Inter Spacing 3λ/4 6.42 cm

Radial Velocity vr 1000 m/s
Speed of Light c 3 × 108 m/s

Target point ro 400 Km
Angle of Target θ θ̂

Doppler Frequency ωD 2ωcvr/c
Two-way breeding holdup, τr 2ro/c

Path loss α α̂

Another scenario is with dim N(Hi) = 6, as shown in Figure 3. We presented a
performance of five different NSP signals scheme, but in this instance the MIMO radar has
a bigger antenna set if we compare it to the earlier scenario. In the present scenario, to
obtain the best signal detection probability of 90%, we will have to reach 2.3 to 3.3 dB of
more gain on SNR in comparison to orthogonal wave. Similar to the earlier scenario, by
applying Algorithms 1 and 2, we will be able to choose an interference channel scheme
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that leads to a minimum deterioration of radar wave. This shows a high performance of
target detection scheme with the lowest additional gain in SNR of interest. In addition,
Algorithms 1 and 2 will choose Base Station No. 4. This is because the NSP waveform
needs a very low gain of signal-to-noise ratio performance detection sequence of 0.9%, if
compared with other base stations. These two cases show the significance of Algorithms 1
and 2 on projection probability of the radar by proving its performance in the selection of
the channel. That leads to a least interference scheme and improves the coexistence of the
two communications systems (Radar–Mobile LTE). This reduces significantly the gain in
signal-to-noise ratio needed for null space projection of radar waves.

In Figure 4, we show the alterations of probability of detection PD in the form of SNR
for different probability of false alarm Pf. Every figure shows the probability of detection PD
for a fixed point; PD against Pf has been evaluated for 10−2, 10−4, 10−6, 10−8, respectively,
with the dimension 2 × 4 of interference channel, which implies antennas radar M = 4, and
NBS = 2 for base station antennas, with the dimension N(Hi) = 2 of null-space.
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Figure 4. (a) Detection probability for SNR. Dimension N(Hi) = 2, Pf = 10−2, and 3.6 dB is needed to have the same result
with orthogonal waveform; (b) Detection probability for SNR. Dimension N(Hi) = 2, Pf = 10−4, and 4.1 dB is needed to have
the same result with orthogonal waveform; (c) Detection probability for SNR. Dimension N(Hi) = 2, Pf = 10−6, and 2.9 dB
is needed to have the same result with orthogonal waveform.; (d) Detection probability for SNR, Dimension N(Hi) = 2,
Pf = 10−8, and 1.8 dB is needed to have the same result with orthogonal waveform.

While comparing the sensing operation, the observation of the two waveforms brings
clarity. In order to get a better detection probability in a fixed point of Pf, we will need
more gain level for signal-to-noise ratio for the null space project if we compare it with the
orthogonal waves. By considering PD = 0.9 as best detection probability or 90%, we will
need 1.8 to 4.1 dB of extra gain on the null space project waveform in order to perform
similar results with the orthogonal wave signal.

In the first scenario, as observed, the two signal waveforms increased simultaneously,
where the signal-to-noise ratio increases. Despite this, comparing the two waves for a
chosen point of signal-to-noise ratio, we can observe that orthogonal signal waves showed
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a very good performance compared to the null space projection wave. This means that
the waves transmitted are no longer orthogonal, which also means that we can no longer
get the benefit of orthogonal waves when we are using massive multi-input multi-output
radar, as we have highlighted in Section 3.1. The good news is that we have canceled all
interferences at the base station level. In addition, in Scenario 1 as shown in Figure 2, for
us to execute the needed signal detection for a settled Pf, we will need more signal-to-noise
ratio for null space projection as compared with Figure 4. This is due to many radar
antennas that we used, while the antennas of the base station remain at the same point in
Figure 4, which increases the aspect of the NSP channel. This results in a very good signal
operation for null space projection wave. As we are interested in reducing the bad impact
of the null space projection on radar in order to optimize its operation, it is better to make
use of more radar antennas transmitter array.

3.2. Analysis of Scenario 2

Here, for every run of the Monte Carlo simulation, we generate interference channel
with ҠRayleigh signal. Each sequence has a dimension of ҠNBS ×M. We compute null
spaces and generate matching matrix projection according to Algorithm 4, and project the
radar signal detection by applying Algorithm 3. We transmit the NSP signal detection,
evaluate the parameters θ and α from the receiver, and estimate orthogonal and NSP waves
signal detection.

In Figure 5, we have a scenario where the radar wave signal has a considerable
antenna array, if we compare it with Ҡmobile base stations antenna array. In such a case,
we have so much degree of freedom (DoF) for a good target detection at the radar and at
the same time canceling interference to all base stations present in the network. Here we
examined M = 100, Ҡ= 4, and N = {1,3,5}. We analyzed PD against Pf = 10−4 for a mixed
disturbances channel H, considering the dimensions ҠNBS ×M, where we equalize signal
detection performance of primary wave and the null space projection wave inside channel
interferences. It was observed that for us to obtain the probability of detection that we need
for a fixed probability of false alarm, we will need more signal-to-noise ratio compared to
the orthogonal waves. If we need a detection performance of PD = 0.90, we need 0.6,1 and
2.5 dB of extra signal-to-noise ratio for the null space projection wave, where N is 1,5 and 3
accordingly to obtain exactly the same result.

Figure 5. PD at SNR where Pf = 10−4 and massive radar lessens disturbance in the network at all the
base stations where M = 100, Ҡ= 4, and N = {1,3,5}.

4. Discussion

Cognitive radio-based spectrum sharing is a new opportunity to face spectrum short-
age in a world where everything tends to convert into a co-existence sharing. In this study,
we analyzed spatial technique on spectrum access for massive MIMO radar and massive
mobile communication systems, by considering numerous numbers of base stations. Our
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objective here is the cancellation of all interference schemes on the space. The selection
of the best cancellation channel is made possible based on the maximum estimation and
projection algorithm scheme, for a complete cancellation of disturbance to the cooperative
radio frequency of existence.

1st Projection Algorithms Scenario, where M <ҠNBS but M > NBS: In this scenario,
spectrum is spitted on setting up a projection matrix, then choosing an interference channel
which is carried by the support of Algorithms 1 and 2. Primarily, on each and every impulse
recurrence time (IRT), the radar receives its SSCI for the whole Ҡintrusion channels. The
prediction matrix is created by the data transmitted through Algorithm 2 and the process of
null spaces. In the first Algorithm, we showed the prediction arrays which are represented
by Ҡ, obtained based on Algorithm 2, to get the forecast matrix which leads to minimum
deterioration of radar waves and it is typical to improve the system. The present action goes
alongside with the null space of chosen base stations through radar waves for matching
chosen projection array and waveform transfer.

Algorithm 1. Projection for Algorithm 1 on 1st Scenario.

Iterate
For i = 1: Ҡ;

Obtain SSCI of Hi from the replay of ith Antenna
Forward Hi to Algorithm 2 for projection matrix generation
Pi.

end for

Learn imin= arg max
1≤i≤K′

||Pix(t)− x(t)||2

Define Pimin = P̌ to be the desired projection.
Implement the null space projector: x̌(t) = P̌x(t)
End

2nd Projection Algorithm Scenario, where M > K′NBS: Here, the spectrum sharing is
performed throughout Algorithm 3 and 4. Initially, we considered that at each impulse
recurrence time (IRT), SSCI of the total Ҡinterference channels has been received from the
radar. And the data are forwarded to Algorithm 4 for the computation of null space which
will result in H and create the matrix projection we called P. Algorithm 3 performs radar’s
wave projection into the null space.

Algorithm 2. Projection for Algorithm 2 on 1st Scenario.

If Algorithm 1 received interferences Hi, next
Execute Hi ⇒ Hi = Ui Σi VH

i

Construct Σ̃i = diag
(
σ̃i1, σ̃i2, . . . , σ̃ip

)
Construct Σ̃i

′
= diag

(
σ̃i1
′, σ̃i2

′, . . . , σ̃iM
′)

Setup Projection Matrix Pi = Vi Σ̃i
′

VH
i

Send Pi to Algorithm 1.
End

Algorithm 3. Projection Algorithm 3 on 2nd Scenario.

Iterate
By observation from Ҡbase stations obtain SSCI of H.

Forward Interference H to Algorithm 4 and create matrix P.
After Receiving matrix projection P through Algorithm 4.
Execute zero interference projection, x̌(t) = Px(t)

End
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Algorithm 4. Projection Algorithm 4 on 2nd Scenario.

If Algorithm 3 has sent information to H, next
Execute H⇒ H = U Σ VH

Build Σ̃ = diag
(
σ̃1, σ̃2, . . . , σ̃p

)
Build Σ̃i

′
= diag

(
σ̃1
′, σ̃2

′, . . . , σ̃M
′)

Determine Matrix Projection P = V Σ̃
′

VH

And matrix P is forwarded to Algorithm 3.
End

5. Conclusions

In the future, spectrum sharing of radar radio frequency will be definitely shared with
advanced evolution mobile communication systems (without mentioning the huge demand
of Internet of Everything). This will curtail the escalation of bandwidth demand and reduce
bad consequences of spectrum blockage for business and commercial communications
platforms. In this paper, we studied a comparative spectrum-sharing scheme for radars
and LTE mobile communications systems. An approach based on spatial technique was
proposed to reduce signal interference of the radar at the mobile cellular communication
environment. Our attention was more on reducing interferences on the radar side, where
our target was to cancel and eliminate all forms of interferences, especially from the radar
scheme, in a way that there is no more source of disturbance to the mobile base station
of interest. We have expanded the concept by projecting signal detection of one radar
system to null space interference channel of LTE mobile communication with numerous
BSs. The parameter of a chosen target point was estimated and we trained the detection
performances of the spectrum sharing for massive multi-input multi-output radars. We
generated a statistical sensing detection estimation for targeted sensing point. We also
applied the generalized likelihood ratio test (GLR) for determining whether the target point
is present or not, while applying orthogonal waves and null space projection waves. The
suggested spectrum-sharing algorithm can be applied in different scenarios, where massive
multi-input multi-output of the radar is sharing spectrum environment with mobile LTE
communications, by canceling and minimaxing all deterioration schemes in its operation.
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