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Abstract: Heart rate (HR) and HR variability (HRV) infer readiness to perform exercise in athletic 

populations. Technological advancements have facilitated HR and HRV quantification via photo-

plethysmography (PPG). This study evaluated the validity of WHOOP’s PPG-derived HR and HRV 

against electrocardiogram-derived (ECG) measures. HR and HRV were assessed via WHOOP and 

ECG over 15 opportunities. WHOOP-derived pulse-to-pulse (PP) intervals were edited with 

WHOOP’s proprietary filter, in addition to various filter strengths via Kubios HRV software. HR 

and HRV (Ln RMSSD) were quantified for each filter strength. Agreement was assessed via bias 

and limits of agreement (LOA), and contextualised using smallest worthwhile change (SWC) and 

coefficient of variation (CV). Regardless of filter strength, bias (≤0.39 ± 0.38%) and LOA (≤1.56%) in 

HR were lower than the CV (10–11%) and SWC (5–5.5%) for this parameter. For Ln RMSSD, bias 

(1.66 ± 1.80%) and LOA (±5.93%) were lowest for a 200 ms filter and WHOOP’s proprietary filter, 

which approached or exceeded the CV (3–13%) and SWC (1.5–6.5%) for this parameter. Acceptable 

agreement was found between WHOOP- and ECG-derived HR. Bias and LOA in Ln RMSSD ap-

proached or exceeded the SWC/CV for this variable and should be interpreted against its own level 

of bias precision. 
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1. Introduction 

Resting heart rate (HR) quantification and monitoring have been common in exercise 

physiology research and practice for centuries [1]. Additionally, HR variability (HRV), a 

sophisticated derivative of HR, has been quantified to provide insight into cardiac mod-

ulation by the parasympathetic and sympathetic divisions of the autonomic nervous sys-

tem (ANS) [2]. Given the integral role of the ANS to all physiological function, including 

those related to exercise and training [3], the body’s ability to tolerate or adapt to an exer-

cise stimulus may be inferred by examining ANS responsiveness [3]. Consequently, HRV 

has been used to infer training tolerance or readiness to perform exercise in athletes [4,5]. 

Advancements in HR monitor technology, namely the first wireless HR monitor [6], 

have facilitated frequent and accurate HR quantification. However, this technology is re-

liant on the wireless communication of the heart’s electrical activity from an elastic elec-

trode chest strap to relevant receivers, and such reliance on chest straps can be inconven-

ient and problematic. Regarding HR and HRV assessment for the day-to-day monitoring 

of readiness to perform specifically, compliance is challenged by wearing a chest strap 
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during daily recordings [7]. Consequently, HR and HRV assessments that occur without 

a chest strap, such as photoplethysmography (PPG), are advantageous. 

PPG detects changes in pulsatile blood flow between the heart’s systole and diastole 

via LED-emitted light at the wrist, fingertip or earlobe [8]. The LED light illuminates the 

skin, while a photodetector quantifies the intensity of the light reflected back from the skin 

[7]. Since blood volume is acutely increased following cardiac systole (which obstructs the 

LED light and reduces the intensity of the reflected light) and decreased during cardiac 

diastole (increasing the intensity of reflected light), the heart’s rhythm can be detected via 

PPG [7]. 

Calculation of HR and HRV from pulse-to-pulse (PP) intervals quantified via PPG is 

not a novel concept, having been utilised in research as historically as 1938 [9]. However, 

its contemporary application has been facilitated by technological advancements in com-

mercially available HR monitors. PPG validation studies demonstrate acceptable agree-

ment in HR quantification at rest [8,10] and during sleep [11]. Similarly, PPG-derived rest-

ing HRV (and specifically the root mean square of successive beat to beat (BB) interval 

differences; RMSSD) demonstrates acceptable agreement assessed at the earlobe and fin-

gertip at rest [7,12–17] and during sleep [18]. 

WHOOP is a commercially available unit that quantifies HR and HRV (in the form 

of RMSSD) via wrist-based PPG. Uniquely, however, WHOOP quantify these measures 

during slow-wave sleep (SWS) [19], which it is able to determine with moderate accuracy 

[20]. Given that SWS is thought to be important for physiological recovery from exercise 

[21–23], and HRV is considered a marker of physiological recovery [4,5], HRV assessment 

during SWS may quantify the degree of physiological recovery facilitated by this sleep 

stage, and thus may be used in the day-to-day monitoring of training status by practition-

ers. Additionally, WHOOP subsequently utilise HR and HRV measures (along with sleep 

duration) in an algorithm to predict a “Recovery Score” out of 100% [19]. This Recovery 

Score may be used to individually guide training prescription as a measure of readiness 

to perform. Given the novelty of WHOOP for assessing wrist-based PPG-derived HR and 

HRV, in addition to its unique dependence on measuring SWS in its quantification of HR 

and HRV, this study aimed to evaluate the agreement between WHOOP-derived HR and 

HRV and gold-standard assessment via ECG during SWS episodes. 

2. Materials and Methods 

2.1. Participants 

Six healthy, young adults (male: n = 3; female: n = 3; age: 22.9 ± 3.4 years) participated 

in this study. Participants were excluded if they reported any existing medical conditions 

or sleep disorders, or had a recent history of shift work and/or transmeridian travel. This 

study was approved by the Central Queensland University Human Research Ethics Com-

mittee. 

2.2. Experimental Overview 

Data collection occurred concurrently with a larger pre-existing sleep study which 

has not yet been published. Data were collected over three consecutive sleep opportunities 

at the Appleton Institute of Behavioural Science, Central Queensland University, which 

contains two co-located, purpose-built accommodation suites that are sound attenuated, 

free from external environmental cues and can simultaneously house a total of six partic-

ipants with private bedrooms and bathrooms. Participants wore a WHOOP unit (CB 

Rank, Greater Boston, New England) on their non-dominant wrist during sleep opportu-

nities at the end of day 1 (2300–0800), end of day 2 (0300–1200) and during day 4 (1430–

2130). Agreement between WHOOP and ECG-derived HR and HRV was evaluated 

through four time- and SWS stage-matched analyses (Table 1). Firstly, agreement between 

time-matched WHOOP- and ECG-derived HR and HRV was assessed during the final 

WHOOP-derived SWS episode in line with the technology’s ecological use, and across a 
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range of data editing filters to determine the extent to which WHOOP-derived PP inter-

vals need to be edited for erroneous PP intervals, including WHOOP’s proprietary filter. 

Secondly, to determine whether the accurate identification of the final SWS episode im-

pacts upon the agreement between WHOOP- and ECG-derived HR and HRV (given that 

WHOOP has only moderate sensitivity to accurately identifying sleep stage [20]), 

WHOOP- and ECG-derived HR and HRV were also quantified during the final poly-

somnography (PSG)-derived SWS episode for comparison. Additionally, to provide in-

sight into the impact of misrepresentation of true SWS periods by WHOOP on HR and 

HRV, two SWS stage-matched analyses were conducted. Consequently, the third analysis 

assessed agreement between ECG-derived HR/HRV (i.e., true HR/HRV) during PSG-de-

rived SWS episodes (i.e., true SWS) and WHOOP-derived HR/HRV during WHOOP-de-

rived SWS episodes. The fourth analysis assessed the agreement between WHOOP-de-

rived HR/HRV during PSG-derived SWS episodes and WHOOP-derived HR/HRV during 

WHOOP-derived SWS episodes as a means of determining the impact of SWS misrepre-

sentation on WHOOP-derived measures. 

Table 1. Analyses of agreement overview. 

  HR/HRV derived by… 

WHOOP ECG 

SWS period derived by… 
WHOOP 1,3,4 1 

PSG 2,4 2,3 

HR, heart rate; HRV, heart rate variability; PSG, polysomnography; SWS, slow-wave sleep; 1, 

time-matched analysis of WHOOP-derived HR/HRV vs. ECG-derived HR/HRV during WHOOP-

derived SWS; 2, time-matched analysis of WHOOP-derived HR/HRV vs. ECG-derived HR/HRV 

during PSG-derived SWS; 3, sleep stage-matched analysis of WHOOP-derived HR/HRV during 

WHOOP-derived SWS vs. ECG-derived HR/HRV during PSG-derived SWS; 4, sleep stage-

matched analysis of WHOOP-derived HR/HRV during WHOOP-derived SWS vs. WHOOP-de-

rived HR/HRV during PSG-derived SWS. 

2.3. Sleep Stage Identification 

To acquire WHOOP strap sleep data, researchers manually entered the start and end 

times of each sleep opportunity into the WHOOP smart phone application. The manufac-

turer then provided data in 30 s epochs for wake, light sleep, SWS and rapid eye move-

ment (REM) sleep. PSG data were recorded directly to data acquisition, storage and anal-

ysis systems (Grael, Compumedics; Victoria, Australia). Brain, eye and muscle activity 

were quantified from electrodes attached to the face and scalp of participants, including 

three electroencephalography electrodes (i.e., C4-M1, F4-M1, O2-M1), two electro-oculo-

grams (i.e., left/right outer canthus) and a submental electromyogram. PSG records were 

manually scored (in 30 s epochs) by a registered and experienced polysomnographic tech-

nician in compliance with standard criteria [24]. Time in bed during each sleep oppor-

tunity was arranged into wake, non-rapid eye movement sleep (non-REM; stage 1 [S1], 

stage 2 [S2] and SWS) and rapid eye movement (REM) sleep. Cardiac activity was assessed 

via two ECG electrodes (left-positive and right-negative) recorded using the aforemen-

tioned Grael PSG system. The negative electrode was placed three centimetres below the 

right clavicle, positioned on the torso parallel to the right leg. The positive electrode was 

positioned on the left side of the torso parallel to the left hip and leg, between either the 

fifth, sixth, or seventh intercostal spaces on the lower left side of the rib cage. 

2.4. Heart Rate and Heart Rate Variability Calculation 

Using both the WHOOP- and PSG-derived sleep staging data for each sleep oppor-

tunity, the final five minutes of the final SWS episodes were identified. If the final sleep 

stage was less than five minutes in duration, the preceding stages were identified until a 
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five-minute stage was found. Subsequently, time-matched PP and RR intervals were ex-

tracted from WHOOP- and ECG-derived files, respectively, for each SWS episode and 

analysed using WHOOP’s proprietary filter and HRV analysis software (Kubios HRV 

Analysis, version 2.0 beta 1, Biomedical Signals Analysis Group, University of Kuopio, 

Finland). To determine the degree of PP interval editing required to facilitate the best 

agreement between WHOOP- and ECG-derived measures, Kubios’s default filters (i.e., 

“Low”, “Medium”, “Strong” and “Very Strong”—equivalent to 400, 300, 200 and 100 ms 

editing thresholds, respectively), in addition to no filter (i.e., “None”) and WHOOP’s pro-

prietary filter, were separately applied to WHOOP-derived PP intervals and recorded for 

analysis. For HRV analysis, RMSSD and its natural logarithm transformation (i.e., Ln 

RMSSD) were recorded for analysis. 

2.5. Statistical Analysis 

Data were analysed using SPSS (IBM Corp. IBM SPSS Statistics for Windows, Version 

25.0. Armonk, NY) and presented as the mean ± 95% confidence intervals. Agreement 

between WHOOP- and ECG-derived measures of HR and HRV was determined through 

absolute and percentage mean bias (WHOOP minus ECG), absolute and percentage limits 

of agreement (LOA) and intra-class correlation (ICC). ICCs were evaluated as: 0.0–0.1, 

trivial; 0.1–0.3, small; 0.3–0.5, moderate; 0.5–0.7, large; 0.7–0.9, very large; 0.9–1.0, nearly 

perfect [25]. 

For the parameters of HR, RMSSD and Ln RMSSD, separate two-way (filter strength 

× SWS quantification method [i.e., WHOOP vs. PSG]) repeated measures ANOVAs deter-

mined statistically significant differences in ECG and WHOOP-derived values, and in bias 

between filter strengths for each SWS quantification method. As it was not possible to 

statistically compare LOA between filters and SWS quantification method, mean residuals 

were calculated as a measure of variability about the bias and compared via separate two-

way (filter strength × SWS quantification method) repeated measures ANOVAs for HR, 

RMSSD and Ln RMSSD. Individual residuals were calculated as the square root of the 

squared difference between the individual value and the mean value for both absolute 

and percent bias. Statistical significance was set at p < 0.05. 

For values of HRV, the filter strength resulting in the smallest bias and smallest LOA, 

in addition to WHOOP’s proprietary filter, was subsequently used to compare differences 

in percent bias and percent residuals between analytical method (i.e., RMSSD vs. Ln 

RMSSD) via two-way ANOVA. 

Effect sizes ([ES] with 95% confidence intervals) between variables of interest were 

calculated using pooled standard deviation. Threshold values for ES were ≤0.2 (trivial), 

>0.2 (small), >0.6 (moderate), >1.2 (large), >2.0 (very large), and >4.0 (extremely large) [25]. 

3. Results 

Of the 18 opportunities for data collection, HR and HRV data from three sleep op-

portunities were lost due to equipment malfunction and/or experimenter error. Thus, data 

from 15 sleep opportunities were available for comparison. 

3.1. Filter Analysis 

With regard to WHOOP’s proprietary filter, trivial but statistically significant biases 

were found between WHOOP- and ECG-derived Ln RMSSD across both SWS quantifica-

tion methods (percent bias ≤3.25 ± 1.53%; bias as ES ≥0.18 ± 0.16; p ≤ 0.04; LOA ≤6.59%; 

Figure 1a,b), and RMSSD during PSG-derived SWS (percent bias = 12.74 ± 6.53%; bias as 

ES = 0.14 ± 0.09; p = 0.005; LOA = 25.31%; Figure 1d), but not RMSSD during WHOOP-

derived SWS (percent bias = 8.54 ± 6.65%; bias as ES = 0.13 ± 0.15; p = 0.10; LOA = 25.75%; 

Figure 1c). 

Regarding the BB editing filters applied in Kubios, a Strong filter (equivalent to a 200 

ms editing threshold) applied to WHOOP-derived PP intervals resulted in the smallest 
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percent bias and smallest percent LOA across both SWS quantification methods for 

RMSSD (percent bias ≤8.39 ± 6.70%; bias as ES ≤0.08 ± 0.15; LOA ≤27.26%) and Ln RMSSD 

(percent bias ≤2.30 ± 1.69%; bias as ES ≤0.14 ± 0.17; LOA ≤6.98%) (Supplementary Tables 

S1 and S2). 

In comparison to Kubios’s Strong filter, the bias between WHOOP and ECG values 

was greater when edited using WHOOP’s proprietary filter during PSG-derived SWS 

across both RMSSD (ES = 0.51 ± 0.24; p = 0.04) and Ln RMSSD values (ES = 0.34 ± 0.14; p = 

0.03). Percent LOAs were similar when WHOOP-derived PP intervals were edited using 

Kubios’s Strong filter compared to WHOOP’s proprietary filter across both SWS quantifi-

cation methods for RMSSD and Ln RMSSD, and analysis of residuals indicated no statis-

tical differences (ES ≤0.50 ± 0.59; p ≥ 0.12). 

With regard to HR, there was a trivial but statistically significant bias between 

WHOOP-derived HR edited by WHOOP’s proprietary filter and ECG-derived HR during 

both WHOOP- and PSG-derived SWS (ES ≥−0.03 ± 0.02; percent bias ≥−0.39 ± 0.38%; p ≤ 

0.04; Figure 1e,f). For all other filters, there were trivial and non-statistically significant 

biases between WHOOP- and ECG-derived HR (ES ≤0.006 ± 0.023; p ≥ 0.59). LOA for all 

filters across both SWS quantification methods were ≤1.56% and ICCs were almost perfect 

(r = 1.00 [95% confidence interval range 0.99 to 1.00]; Supplementary Table S3). 

3.2. Analytical Method Analysis 

For both Kubios’s Strong filter and WHOOP’s proprietary filter, percent bias for 

measures of Ln RMSSD were smaller than measures of RMSSD (ES ≤−0.73 ± 0.61; p ≤ 0.03) 

with the exception of Kubios’s Strong filter during WHOOP-derived SWS which trended 

toward statistical significance (ES = −0.56 ± 0.60; p = 0.09). Similarly, percent residuals for 

measures of Ln RMSSD were smaller than measures of RMSSD (ES ≤−1.23 ± 0.60; p ≤ 0.001). 

3.3. SWS Stage-Matched Analyses 

For the analysis of agreement between ECG-derived HR/HRV during PSG-derived 

SWS and WHOOP-derived HR/HRV during WHOOP-derived SWS, there were trivial to 

small biases in HR (ES = 0.13 ± 0.17; 1.85 ± 2.51%; p = 0.15; Figure 2a) and HRV (ES = 0.03 

± 0.29; 20.08 ± 28.42%; p = 0.86 for RMSSD [Figure 2b] and ES = 0.21 ± 0.39; 3.74 ± 5.76%; p 

= 0.29 for Ln RMSSD [Figure 2c]). There were moderate to large LOAs for HR (9.71%; ES 

= 0.67), RMSSD (110.07%; ES = 1.12) and Ln RMSSD (22.31%; ES = 1.50). 

For the analysis of agreement between WHOOP-derived HR/HRV during PSG-de-

rived SWS and WHOOP-derived HR/HRV during WHOOP-derived SWS, there were triv-

ial biases in HR (ES = 0.11 ± 0.17; 1.57 ± 2.45%; p = 0.21; Figure 3a) and HRV (ES = 0.16 ± 

0.31; 5.75 ± 23.16%; p = 0.34 for RMSSD [Figure 3b] and ES = 0.01 ± 0.38; 0.68 ± 5.13%; p = 

0.94 for Ln RMSSD [Figure 3c]). There were moderate to large LOAs for HR (9.48%; ES = 

0.66), RMSSD (89.70%; ES = 1.21) and Ln RMSSD (19.85%; ES = 1.47). 

Figure 4 depicts the time differential between WHOOP-derived SWS episodes and 

PSG-derived SWS episodes per sleep opportunity; there was a small bias (WHOOP minus 

PSG) of 35.1 ± 47.2 min (ES = 0.31 ± 0.42; p = 0.17) with large LOA of 182.7 min (ES = 1.62). 
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Figure 1. Agreement between (a) ECG-derived Ln RMSSD and WHOOP-derived Ln RMSSD dur-

ing WHOOP-derived SWS, (b) ECG-derived Ln RMSSD and WHOOP-derived Ln RMSSD during 

PSG-derived SWS, (c) ECG-derived RMSSD and WHOOP-derived RMSSD during WHOOP-de-

rived SWS, (d) ECG-derived RMSSD and WHOOP-derived RMSSD during PSG-derived SWS, (e) 

ECG-derived HR and WHOOP-derived HR during WHOOP-derived SWS and (f) ECG-derived 

HR and WHOOP-derived HR during PSG-derived SWS. Thin continuous line represents mean 

bias. Dashed lines represent mean bias ± limits of agreement. bpm, beats per minute; ECG, electro-

cardiogram; HR, heart rate; Ln RMSSD, natural logarithm of the root mean square of successive 

BB interval differences; ms, milliseconds; PSG, polysomnography; RMSSD, root mean square of 

successive BB interval differences; SWS, slow-wave sleep. 

 

Figure 2. Agreement between (a) ECG-derived HR during PSG-derived SWS and WHOOP-derived HR during WHOOP-

derived SWS, (b) ECG-derived RMSSD during PSG-derived SWS and WHOOP-derived RMSSD during WHOOP-derived 

SWS, and (c) ECG-derived Ln RMSSD during PSG-derived SWS and WHOOP-derived Ln RMSSD during WHOOP-de-

rived SWS. Bias is calculated as WHOOP-derived variable during WHOOP-derived SWS minus ECG-derived variable 

during PSG-derived SWS. Thin continuous line represents mean bias. Dashed lines represent mean bias ± limits of agree-

ment. bpm, beats per minute; ECG, electrocardiogram; HR, heart rate; Ln RMSSD, natural logarithm of the root mean 

square of successive BB interval differences; ms, milliseconds; PSG, polysomnography; RMSSD, root mean square of suc-

cessive BB interval differences; SWS, slow-wave sleep. 
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Figure 3. Agreement between (a) WHOOP-derived HR during PSG-derived SWS and WHOOP-derived HR during 

WHOOP-derived SWS, (b) WHOOP-derived RMSSD during PSG-derived SWS and WHOOP-derived RMSSD during 

WHOOP-derived SWS, and (c) WHOOP-derived Ln RMSSD during PSG-derived SWS and WHOOP-derived Ln RMSSD 

during WHOOP-derived SWS. Bias is calculated as WHOOP-derived variable during WHOOP-derived SWS minus 

WHOOP-derived variable during PSG-derived SWS. Thin continuous line represents mean bias. Dashed lines represent 

mean bias ± limits of agreement. bpm, beats per minute; HR, heart rate; Ln RMSSD, natural logarithm of the root mean 

square of successive BB interval differences; ms, milliseconds; PSG, polysomnography; RMSSD, root mean square of suc-

cessive BB interval differences; SWS, slow-wave sleep. 

 

Figure 4. Time differential (min) for SWS periods derived by PSG and WHOOP. Data are presented as WHOOP time of 

day minus PSG time of day such that positive values indicate WHOOP-derived SWS periods occurred after PSG-derived 

SWS periods. Diamond marker represents mean bias ±95% confidence interval. Y-axis letters represent individual partic-

ipants. Y-axis numerals represent individual participants’ sleep opportunities. min, minutes; PSG, polysomnography; 

SWS, slow-wave sleep. 

4. Discussion 

This study evaluated agreement between PPG assessment of HR and HRV by a com-

mercially available wrist-worn activity monitor (WHOOP) and gold-standard assessment 

via ECG. The primary findings were that of trivial bias (ES ≤0.03) and LOA (ES ≤0.10) for 

time-matched HR assessment, and trivial bias (ES ≤0.19) and small LOA (ES ≤0.59) for 

time-matched HRV assessment when either a Strong filter or WHOOP’s proprietary filter 

was applied to WHOOP-derived PP interval data and analysed as Ln RMSSD. SWS stage-
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matched WHOOP-derived HR and HRV demonstrated trivial bias (ES ≤0.11) and moder-

ate to large LOA (ES = 0.66–1.47). 

The present study identified that WHOOP-derived PP intervals need to be filtered 

prior to HRV calculation to facilitate optimal agreement with ECG-derived HRV. The 

methodological consideration of BB interval editing is not a novel concept and has been 

advocated in HRV analysis [2,5]. Indeed, Buchheit [5] demonstrated that a single errone-

ous BB interval over a five-minute recording substantially altered RMSSD calculation. 

Consequently, it is important to edit BB intervals prior to analysis to ensure a true reflec-

tion of ANS status. While visual inspection and manual editing of BB intervals is ideal, it 

is an unrealistic practice in the field where a multitude of files are recorded, and instanta-

neous feedback is required to guide athletic training. Accordingly, automatic BB interval 

editing within manufacture software is commonplace [5]. In the present study, bias and 

LOA was minimised, while ICC was maximised, as filter strength increased to a Strong 

level (and also with WHOOP’s proprietary filter). However, a Very Strong filter resulted 

in poorer agreement between WHOOP- and ECG-derived HRV, indicating this filter was 

too aggressive, and excessively altered the true BB interval patterning. Thus, the present 

study indicates that while erroneous WHOOP-derived PP intervals have little impact on 

HR calculation, these intervals have a small to moderate impact on RMSSD/Ln RMSSD 

calculation, as evidenced by the small biases (ES = 0.21–0.32) and small to moderate LOAs 

(ES = 0.56–0.78) in unfiltered RMSSD and Ln RMSSD across both SWS quantification 

methods, in comparison to the trivial biases (ES = 0.04–0.19) and small LOAs (ES = 0.33–

0.59) in filtered values (i.e., Kubios’s Strong filter and WHOOP’s proprietary filter). 

A further methodological consideration in HRV determination is the natural loga-

rithm transformation of RMSSD (i.e., Ln RMSSD). Natural logarithm transformation re-

duces bias from non-uniformity of error [25], and has become standard practice for the 

longitudinal monitoring of training status via HRV [5]. In the present study, natural log-

arithm transformation of RMSSD resulted in small to moderate (ES = 0.56–1.19) reductions 

in percent bias, and large to very large (ES = 1.23–2.15) reductions in percent residuals in 

comparison to raw RMSSD. 

While some statistically significant differences in bias were found between Kubios’s 

Strong filter and WHOOP’s proprietary filter, agreement statistics (i.e., bias and LOA) in 

WHOOP-derived HR and HRV may also be contextualised using the natural day-to-day 

variability in these variables. Some variation exists in the literature with regard to day-to-

day variability in HR (10–11% coefficient of variation [5,26]) and Ln RMSSD (3–13% coef-

ficient of variation [5,26–32]) which is likely dependent on timing of assessment (i.e., 

morning waking versus nocturnal) and posture (i.e., supine versus sitting versus stand-

ing). With specific regard to nocturnally collected Ln RMSSD, Costa et al. [32] demon-

strated a coefficient of variation of 4–6%. Additionally, given that a smallest worthwhile 

change in HR/HRV has been proposed to be calculated as 0.5 multiplied by coefficient of 

variation [25], the smallest worthwhile change is 5–5.5% for HR and 1.5–6.5% for Ln 

RMSSD (and 2–3% for nocturnally derived Ln RMSSD). Consequently, since the bias 

(<0.5%) and LOA (1–1.5%) in WHOOP-derived HR were less than both the smallest worth-

while change and coefficient of variation in HR, it may be concluded that WHOOP’s pro-

prietary filter provides suitable editing of PP intervals. However, since the bias (2–3.5%) 

and LOA (6–6.5%) in WHOOP-derived Ln RMSSD (when edited with WHOOP’s propri-

etary filter) approaches the upper limit for the smallest worthwhile change in Ln RMSSD 

(and exceeds both the coefficient of variation and smallest worthwhile change for noctur-

nally derived Ln RMSSD), WHOOP-derived measures of Ln RMSSD may need to be in-

terpreted against their own level of bias precision (i.e., LOA of 6–6.5%). 

The physiological determinants of the trivial biases with small LOAs for agreement 

between ECG- and PPG-derived Ln RMSSD demonstrated in the present study potentially 

lie within the pulse travel time. Specifically, the electrical activity of the heart is followed 

by spread of the pulsatile wave of blood to the periphery [12]. While this pulse travel time 

demonstrates BB fluctuations of only a few milliseconds [33–35], this does indicate that 
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BB intervals derived from ECG and PPG will rarely be exactly the same, which intuitively 

indicates that variability in BB intervals (i.e., RMSSD/Ln RMSSD) will rarely be exactly the 

same also. 

WHOOP quantify HR and HRV in the final SWS episode of each sleep opportunity, 

which is intuitive from a physiological perspective. SWS is thought to be important for 

physiological recovery from exercise [21], a hypothesis supported by the synchronisation 

between SWS periods and growth hormone release in humans (suggesting that sleep pe-

riods provide optimal anabolic conditions) and findings of SWS duration being propor-

tional to preceding wakefulness [22]. Since HRV is a measure of ANS status [2], which is 

in turn considered a marker of physiological readiness to perform exercise [3], it is intui-

tive that HRV be assessed during SWS, since this may be used to quantify the magnitude 

of physiological recovery facilitated by SWS (although future research is required to con-

firm this). However, given that WHOOP has only moderate sensitivity in accurately iden-

tifying sleep stage [20], which is supported by the findings of the present study indicating 

a small time differential (ES = 0.31) in the determination of SWS periods by WHOOP in 

comparison to PSG (and a large [ES = 1.62] LOA about that time differential), the misrep-

resentation of true SWS periods by WHOOP may have an impact on WHOOP-derived 

HR and HRV since autonomic HR modulation is physiologically impacted upon by sleep 

stage [36–39]. Indeed, while the bias in stage-matched WHOOP-derived HR (ES = 0.11; 

1.57%) and Ln RMSSD (ES = 0.01; 0.68%) during WHOOP-derived SWS episodes com-

pared to PSG-derived SWS episodes was trivial, the LOA for WHOOP-derived HR 

(9.48%) exceeded the smallest worthwhile change (5–5.5%) and approached the coefficient 

of variation (10–11%) in this variable, while the LOA for WHOOP-derived Ln RMSSD 

(19.85%) exceeded both the smallest worthwhile change (1.5–6.5%) and coefficient of var-

iation (3–13%) for this variable. Thus, while the exploratory analysis performed in the 

present study does not quantify the true day-to-day variability in WHOOP-derived HR 

and HRV, it does indicate that a misrepresentation of SWS periods impacts upon the pre-

cision of bias in WHOOP-derived HR and HRV, which may in turn impact upon the day-

to-day variability in WHOOP-derived HR and HRV. Consequently, future research 

should evaluate the day-to-day variability in WHOOP-derived HR and HRV. 

The agreement between PPG- and ECG-derived HR shown in this study (i.e., bias = 

0.02–0.23 bpm [ES = 0.01–0.03]; LOA = 0.72–0.81 bpm; r = 1.00 across both SWS quantifica-

tion methods) is similar to that previously shown in other wearable devices during quiet 

rest and sleep (bias = 0.09–1.00 bpm [ES = 0.01–0.09]; LOA = 2.67–5.29 bpm; r = 0.99) 

[8,10,11]. The agreement between wrist-based PPG- and ECG-derived HRV demonstrated 

in the present study (i.e., bias = 1.33–4.90 ms [ES = 0.04–0.14]; LOA = 11.26–15.96 ms; r = 

0.98–0.99 for RMSSD) is within the range found using earlobe and fingertip PPG-derived 

HRV (bias = 0.00–2.71 ms [ES = 0.00–0.11]; LOA = 1.40–14.50 ms; r = 0.99–1.00) during quiet 

rest and sleep [7,12–18]. 

The present study used repeat measures in only a small number of unique individu-

als, which may be considered a limitation in certain scientific contexts. However, the au-

thors propose this is not the case in the present study where simple statistical agreement 

is the focus. Specifically, to suitably “challenge” the WHOOP unit for accurately assessing 

PPG-derived HR and HRV, an appropriate range and variability in BB intervals is re-

quired. The current dataset provides HR in the range of 40–75 bpm and RMSSD in the 

range of 15–125 ms, and it is hypothesised that these ranges cover the typical range seen 

in both the general and athletic population. 

While the WHOOP-derived HR and HRV variables assessed in the present study 

feed into WHOOP’s Recovery Score, validation of this Recovery Score itself was beyond 

the scope of this study, and thus should be validated in future research. 

5. Conclusions 

A wrist-worn, commercially available activity monitor (WHOOP) demonstrated ac-

ceptable agreement in HR via PPG assessment compared with gold-standard assessment 
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via ECG. Regarding HRV assessment however, bias and LOA in Ln RMSSD approached 

or exceeded the smallest worthwhile change/coefficient of variation for this variable, and 

thus should be interpreted against its own level of bias precision when suitably edited to 

remove erroneous PP intervals and analysed as Ln RMSSD. SWS stage-matched assess-

ment of HR and HRV indicated that misrepresentation of SWS periods impacted upon the 

precision of bias in WHOOP-derived HR and HRV, which may in turn have an impact on 

the day-to-day variability in WHOOP-derived HR and HRV. 

Supplementary Materials: The following are available online at www.mdpi.com/1424-

8220/21/10/3571/s1, Table S1. Agreement between ECG- and WHOOP-derived Heart Rate (bpm), 

Table S2. Agreement between ECG- and WHOOP-derived RMSSD (ms), Table S3. Agreement be-

tween ECG- and WHOOP-derived Ln RMSSD (ms). 
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