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Abstract: This paper describes a calibration technique aimed at combined estimation of onboard and
external magnetic disturbances for small Unmanned Aerial Systems (UAS). In particular, the objective
is to estimate the onboard horizontal bias components and the external magnetic declination, thus im-
proving heading estimation accuracy. This result is important to support flight autonomy, even in
environments characterized by significant magnetic disturbances. Moreover, in general, more accu-
rate attitude estimates provide benefits for georeferencing and mapping applications. The approach
exploits cooperation with one or more “deputy” UAVs and combines drone-to-drone carrier phase
differential GNSS and visual measurements to attain magnetic-independent attitude information.
Specifically, visual and GNSS information is acquired at different heading angles, and bias estimation
is modelled as a non-linear least squares problem solved by means of the Levenberg–Marquardt
method. An analytical error budget is derived to predict the achievable accuracy. The method is
then demonstrated in flight using two customized quadrotors. A pointing analysis based on ground
and airborne control points demonstrates that the calibrated heading estimate allows obtaining an
angular error below 1◦, thus resulting in a substantial improvement against the use of either the
non-calibrated magnetic heading or the multi-sensor-based solution of the DJI onboard navigation
filter, which determine angular errors of the order of several degrees.

Keywords: multi-UAV cooperation; calibration; magnetic biases; magnetic declination; Levenberg–
Marquardt; error budget analysis; pointing analysis

1. Introduction

The use of Unmanned Aerial Vehicles (UAVs) has become of paramount relevance in
the recent years, with an exponential growth of small UAVs. They are currently exploited
for many different tasks, including search and rescue [1], load carrying [2], mapping of
radiation hotspots [3] and fires [4]. In general, magnetometers play a key role on board
small UAVs both as navigation instruments and environment mapping sensors.

1.1. Related Work

With regard to navigation, despite some limitations, such as low bandwidth and large
measurement noise, magnetometers are typically used in outdoor flight operations to
bound the error in heading estimation, unless tactical-grade gyros (accurate enough to
sense Earth rotation rate) are exploited. Magnetic measurements enable relatively coarse
heading estimates, which depend on intrinsic sensors limitations, but above all on dis-
turbances from onboard (e.g., electric rotors and electronic systems) and external sources
(e.g., large metal infrastructures). Indeed, such disturbances may significantly alter the
direction of the magnetic field and lead to highly inaccurate heading estimates, which may
even compromise flight safety if position control is implemented with GNSS (Global Navi-
gation Satellite Systems) information used in feedback. In these scenarios, one possible
solution for magnetic-independent heading estimation is given by dual GNSS antenna
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architectures [5], though the dependence of heading accuracy on antenna baseline, and the
additional weight and complexity, may pose challenges for small flight platforms. If mag-
netic information needs to be exploited, accurate calibration and estimation of onboard
and external biases is the key to enable effective compensation of disturbances. State-of-
the-art magnetic calibration methods model the intrinsic error sources with an ellipsoid
error model whose parameters are estimated by applying a non-linear optimization pro-
cess [6,7]. Such a procedure, which requires in input a set of measurements collected in
different pointing conditions of the sensor’s axes to properly sample the ellipsoid surface,
may encounter challenges when applied during UAV flight operations. Recent references
addressing magnetometer calibration, but dealing only with estimation of onboard distur-
bances, can be found in [8,9]. Other recent approaches also focus on the idea to exploit the
variations of the external magnetic field also as a source of positioning information: in [10],
a magnetic-based simultaneous location and mapping (SLAM) approach has been studied
as an alternative to the usual GNSS-based navigation. Such work is mainly focused on
the analysis of a magnetic-based navigation concept which does not rely on prior Earth
magnetic anomaly field maps.

With regard to the possibility to use magnetometers for environmental mapping
purposes, UAV-based magnetometry is gaining increasing popularity. For instance, the fea-
sibility and effectiveness of using a small fixed-wing UAV for aeromagnetic missions in
remote areas, such as the Bransfield Basin in Antarctica, was shown in [11]. Specifically,
a three-axis fluxgate magnetometer allowed generating a magnetic anomaly map. A simi-
lar idea is shown in [12], where an eight-rotors copter (DJI S1000+) with a cesium-vapor
magnetometer attached with ropes at a three-meters distance below the UAV (to minimize
the effects of onboard disturbances) has been used for archaeological purposes or in [13],
where both rotorcraft and fixed-wing UAVs have been used to map the magnetic anomaly
of outcrops in a mining district in Finland, showing results which finely compete with
those achievable using ground-based sensors, but within a shorter time interval and with a
smaller cost. Recent works propose more compact systems with magnetometers installed in
closer proximity with respect to the drone frame [14]. In these cases, the need for accurate
magnetic calibration also arises as a prerequisite for effective measurement processing.

In this framework, the possibility to exploit cooperation between multiple UAVs
can be a powerful tool. In previous works [15,16] the authors proposed a cooperative
approach that combines differential GNSS and vision-based tracking between a “chief”
and one or more “deputy” drones, to provide accurate magnetic- and inertial-independent
attitude information for the chief UAV. The possibility to attain magnetic-independent
and drift-free heading information paves the way for the exploitation of the approach for
magnetic calibration. The authors proposed in [17,18] a cooperative technique for magnetic
calibration in operating flight conditions that exploits differential GNSS and vision data
gathered by means of a single deputy UAV. The key idea was to exploit cooperative
navigation measurements collected at different heading angles for the chief. The approach
was aimed at estimating onboard biases and the problem was formulated as a non-linear
system of equations, which was solved by using the Levenberg–Marquardt (LM) iterative
method [19].

1.2. Paper Contribution

Following the line of research in [13–16], this paper aims at further improving accuracy
in the magnetic heading estimation process by tackling both internal and external magnetic
disturbances. Such a result is relevant both to enable reliable autonomous flight in scenarios
characterized by significant magnetic disturbances and to ensure more accurate attitude
estimation, which provide benefits for georeferencing and mapping applications. The main
innovative points can be listed as follows:

• The problem is reformulated to simultaneously compute both the onboard magnetic
biases and the external magnetic declination.
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• A theoretical error budget is derived that allows predicting the calibration uncertainty
as a function of chief–deputy geometries, differential positioning and visual tracking
accuracy, and magnetometers sensitivity.

• The approach is tested in flight exploiting accurate carrier phase differential GNSS
(CDGNSS) measurements.

• Improvement of heading accuracy is demonstrated by a pointing analysis based on ad
hoc Ground and Airborne Control Points.

The paper is structured as follows. The theoretical framework and the mathematical
procedure used for magnetic bias estimation is reported in Section 2, whereas the derivation
of the associated error budget and its theoretical performance are presented in Section 3.
Section 4 contains the experimental setup used for data collection. Experimental results
and the performance of the proposed methodology are reported in Section 5. Finally,
conclusions and possible following studies are drawn in Section 6.

2. Cooperative Magnetic Calibration Method
2.1. Nomenclature

Before detailing the adopted methodology, this chapter defines some conventions and
symbols that will be used hereafter in the manuscript. Matrices, vectors, and scalars are
defined with capital (A), bold (a), and italic (a) font, respectively. The quantity ai indicates
a vector in the frame i. Camera (CRF), Body (BRF), Body Stabilized (BSRF) and locally
levelled North East and Down (NED) reference frames are accounted for in this manuscript.
Letters c, b, s, and n are used as superscript symbols to indicate CRF, BRF, BSRF and NED
frames, respectively. The k-th component of the ai vector is indicated as ai

h, with h = x, y, z.
For the sake of clarity, N, D and E subscripts are used when the NED frame is accounted
for. A vector ai measured by an instrument m is indicated by ai

∣∣
m.

The rotation matrix Ml
i defines the transformation from frame i to frame l, such as

al = Ml
ia

i. Attitude angles (heading ψ, pitch θ and roll ϕ), are defined as the 321-sequence
associated to the rotation matrix from NED to BRF, i.e., Mb

n. Indicating with Mα the
elementary rotation of angle α, the NED to BRF rotation matrix can be written as:

Mb
n = Mϕ Mθ Mψ

Mϕ =

 1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

; Mθ =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

; Mψ =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 (1)

Ia and 0a indicate an identity and a zeros matrix of size a × a, respectively. The error
on a quantity a is indicated as δa = â− a, which is the difference between the predicted,
indicated with a hat (ˆ), and true quantity. The attitude error ρ =

[
ρN ρE ρD

]T

expressed in NED frame is composed of horizontal, i.e., ρE and ρN, and vertical, i.e.,
(ρD), components. It connects the predicted and true NED to BRF rotation matrix with
Mb

n = M̂b
n(I − [ρ×]), where [×] is the operator yielding the skew symmetric matrix of the

vector in the brackets. The Standard Deviation (STD) of scalar and vectorial quantities
associated to the measurement instrument m are reported as the scalar σm and the vector
Σm, respectively. The derivative of a a × 1 vector a with respect to a b × 1 vector b is a
a × b matrix indicated with ∂a/∂b. The operator that extracts the diagonal from the matrix
A is indicated as Diag (A). It returns a vector v, while diag (v) is the operator returning a
diagonal matrix, whose elements are the components of the vector v.

2.2. Methodology

The Earth’s magnetic field (H) components along the BRF directions can be measured
by a three-axes magnetometer. From these measurements, the magnetic heading angle can
be easily estimated by exploiting the sensed horizontal components of the Earth’s magnetic
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field as referred to the BSRF, which is obtained as a projection of BRF in the local horizontal
north–east plane through a combined pitch (ϑ) and roll (ϕ) rotation as shown in Equation (2).

Hs =
[
Mϕ Mθ

]−1Hb (2)

The resulting magnetic heading can be therefore expressed as in Equation (3), where dm
is the local magnetic declination, i.e., the angle between the local magnetic (Nm) and
geographical (N) north directions.

ψm = tg−1
(
−

Hs
y

Hs
x

)
+ dm (3)

However, onboard electric devices, such as the electric rotors, introduce a disturbance
on the quantity sensed by the magnetometers. This disturbance can be modelled as a bias,
∆H, constant in BRF, which induces an error in the estimation of the Earth’s magnetic field
direction. Under the assumption of small roll and pitch rotations, ∆H can be assumed
to be constant in BSRF, and the effect of the vertical component of ∆H in BRF (∆Hb

z ) on
heading estimation can be considered negligible. This assumption is considered in this
work since the main interest lies in improving heading and magnetic declination accuracy,
without aiming at full 3d calibration.

A graphic illustration of the studied problem can be found in Figure 1, which clearly
shows how the magnetic field vector estimated by magnetometers and projected in BSRF,
i.e., Hs, can be expressed as the sum of the true Earth magnetic field vector in BSRF (Hs

e),
which is aligned with the Nm direction, and the internal magnetic biases vector in the
same reference frame (∆Hs). The effect of such biases can be equivalently seen as an
apparent shift of the magnetic and geographic north directions, respectively, to Nm,a and
Na, as shown in Figure 1, thus resulting in the heading angle expressed in Equation (3),
which will be referred to as “non-calibrated” (ψm,nc), to be ill-defined. A more accurate
angle, referred to as “calibrated” (ψm,c), can then be computed if the in-plane components
of ∆Hs are estimated and removed from its formulation, as expressed in Equation (4).
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ψm,C = tg−1
(−Hs

y + ∆Hs
y

Hs
x − ∆Hs

x

)
+ dm (4)

The calibration strategy described in this paper takes its roots from the previous
work illustrated in [18]. As a matter of fact, the bias components ∆Hs

x and ∆Hs
y are com-

puted by using the same iterative least-squares minimization (LM) procedure. However,
the magnetic declination at the flight location is added to the unknowns of the problem.
Hence, the proposed approach can be used to correct both “onboard” bias and external
disturbances by means of multi-UAV cooperation.

The iterative procedure is based on the minimization of the residual obtained as the
difference between the unit vector representing the chief–deputy Line Of Sight (LOS) in
NED as reported by CDGNSS data and projected in CRF (uc|cdgnss), and the same quantity
as estimated by visual-based techniques (uc|vision). This can be mathematically put as
in Equation (5).

r = uc|vision − uc|cdgnss = 0 (5)

Visual-based detection and tracking techniques [20] can be used to determine the
deputy position in the images collected by the camera on board the chief. Hence, the LOS
in CRF is obtained from the pixel coordinates thanks to the intrinsic camera parameters
estimated by offline camera calibration. On the other hand, the CDGNSS-based estimate of
the LOS in CRF can be obtained by rotating the unit vector corresponding to the CDGNSS
relative position vector (un|cdgnss) from NED to BRF, and then from BRF to CRF.

These rotations are achieved by multiplying the vector with the matrices Mb
n and

Mc
b. The misalignment angles between BRF and CRF (determining Mc

b), also referred to
as extrinsic camera-IMU rotational parameters, can be computed by the camera offline
calibration procedure [21]. More in general, the lever arm of the GNSS antenna with respect
to the camera installation on the chief could be considered. However, if the offset is small,
the resulting effect is negligible. The final cost vectorial function r can now be expressed in
terms of the unknowns as written in Equation (6).

r = f
(

∆Hs
x, ∆Hs

y, dm

)
= uc|vision −Mc

b Mb
n un|cdgnss (6)

This calibration technique fully relies on the availability of GNSS data for both plat-
forms and on the deputy visibility with respect to the chief, thus implying that the two
vehicles must fly under nominal GNSS coverage conditions and that the deputy must fall
in the Field of View (FOV) of the chief camera. For this reason, as a general condition,
chief and deputy should be kept facing each other during the flight, if equipped with
strapdown frontal-looking cameras. Moreover, the accuracy of the calibration technique is
affected by the inter-UAV distance as discussed in detail in Section 3.1. As a rule of thumb,
accurate calibration requires a minimum distance of a few tens of meters.

An additional condition for the proposed calibration procedure, is the need to ensure
synchronization of GNSS data (from both the chief and deputy) and camera images, thus
building a correspondence between the two vectors used in Equation (6). In this respect,
accurate synchronization is performed by time-tagging both chief and deputy data with
GNSS time. Clearly, to ensure observability of the problem’s unknowns, Equation (6)
must be written considering a set of k camera frames. This results in a 3k × 1 residual
vector r which can be minimized by applying the LM algorithm. The proposed approach is
summarized by the scheme in Figure 2.
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Rather than computing the vectorial cost function as Equation (6) states, an equiv-
alent scalar chi-squared function (χ2) is computed, and its minimization is carried-out.
This function is expressed in Equation (7), where the W matrix is the 3k × 3k block diag-
onal weight matrix associated to each residual. Such a matrix is shown in Equation (8),
where W1, . . . , Wk are the 3× 3 weight diagonal matrices associated to each of the k frames

and defined, for the i-th frame, as Wi = diag

(
1

Diag
(

Rc
cdgnss+Rvision

)
)

. Here, Rc
cdgnss and Rvision

are the covariance matrices associated to CDGNSS and visual measurements expressed in
the same reference frame of the residual, i.e., CRF. Detailed derivation of these quantities is
reported in Section 3.

χ2(∆Hs
x, ∆Hs

y, dm) = rTWr (7)

W =


W1 0 · · · 0
0 W2 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 Wk

 (8)

At each new iteration, a correction of the unknown quantities, i.e., hLM, is added to
their value as computed at the previous step. This quantity is expressed in Equation (9),
where J is the Jacobian matrix representing the derivatives of the cost function r with

respect to the three unknowns identified by the vector x =
[

∆Hs
x ∆Hs

y dm

]T
, λ is the

LM damping parameter representing how close the procedure is getting to the gradient
descent or the Gauss–Newton methods, and diag

(
Diag

(
JTW J

))
is the matrix that only

contains the diagonal of the JTW J matrix.

hLM =
(

JTW J + λ · diag
(

Diag(JTW J)
))−1

JTWr (9)
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The iterative procedure is either stopped when one of the convergence criteria for
the LM procedure, as listed in Equation (10), is met or when the maximum number of
iterations is reached.

max
(∣∣JTWr

∣∣) < ε1

max
(∣∣∣hLM

x

∣∣∣) < ε2

χ2

k−1 < ε3

(10)

3. Error Budget

Quantification of uncertainty in estimating magnetometer biases and magnetic decli-
nation plays a fundamental role in understanding the lower error bounds for the calibration
technique, and it can be useful both for system design and flight planning. This section
aims at explicitly deriving magnetometer biases and external declination STD, directly from
equations reported in Section 2.

Using the error definition given in Section 2.1, the error form of Equation (5) can be
expressed as:

r = −δuc|vision + Mc
b M̂ϕ M̂θ M̂ψm,C δun|cdgnss + Mc

b M̂ϕ M̂θ M̂ψm,C

[
^
u

n∣∣∣∣
cdgnss

×
]
ρ (11)

Decomposing ρ in horizontal and vertical error and grouping M̂b
n = M̂ϕ M̂θ M̂ψm,C ,

Equation (11) becomes:

r = − δuc|vision + Mc
b M̂b

n δun|cdgnss + Mc
b M̂b

n[
^
u

n∣∣∣∣
cdgnss

×]

 ρN
ρE
0

+ Mc
b M̂b

n

 ûn
E
∣∣
cdgnssρD

− ûn
N
∣∣
cdgnssρD

0

 (12)

ρD is the rotation error along the down axis which corresponds to the heading error, i.e., δψm,c.
The latter can be derived from Equation (4), observing that ψm,C = f

(
Hs

x, Hs
y, ∆Hs

x, ∆Hs
y, dm

)
.

Hence, expanding at first order:

ρD = δψm,C =
∂ψm,C
∂Hs

x
δHs

x +
∂ψm,C

∂Hs
y

δHs
y +

∂ψm,C

∂∆Hs
x

δ∆Hs
x +

∂ψm,C

∂∆Hs
y

δ∆Hs
y + δdm

∂ψm,C

∂Hs
x

= − 1

1 +
(−Hs

y + ∆Hs
y

Hs
x − ∆Hs

x

)2

−Hs
y + ∆Hs

y

(Hs
x − ∆Hs

x)
2

∂ψm,C

∂Hs
y

= − 1

1 +
(−Hs

y + ∆Hs
y

Hs
x − ∆Hs

x

)2
1

Hs
x − ∆Hs

x

∂ψm,C

∂∆Hs
x
=

1

1 +
(−Hs

y + ∆Hs
y

Hs
x − ∆Hs

x

)2

−Hs
y + ∆Hs

y

(Hs
x − ∆Hs

x)
2

∂ψm,C

∂∆Hs
y
=

1

1 +
(−Hs

y + ∆Hs
y

Hs
x − ∆Hs

x

)2
1

Hs
x − ∆Hs

x

(13)

Substituting Equation (13) in Equation (12), the residual can be expressed as a function
of the magnetometer biases as:
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r = − δuc|vision + Mc
b M̂b

n δun|cdgnss + Mc
b M̂b

n

[
δ

^
u

n∣∣∣∣
cdgnss

×
]

ρN

ρE

0

+ Mc
b M̂b

n


ûn

E

∣∣
cdgnss

− ûn
N

∣∣
cdgnss

0

( ∂ψm,C
∂∆Hs

x
δ∆Hs

x +
∂ψm,C
∂∆Hs

y
δ∆Hs

y + δdm

)
+

+Mc
b M̂b

n


ûn

E

∣∣
cdgnss

− ûn
N

∣∣
cdgnss

0

( ∂ψm,C
∂Hs

x
δHs

x +
∂ψm,C
∂Hs

y
δHs

y

) (14)

From Equation (14), one can derive an expression for the residual r, such as

r = Jδx + w (15)

where δx is the vector including the error on the unknown variables,

δx =
[

δ∆Hs
x δ∆Hs

y δdm

]T
, J is the measurement matrix and w is the residual error,

which is assumed to be a Gaussian zero-mean with covariance R. Therefore, Equation (14)
is rewritten in the form of Equation (15) as:

r = Mc
b M̂b

n


ûn

E
∣∣
cdgnss

∂ψm,C
∂∆Hs

x
ûn

E
∣∣
cdgnss

∂ψm,C
∂∆Hs

y
ûn

E
∣∣
cdgnss

− ûn
N
∣∣
cdgnss

∂ψm,C
∂∆Hs

x
− ûn

N
∣∣
cdgnss

∂ψm,C
∂∆Hs

y
− ûn

N
∣∣
cdgnss

0 0 0


︸ ︷︷ ︸

J

δx

w = −δ uc|vision + Mc
b M̂b

n︸ ︷︷ ︸
∂r

∂un

δ un|cdgnss + Mc
b M̂b

n

[
ûn|cdgnss×

]
︸ ︷︷ ︸

∂r
∂ε

 ρN
ρE
0

+Mc
b M̂b

n


ûn

y
∂ψm,C
∂Hs

x
ûn

y
∂ψm,C
∂Hs

y

−ûn
x

∂ψm,C
∂Hs

x
−ûn

x
∂ψm,C
∂Hs

y

0 0


︸ ︷︷ ︸

∂r
∂Hh

[
δHs

x
δHs

y

]

R = Rvision +
∂r

∂un Rcdgnss
∂r

∂un

T

︸ ︷︷ ︸
Rc

cdgnss

+ ∂r
∂ε

 ρN
2 0 0

0 ρE
2 0

0 0 0

 ∂r
∂ε

T
+ ∂r

∂Hh

 (δHs
x)

2 0

0
(

δHs
y

)2

 ∂r
∂Hh

T

(16)

The covariance on CDGNSS unit vector (Rcdgnss) is obtained by transforming the
estimated CDGNSS baseline’s STD vector (Σcdgnss) in unit vector covariance, as

Rcdgnss =
∂un

∂vn diag
(

Σcdgnss

)∂un

∂vn

T
(17)

where ∂un/∂vn is the derivative of a unit vector u with respect to its associated vector
v. The norm of this matrix reduces by increasing the norm of v, making Rcdgnss smaller.
The covariance on CDGNSS measurements can be expressed in CRF by using:

Rc
cdgnss =

∂r
∂un Rcdgnss

∂r
∂un

T
(18)

Rvision, i.e., the covariance on visual measurements, can be derived by converting
the error on azimuth and elevation angles estimated by the camera in unit vector error.
The camera angular STD, i.e., σvision is at best equal to the IFOV (unless sub-pixel perfor-
mance is achieved by the visual tracking system) and is assumed to be the same both
horizontally and vertically. Naming ∂uc/∂Az and ∂uc/∂El the derivative of the camera
unit vector with respect to azimuth and elevation, respectively, Rvision is:

Rvision =
[

∂uc

∂Az
∂uc

∂El

][ σ2
vision 0
0 σ2

vision

][
∂uc

∂Az
∂uc

∂El

]T
(19)
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Estimating the covariance on δx, cov(δx) =
(

JT R−1 J
)−1, requires inverting the matrix

R, which is a 3 × 3 rank-deficient matrix. Indeed, both visual and CDGNSS covariance
matrixes are associated to unit vectors and have rank 2. Those contributions are summed up
in Equation (16) with two rank-2 matrices, i.e., the attitude related and the magnetometer
related matrix, returning a rank 2 R. To guarantee invertibility of R, linear independent
measurements should be used. Therefore, in this derivation, residuals on angles (azimuth
Az and elevation El) rα are used instead of residuals on the unit vector r:

rα =
∂rα

∂r
r =


∂Az
∂uc

∂El
∂uc

r (20)

Using azimuth and elevation residuals and their covariance (Rα), the residual and the
covariance matrix of Equation (16), i.e., r and R, become:

rα =
∂rα

∂r
J︸︷︷︸

Jα

δx

Rα =
∂rα

∂r
R

∂rα

∂r

T
(21)

Following the LM approach, described in Section 2, a set of k residuals is used to derive
the unknown of the problem. Naming (Rα)j and (Jα)j the covariance and measurement
matrixes related to the j-th angular residual vector, i.e., (rα)j, the covariance on the unknown
vector can be derived as:

cov(δx) =




(Jα)1
(Jα)2

...
(Jα)k


T

(Rα)1 03 03 0
03 (Rα)2 03 03

03 03
. . . 03

03 03 03 (Rα)k


−1

(Jα)1
(Jα)2

...
(Jα)k



−1

(22)

3.1. Error Budget Prediction

The proposed methodology can retrieve magnetic biases by isolating internal distur-
bance constants in BRF from external magnetic disturbances. Correct estimation of internal
magnetic biases requires rotating the UAV with the aim of creating spatial diversity of
magnetic field measurements in BRF. An ideal trajectory to fly to correctly estimate mag-
netic bias consists in rotating the chief UAV along its down body axis. On the other hand,
the deputy must fly along a circle with a constant radius with the aim of being always in
the chief’s camera FOV. This section aims at evaluating the theoretical estimation accuracy
of the problem’s unknowns, using Equation (22). The chief UAV is assumed to be rotating
along its down axis by continuously changing its heading. Results show the biases STD as
a function of the rotation angle covered by the UAV, from 0◦ to 360◦. Camera, CDGNSS,
magnetometers and horizontal attitude angles STD are reported in Table 1. Typical un-
certainty values of cameras embarked on UAVs have been used, whereas CDGNSS and
horizontal angular accuracy are assumed equal to those obtained by CDGNSS processing
and UAV navigation system. Magnetometer resolution has been assumed equal to 10 nT,
which is within the range of magneto-resistive sensors [22]. Several configurations have
been analyzed. Magnetic bias accuracy as a function of the chief–deputy distance, i.e., dcd,
and the initial heading angle of the chief vehicle, i.e., ψ0, are reported in Figures 3 and 4.
Whereas STDs as a function of magnetometer resolution are highlighted in Figure 5. For the
sake of visualization, Figure 3 provides, for ∆Hs

x and ∆Hs
y STDs, a zoom in the range 200◦

to 360◦. Better biases accuracy is provided with a complete 360◦ turn. However, satisfac-
tory accuracies can be obtained also with a subsegment of the entire 2π angle. As Figure 3
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shows, increasing distance allows improving the biases accuracy, due to the reduction in
the CDGNSS covariance, as indicated by Equation (17).

Table 1. Simulation parameter for error budget prediction.

Variable Value

Camera STD σcam 0.1◦

CDGNSS STD Σcdgnss [0.05, 0.05, 0.15]
Magnetometer STD σH = δHs

x = δHs
y 10 nT

Horizontal angles STD ρN, ρE 1◦
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In addition, increasing r allows reaching an asymptotic value for the internal bias
STD with a smaller fraction of the 360 turn. However, the entity of the range-related
improvement reduces with dcd. Indeed, as pointed out in the error budget derivation,
magnetic biases STD depends on CDGNSS, camera, magnetometer, and angular accuracy.
Range increase makes the CDGNSS covariance reduce, until it becomes less relevant to the
other error sources and a lower bound accuracy is encountered, e.g., when dcd ≈ 200 m.
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Magnetometer biases STD as a function of the elapsed angle while varying ψ0 from
−45◦ to 90◦ are reported in Figure 4. Variations in the initial heading do not alter the
external bias STD, thus it is not reported in the figure, for the sake of brevity. Conversely,
it modifies ∆Hs

x and ∆Hs
y curves. Indeed, more observability is provided to the internal

bias component, which is almost parallel to the magnetic field. This behavior is confirmed
by Figure 3, where ∆Hs

x converges after 180◦, because the Hs
x direction covers a symmetric

interval around the north axis. Figure 4 shows 90◦ gap couples, i.e., 0◦ to 90◦, −45◦

to 45◦. These couples show an opposite behavior in terms of ∆Hs
x and ∆Hs

y STDs, i.e.,
∆Hs

x and ∆Hs
y curves at ψ0, are equal to ∆Hs

y and ∆Hs
x at ψ0 + 90◦. For the couple 0◦–90◦,

when ψ0 = 90◦, Hs
y is parallel to the north direction, i.e., the direction along which the

magnetic field is the highest, when the rotation begins, and therefore more observable,
whereas the opposite configuration, i.e., Hs

x parallel to the north direction when the rotation
starts, holds when ψ0 = 0◦. In the case ψ0 = −45◦, convergence of ∆Hs

x is encountered after
90◦ turn, because it offers a symmetric variation of Hs

x around the north axis. The opposite
behavior, i.e., ∆Hs

y converges after 90◦ turn, is encountered when ψ0 = 45◦. Therefore,
magnetic bias convergence can be encountered also by covering an angle that is less than
180◦ degree, if the vehicle is rotated to make one of the two magnetometer horizontal axes
of the vehicle swap an angle symmetric with respect to the direction of the magnetic field,
i.e., the north direction. In this case, good observability is provided for the biases associated
to the axis whose rotation satisfies that condition, at the expense of the bias error along the
other horizontal magnetometer axis.

Figure 5 shows the error budget results as a function of magnetometer STD. Typi-
cal values of MEMS magnetometers mounted on conventional drones, i.e., with σH up to
200 nT, have been considered.

No significative changes in magnetometer biases STD are obtained when using a
more accurate magnetometer, e.g., with σH = 0.1 nT. than the one used in Figures 3 and 4.
This is due to a covariance lower bound imposed by the other covariance sources reported
in Equation (16), whose relative importance increases with respect to the magnetometer
covariance, for values of σH smaller than 10 nT. Using higher values of σH, in the orders of
hundreds of nT, increases the asymptotic value, i.e., the minimum accuracy obtained after
a 360◦ turn, with a quasi-linear behavior in ∆Hs

x and ∆Hs
y STDs. In addition, σH increase

makes the asymptotic condition to be reached with a highest elapsed angle, equal to 180◦

for ∆Hs
x when σH = 300 nT. Figure 5 suggests sub-degree precision in magnetic declination

can be obtained with a 360 turn when classic magnetometer mounted on conventional
drones are used. Accuracy in the order of tens of nT is obtained for internal bias estimation.
The figure suggests that better performance in magnetometer biases estimation can be
obtained with more accurate magnetometer sensors.

4. Experimental Setup and Flight Scenario
4.1. Experimental Setup

The flight test was carried out using a customized version of the DJI M100 quadrotor
as chief, which has been given the name “Eagle”. Such a vehicle is equipped with an
onboard computer (Intel NUC with i7 CPU), an additional GNSS single frequency receiver
(uBlox LEA-M8T), an auxiliary GNSS antenna and a CMOS camera (PointGrey Flea FL3-U3-
20E4C-C) collecting data at a frequency of around 12 Hz. Camera characteristics are shown
in Table 2. The deputy vehicle is another customized version of the DJI M100 quadrotor,
this time equipped with the very same onboard computer with an i5 CPU, and a uBlox
LEA-M8T GNSS single frequency receiver and antenna. The deputy, named “Athena”,
is also equipped with a camera relying on the CCD (PointGrey BlackFly BFLY-U3-50H5C-C)
as detector. Both deputy and chief are shown in Figure 6. In addition, a ground fixed GNSS
antenna and receiver (Trimble AV59 and BD960) have been used as a Ground Control
Point for assessing the performance of the proposed methodology, as further discussed
in Section 5.
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Table 2. Chief (Eagle) camera characteristics.

Eagle Camera Characteristics

Resolution in pixels 1600 × 1200
Max frame rate 59 fps

Focal length 8 mm
IFOV 0.03◦
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4.2. Flight Scenario

The experimental campaign, which took place in Acerra (NA), Italy in December 2019,
consisted of two flights. At this location and date, the magnetic declination predicted by
the International Geomagnetic Reference Field is 3.39◦ [23]. Due to the relative geometry of
the two UAVs, including relative turns and large heading variations, the second flight has
been chosen to carry out magnetometer bias estimation. During this flight, which lasted
around 11 min, chief GNSS, magnetometers and IMU data were, respectively, collected at
1 Hz, 10 Hz and about 137 Hz.

The flight has been characterized by maneuvers to keep the two UAVs facing each
other, and this has been achieved by rotating the chief around the deputy as it is easily
noticeable in Figure 7, where easting and northing of both UAVs as computed with their
GNSS data (also indicating the starting and ending points) are shown. The above-ground
flight altitude of both UAVs has not varied significantly, as a matter of fact, its mean
values, as evaluated by GNSS, are around 16.0 m for Athena and 16.8 m for Eagle. A video
sequence, compressed and accelerated (2x) to reduce file dimensions, composed of chief-
taken frames in a fraction of the flight test, can be found in Video S1 of Supplementary
Materials. A chief-taken image showing both Athena and the ground-based GNSS (Trimble)
antenna is shown in Figure 8, where both targets can be easily detected by eye.

The magnetometers output during the flight is shown in Figure 9, where both x and y
components of the sensed Earth magnetic field in BSRF are depicted. Such quantities are
provided by the chief autopilot through the DJI Onboard SDK interface, in (non-better spec-
ified) “normalized” magnetic unit (based on DJI documentation, magnetic measurements
are normalized so that the norm is included in the range between 1000 and 2000).
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As a reference, the norm of the Earth magnetic field vector at the flight location and
date is equal to 46,432 nT, as estimated from [23]. An analysis on a static portion of the data
acquisition, i.e., including the first 60 s, shows a scale factor of about 29, which is used in
the following to convert DJI normalized units to nT. This scale factor has been obtained
by dividing the norm of the predicted magnetic field in nT by the norm of the measured
magnetic field (in DJI normalized units) in static configuration.

5. Results

This section presents the results of the magnetic calibration procedure. The iteration
process, which leads to the estimation of both internal biases and external magnetic field
declination, starts by selecting a set of camera frames as inputs. This selection is reported
in Section 5.1, whereas magnetic biases estimation results and their predicted STDs are
reported in Sections 5.2 and 5.3.

5.1. Frame Selection

Frames used in the analysis have been selected based on constraints imposed on
chief-to-deputy distance, which is kept larger than 30 m to improve the accuracy of the
CDGNSS-based LOS unit vector in NED, and on the absolute value of chief yaw rate and
pitch and roll angles (as estimated by its onboard navigation system). To avoid too fast
heading variations, which may pose challenges due to the low magnetometer bandwidth
and the residual data synchronization errors, the yaw rate is requested to be smaller than
1.5◦/s, while maximum pitch and roll angles of 6.5◦ are considered so that the small angles
assumption holds.

After applying these constraints, frames have been organized for covering three
different flight portions identified as “Whole Flight”, in which all frames compliant with
the aforementioned requirements have been used, and “subset 1” and “subset 2”, in which
selected frames are extracted from smaller intervals. These regions are shown in Figure 10,
where the heading angle behavior, as estimated by the onboard navigation filter (ψ) and
resampled in camera time, is depicted for the flight duration along with the frames selected
for each computation, in a total of k.
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for computation, orange asterisks. (a) shows frames chosen for the whole flight case analysis, (b) and
(c) show frames chosen for subsets 1 and 2, respectively.

Each flight portion case was obtained from the previous ones by reducing the selected
frames interval. It must be noticed that the imposition of the CDGNSS-based baseline,
chief yaw rate and pitch and roll angles constraints represents a strong limitation in the
frames selection process. In the subset 1 case, the heading angle changes from −69.8◦ to
59.4◦, while in the subset 2 case, it varies from −69.8◦ to 124.7◦. The whole flight case is the
one involving the greater number of frames, 43, which reduces, respectively, to 31 and 27
for the subset cases, from higher to lower heading rotations.

Mean and extreme values of chief yaw rate (Ωz) and chief–deputy CDGNSS-based
baseline in terms of the norm of the unit vector uc|cdgnss for each of these analyzed cases
are reported in Table 3. Table 4 includes maximum absolute values and mean values of
pitch and roll angles.
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Table 3. Chief yaw rate (Ωz) and chief–deputy CDGNSS-evaluated range absolute value
(∣∣∣uc|cdgnss

∣∣∣)
extreme and mean values in the analyzed cases.

Cases
Ωz, ◦/s

∣∣∣uc|cdgnss

∣∣∣, m

Max Mean Min Mean

Whole flight 1.4 0.58 30.1 60.7
Subset 1 1.4 0.57 47.9 66.4
Subset 2 1.4 0.59 62.7 68.2

Table 4. Chief pitch (ϑ) and roll (ϕ) angles as evaluated by onboard DJI filter maximum and mean
values in the analyzed cases.

Cases
ϕ, Deg Θ, Deg

Max Mean Max Mean

Whole flight 6.4 3.2 5.6 2.3
Subset 1 6.4 4.0 5.6 2.1
Subset 2 6.4 3.9 5.6 2.0

5.2. Biases Estimation Results

Convergence criteria thresholds of the LM procedure (i.e., ε1, ε2 and ε3) have been set
to 10−8, 10−4 and 10−16. The initial guesses of the unknown parameters have been set to
zero, for the internal magnetic bias components in BSRF, and to the true value of magnetic
declination (3.39◦) for the dm angle. The initial value of the damping parameter (λ0) has
been set to 10−4.

The quality of the iterative procedure is mainly assessed by the value reached by
the residual chi-squared function at the iteration end divided by the total number of
frames involved in the computation, referred to as χ2

k . Such quantity is listed in Table 5
for each case, along with the type of convergence achieved, reported as type 1, 2 or 3 as
in reading order from (11), and the number of iterations needed for such convergence
to succeed, it. In all the cases, a value of χ2

k of the 10−3 order is obtained after a quite
small number of total iterative steps, thus suggesting satisfactory convergence conditions.
The estimated magnetic biases are listed in Table 6, where the internal magnetic bias
horizontal components in BSRF are reported in normalized magnetic units.

Table 5. LM procedure convergence results.

Cases it χ2
k Convergence Type

Whole flight 3 2.4 × 10−3 ‘1’
Subset 1 4 1.6 × 10−3 ‘1’ and ’2’
Subset 2 4 1.3 × 10−3 ‘1’ and ’2’

Table 6. Results of LM iterations in terms of estimated magnetic biases.

Cases ∆Hs
x ∆Hs

y dm, Deg

Whole flight −45.84 43.18 7.58
Subset 1 −44.04 41.89 7.69
Subset 2 −38.40 50.89 8.25

With the aim of better understanding the differences among the different solutions
and the statistical significance of the results presented in Table 6, the solution uncertainty
derived based on the previously presented error budget is reported in Table 7. Differ-
ently from the results shown in Section 3.1, ∆Hs

x and ∆Hs
y STD are reported in normal-

ized units for the sake of consistency with the results in Table 6. The values reported



Sensors 2021, 21, 3582 18 of 22

in Table 7 have been derived using only the measurements relevant to the frames identified
in Section 5.1, for the whole flight and the subset cases. Camera and horizontal angle
STDs have been assumed equal to 0.1◦ and 1◦, respectively. Magnetometer STD has been
estimated from the measured components of the magnetic field in static configuration,
which holds in the first 60 s of the flight. STD estimated on normalized components have
been converted in nT by using the actual intensity of the magnetic field in nT reported
in [23]. This procedure yields a value of about 150 nT for the magnetometer STDs on
the horizontal components. To consider the slightly non-horizontal configuration (i.e.,
maximum pitch and roll angles equal to 6.5◦), the estimated horizontal magnetometer STD,
has been amplified by considering an additional noise obtained combining the vertical
magnetic field with the standard deviation of roll and pitch angles.

Table 7. Error budget’s expected STDs.

Cases ∆Hs
x ∆Hs

y dm, Deg

Whole flight 6.86 7.45 0.37
Subset 1 7.44 12.85 0.51
Subset 2 9.80 16.51 0.80

Comparing Tables 6 and 7 highlights that variations of estimated biases are consistent
with 1σ bounds in each case. As expected, the STD values increase as the number of
frames reduces from the whole flight to the subset 2 case. However, results achieved with
“whole flight” and “subset 1” dataset differ only slightly in terms of estimated biases and
STD, thus demonstrating that the chief horizontal attitude calibration can be performed by
avoiding the sampling of frames from the whole flight and, instead, exploiting a reduced
number of frames which belong to a specific flight dynamic portion.

5.3. Pointing Error Analysis

The quality of the magnetic heading calibration procedure, resulting from the esti-
mated magnetic biases and declination listed in Table 6, has been analyzed by performing
a pointing error analysis, following the same approach of [24] and using an ad hoc selected
control point (CP). The unit vector between the chief UAV and the CP is computed in NED
using CDGNSS processing, and the azimuth angle is extracted to be used as (attitude inde-
pendent) reference measurement (Azref). The azimuth angle is then evaluated using images
and the estimated chief attitude angles. In particular, the pixels coordinates corresponding
to the control point location in chief-taken images are first used to compute the chief-to-CP
unit vector in CRF. This unit vector is then transformed in NED by using Mc

b and the
NED-BRF rotation matrix evaluated by using three different heading angles: the calibrated
and non-calibrated magnetic ones, which lead, respectively, to Azm,C and Azm,NC, and the
heading angle as estimated by the onboard DJI filter, leading to AzDJI . The pointing error
(i.e., ∆Az) is the difference between these angles and the reference one, i.e., Azref, and it can
thus be computed and used for performance assessment. The uncertainty of the pointing
error estimate is evaluated by summing up the CDGNSS covariance, expressed in angular
quantities via Equation (20) and the camera angular uncertainty. These quantities are
representative of the error on Azref and camera estimated quantities (i.e., Azm,C, Azm,NC and
AzDJI), respectively.

Results of such analysis are shown in Figure 11 for the whole flight case when the
Trimble ground-based antenna is used as ground control point (GCP). In the first panel
of the figure the pointing errors computed with Azm,C, Azm,NC and AzDJI are, respectively,
shown in orange, yellow and blue. While the second panel, shows the heading angle ψ as
computed by the DJI filter. It must be mentioned that pointing errors can only be computed
with respect to frames where the Trimble antenna can be easily detected. This occurs in
two main frame intervals, as Figure 11 shows.
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Figure 11. Pointing analysis results of the whole flight case. Pointing error is shown in the above
panel, along with the 3σ bound and the calibrated azimuth error mean (dashed black line). DJI filter-
estimated heading angle is shown in the below panel. Both figures are referred to frame intervals
where the Trimble target is visible.

The calibrated pointing error performance appears to be significantly improved with
respect to both non-calibrated and DJI-based heading estimates, thus clearly proving the
effectiveness of the proposed calibration methodology. This can be inferred by considering
the statistics of each pointing error, mainly in terms of mean and root mean squared error
(RMS). As a matter of fact, the calibrated mean value (−0.17◦), also shown in the figure as
a dashed black line, is remarkably smaller than the non-calibrated (−8.5◦) and DJI-based
ones (−2.3◦). This trend is confirmed by the calibrated RMS (0.95◦), which is again smaller
than the non-calibrated (8.6◦) and DJI-based ones (3.3◦). Furthermore, the mean value
of the pointing error for the calibrated heading appears to be well contained within the
3σ bound region for the benchmark, highlighted in grey in Figure 11. It is worth noting
that pointing errors of the DJI onboard filter change in the initial and final phases of the
flight even though the heading angle is similar, because of the filter dependency on the
experimented dynamics.

It is also worth mentioning that performing calibration with the method in [16],
which does not allow estimating the external bias, results in a pointing accuracy mean error
equal to −2.7◦ in the whole flight case.

To further assess the quality of the calibration procedure, the pointing analysis is
also performed considering the other flight experiment carried out during the same day
(flight 1), and using the other drone (Athena) as an airborne control point. As before,
Azm,C and Azm,NC have been estimated by using calibrated and un-calibrated heading
angles (Equations (3) and (4), respectively) with magnetometer biases set as those reported
in Table 6, for the whole flight case. Pointing analysis results are shown in Figure 12.
The difference between Azm,C and Azref, which is depicted in orange, has a mean that is
well within the 3σ bound. In addition, analyzing the link between the pointing results and
the heading variation, it is possible to verify that pointing accuracy is independent from
heading for the calibrated solution. Indeed, azimuth error results to be heading dependent,
for other cases (Azm,NC and AzDJI), thus demonstrating a worse compensation of onboard
magnetic biases.
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Figure 12. Pointing analysis results on Flight 1. Athena has been used as CP. Calibrated and
uncalibrated azimuth have been obtained with magnetometer biases estimated along the whole flight
2 and reported in Table 6.

6. Conclusions

This paper presented a calibration technique designed to simultaneously estimate the
onboard horizontal magnetic biases and the external magnetic declination. The approach
is based on the exploitation of cooperative navigation with one (or more) deputy UAV and
on the usage of drone-to-drone visual and CDGNSS measurements. The ad hoc derived
error budget showed that, besides the magnetometer noise, the relative flight geometry
(i.e., the distance between UAVs and the interval of heading angles in which coopera-
tive measurements are available), has a strong impact on the accuracy of the calibration
procedure. Specifically, accurate estimation of magnetic declination, at the sub-degree
level, can be obtained with relatively short baselines and using commercial hardware.
Experimental results were also shown, which are promising and further corroborate the
potential of the developed approach. In fact, the magnetic calibration results are consistent
with error budget predictions. Moreover, a pointing analysis based on both one ground
and one airborne control point demonstrated the possibility to achieve an angular pointing
accuracy below one degree exploiting magnetic heading estimates based on the proposed
calibration procedure. Such an accuracy level has been demonstrated to be much better
than the one achievable using either the non-calibrated magnetic heading, or the attitude
estimate of the DJI onboard navigation filter, which resulted in root mean square errors of
about nine and three degrees, respectively.

Based on these results, future research is foreseen in different directions. First, the co-
operative method will be extended towards full 3D magnetic calibration. This requires
proper attitude variations (in roll and pitch) to enhance the observability of vertical biases.
In this scenario, an IMU/magnetometer independent estimation of the full attitude state
can be guaranteed by exploiting two or more deputies as reported in [23]. Consistently
with these developments, the potential of the technique towards UAV-based magnetometry
will be explored, also taking advantage of high sensitivity magnetometers embarked as
mission payloads.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21113582/s1. Video S1: Compressed and accelerated (2x) video sequence of the deputy
observed by the chief camera during the 360◦ turn.
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