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Oprea, C.; Ciochină, S. LMS Algorithms for Multilinear Forms. In Proceedings of the 2020 14th International
Symposium on Electronics and Telecommunications (ISETC), Timişoara, Romania, 5–6 November 2020.

Abstract: The Kalman filter represents a very popular signal processing tool, with a wide range of
applications within many fields. Following a Bayesian framework, the Kalman filter recursively
provides an optimal estimate of a set of unknown variables based on a set of noisy observations.
Therefore, it fits system identification problems very well. Nevertheless, such scenarios become more
challenging (in terms of the convergence and accuracy of the solution) when the parameter space
becomes larger. In this context, the identification of linearly separable systems can be efficiently
addressed by exploiting tensor-based decomposition techniques. Such multilinear forms can be mod-
eled as rank-1 tensors, while the final solution is obtained by solving and combining low-dimension
system identification problems related to the individual components of the tensor. Recently, the
identification of multilinear forms was addressed based on the Wiener filter and most well-known
adaptive algorithms. In this work, we propose a tensorial Kalman filter tailored to the identification
of multilinear forms. Furthermore, we also show the connection between the proposed algorithm
and other tensor-based adaptive filters. Simulation results support the theoretical findings and show
the appealing performance features of the proposed Kalman filter for multilinear forms.

Keywords: adaptive filters; Kalman filter; multilinear forms; system identification; tensor decomposition

1. Introduction

The identification of multilinear forms (or linearly separable systems) can be efficiently
exploited in the framework of different applications, like channel equalization [1,2], nonlin-
ear acoustic echo cancellation [3,4], source separation [5,6], array beamforming [7,8], and
object recognition [9,10]. In these contexts, the basic approach relies on tensor decomposi-
tion and modeling techniques [11–14], since the multilinear forms can be modeled as rank-1
tensors. The main idea is to combine (i.e., “tensorize”) the solutions to low-dimension
problems, in order to efficiently solve a multidimensional system identification problem,
which is usually characterized by a large parameter space. Such scenarios can appear
in the framework of multichannel systems, e.g., those with a large number of sensors
and actuators, such as in active noise control systems [15], adaptive beamforming [16],
microphones arrays [17], etc.

The particular cases of bilinear and trilinear forms have been previously addressed in
the literature from a system identification perspective. In [18], an iterative Wiener filter for
bilinear forms was developed in the framework of a multiple-input/single-output (MISO)
system. Compared to the conventional Wiener solution, the iterative version can obtain a
good accuracy of the solution, even when a few data are available for the estimation of the
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statistics. Furthermore, in [19], this solution was extended to the identification of trilinear
forms, based on the decomposition of third-order tensors (of rank-1). Since there are inher-
ent limitations to the Wiener filters (time-invariant framework, matrix inversion operation,
etc.), a more appropriate and practical solution relies on adaptive filtering [20–22]. Conse-
quently, several adaptive filters tailored to the identification of bilinear and trilinear forms
have also been developed, following the main categories of algorithms. For example, the
least-mean-square (LMS) and normalized LMS (NLMS) versions can be found in [23,24]. In
addition, the recursive least-squares (RLS) algorithms for bilinear and trilinear forms were
developed in [25,26], respectively. These algorithms have improved convergence features
as compared to their LMS-based counterparts. Moreover, a Kalman filter tailored to the
identification of bilinear forms was analyzed in [27,28].

These adaptive solutions are suitable in real-world scenarios, e.g., working in nonsta-
tionary environments and/or requiring real-time processing. Among them, the Kalman
filter represents a very appealing choice [29–31]. As compared to other adaptive filters,
where the system to be identified is considered to be deterministic in their derivations, the
Kalman filter takes the “uncertainties” in the system into account, and is thus successfully
employed in a wide range of applications, e.g., [32–37] and the references therein. Recently,
in [36], an adaptive Kalman-filter-based variational Bayesian, which achieves a simulta-
neous estimation of the process noise covariance matrix and of the measurement noise
covariance matrix, is presented, with applications in target tracking. In [37], the authors
propose a multiple strong tracking adaptive square-root cubature Kalman filter, which
can be used to improve the in-flight alignment, with applications in guided weaponry,
unmanned automatic vehicles, and robots. The numerous different fields of applicability
of the Kalman filter represent the main motivation behind the development presented in
this paper, which targets the derivation of such a filter, tailored to the identification of
multilinear forms.

Recently, an iterative Wiener filter was designed for multilinear forms [38], followed
by the adaptive solutions based on the LMS and RLS algorithms [39,40]. The goal of
this paper is twofold. First, it extends the work in [39], by proposing a Kalman filter
for multilinear forms, with improved convergence features compared to the LMS-based
counterparts. Second, it establishes the connection between the proposed Kalman filter
and the tensor-based adaptive algorithms presented in [40], showing how these algorithms
can be obtained as simplified versions of the Kalman filter for multilinear forms.

The rest of the paper is organized as follows. In Section 2, we present the system
model behind the multilinear framework, which is formulated in the context of an MISO
system identification problem. The proposed tensorial Kalman filter for the identification
of such multilinear forms is derived in Section 3. Furthermore, in Section 4, we show how
this algorithm is connected with the main tensor-based adaptive filters, which belong to
the LMS and RLS families. Simulation results provided in Section 5 support the theoretical
findings and indicate the good performance of the proposed Kalman filter for multilinear
forms. Finally, in Section 6, the main conclusions are outlined, together with several
perspectives for future works.

2. Multilinear Framework for MISO System Identification

Let us consider a real-valued MISO system with N individual channels, which are
modeled as finite-impulse-response (FIR) filters of lengths Ln, n = 1, 2, . . . , N. The impulse
responses of these channels at the discrete-time index t are characterized by the vectors
hn(t) = [hn,1(t) hn,2(t) · · · hn,Ln(t)]

T , n = 1, 2, . . . , N, where the superscript T denotes the
transpose operator. Furthermore, we assume that hn(t), n = 1, 2, . . . , N are zero-mean
random vectors, which follow a simplified first-order Markov model

hn(t) = hn(t− 1) + wn(t), (1)

where wn(t), n = 1, 2, . . . , N are zero-mean white Gaussian noise vectors [uncorrelated
with hn(t− 1)], whose correlation matrices are Rwn = σ2

wn ILn , n = 1, 2, . . . , N, with ILn
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being an identity matrix of size Ln × Ln. The variances σ2
wn , n = 1, 2, . . . , N capture the

uncertainties in the corresponding channels hn(t), n = 1, 2, . . . , N.
The impulse responses of the channels can be grouped in a tensorial form, i.e., H(t) ∈

RL1×L2×···×LN , such that

H(t) = h1(t) ◦ h2(t) ◦ · · · ◦ hN(t), (2)

where ◦ denotes the outer product. Therefore, the elements of this rank-1 tensor are
(H)l1,l2,...,lN

(t) = h1,l1(t)h2,l2(t) · · · hN,lN (t). In addition, using the vectorization operation,
vec(·), we can write

vec[H(t)] = hN(t)⊗ hN−1(t)⊗ · · · ⊗ h1(t), (3)

where ⊗ denotes the Kronecker product.
The real-valued input signals that feed into the MISO system are described in the

tensorial form X (t) ∈ RL1×L2×···×LN , having the elements (X )l1l2 ...lN
(t) = xl1l2 ...lN (t).

Consequently, the output signal at the discrete-time index t results in

y(t) = X (t)×1 hT
1 (t)×2 hT

2 (t)×3 · · · ×N hT
N(t)

=
L1

∑
l1=1

L2

∑
l2=1
· · ·

LN

∑
lN=1

xl1l2 ...lN (t)h1,l1(t)h2,l2(t) · · · hN,lN (t)

= vecT [H(t)]vec[X (t)], (4)

where ×n denotes the mode-n product [5]. This represents a multilinear form, since it is
a linear function of each of the vectors hn(t), n = 1, 2, . . . , N, considering that the other
N − 1 components are fixed.

The last line in (4) represents a particular case of the MISO system identification
problem, which resembles a single-input, single-output (SISO) scenario. Using the notation
x(t) = vec[X (t)] and h(t) = vec[H(t)], the output signal from (4) becomes

y(t) = hT(t)x(t), (5)

where the vector h(t) represents the global impulse response of the system. Therefore,
in this multilinear framework, the system identification problem can be formulated in
two ways. First, this can be approached in terms of estimating the individual channels,
hn(t), n = 1, 2, . . . , N. Alternatively, we can focus on the identification of the global
impulse response, h(t), as in a conventional SISO system identification problem.

At this point, there are two important aspects that should be outlined. The global
impulse response, h(t), is of length L = ∏N

n=1 Ln, but this results as a combination
of ∑N

n=1 Ln elements, which are the coefficients of the individual impulse responses,
hn(t), n = 1, 2, . . . , N. Additionally, according to (3), we have

h(t) = hN(t)⊗ hN−1(t)⊗ · · · ⊗ h1(t) (6)

= ηNhN(t)⊗ ηN−1hN−1(t)⊗ · · · ⊗ η1h1(t),

with ηn ∈ R, ηn 6= 0 (for any n = 1, 2, . . . , N), and ∏N
n=1 ηn = 1, so that the decomposition

of h(t) is not unique. Consequently, from a system identification perspective, it would
be more advantageous to approach the problem in terms of estimating the individual
impulse responses hn(t), n = 1, 2, . . . , N, while the estimated global impulse response
results similar to (6). On the other hand, the Kronecker product-based decomposition
of h(t) does not lead to a unique set of estimates for the individual channels. However,
there is no scaling ambiguity when identifying the global impulse response. In sum, the
main idea behind the decomposition-based approach is to reformulate a high-dimension
system identification problem as a combination of low-dimension solutions, which are
“tensorized” together.
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In realistic system identification scenarios, the output signal y(t) is usually corrupted
by an additive noise, v(t), which is uncorrelated with the input signals. The variance of
this noise signal is σ2

v = E[v2(t)], where E[·] denotes mathematical expectation. Thus, the
reference (or desired) signal at the discrete-time index t results in

d(t) = y(t) + v(t). (7)

The goal is to estimate the output of the system (or, equivalently, the impulse responses
of the channels), given the reference and the input signals. In this context, the conventional
Wiener filter provides the well-known solution [20–22]

ĥW = R−1p, (8)

where ĥW is an estimate of the global impulse response, while R = E
[
x(t)xT(t)

]
and

p = E[d(t)x(t)] represent the covariance matrix and the cross-correlation vector, respec-
tively. Recently, an iterative Wiener filter [38] was developed in the framework of mul-
tilinear forms. It exploits the decomposition of the global impulse response, while the
optimization criterion is applied, following a block coordinate descent approach, to the
individual components [41]. As compared to the conventional Wiener filter from (8), the
iterative version of multilinear forms leads to a superior performance, especially when a
small amount of data are available for the estimation of R and p. Nevertheless, both previ-
ously mentioned Wiener solutions present several limitations, such as the time-invariant
framework, the matrix inversion operation, and the estimation of the statistics. These could
make them unsuitable in real-world scenarios, e.g., working in nonstationary environments
and/or requiring real-time processing.

In this context, a more appropriate approach is adaptive filtering. Since the LMS
algorithm represents one of the simplest and most practical solutions, the LMS-based
algorithms tailored to the identification of multilinear forms were developed in [39]. Fur-
thermore, the RLS algorithm for multilinear forms was introduced in [40]. These versions
are also referred to as tensor-based adaptive algorithms. They rely on the minimization
of cost functions that depend on the error signal, i.e., the difference between the reference
signal and the estimated output of the system. Nevertheless, in a realistic system identifi-
cation framework, [i.e., in the presence of the system noise, according to (7)], the goal of
the adaptive filter is not to make the error signal reach zero. The objective, instead, is to
recover this system noise from the error signal of the adaptive filter, after it converges to
the true solution. Consequently, it makes more sense to minimize the system misalignment,
i.e., a measure of the difference between the true impulse response of the system and the
estimated one. This is the optimization approach behind Kalman filtering. Moreover, the
Kalman filter uses a specific parameter that captures the uncertainties in the system to be
identified, as outlined in the discussion that follows (1), related to σ2

wn , n = 1, 2, . . . , N.
These parameters could act as control factors. On the other hand, the LMS and RLS
adaptive filters do not depend on these uncertainties, since the impulse responses of the
channels are considered as deterministic in the derivation of these algorithms. Therefore,
the specific parameters of the Kalman filter would allow for better control.

3. Kalman Filter for the Identification of Multilinear Forms

Following (5), we can introduce the a priori error signal

e(t) = d(t)− ŷ(t)

= d(t)− ĥT(t− 1)x(t), (9)

where ŷ(t) is the estimated output signal and ĥ(t− 1) represents an estimate of the global
impulse response at the discrete-time index t− 1. Since the global impulse response can be
deconstructed based on (6), we can also consider that ĥ(t) similarly results in a combination
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of the estimated impulse responses of the channels, denoted by ĥn(t), n = 1, 2, . . . , N.
Therefore, we have

ĥ(t) = ĥN(t)⊗ ĥN−1(t)⊗ · · · ⊗ ĥ2(t)⊗ ĥ1(t). (10)

Alternatively, using the properties of the Kronecker product [42], (10) can be expressed
in N equivalent ways, i.e.,

ĥ(t) =
[
ĥN(t)⊗ ĥN−1(t)⊗ · · · ⊗ ĥ2(t)⊗ IL1

]
ĥ1(t)

=
[
ĥN(t)⊗ ĥN−1(t)⊗ · · · ⊗ IL2 ⊗ ĥ1(t)

]
ĥ2(t)

...

=
[
ILN ⊗ ĥN−1(t)⊗ · · · ⊗ ĥ2(t)⊗ ĥ1(t)

]
ĥN(t).

Consequently, the a priori error signal from (9) can also be rewritten in N equivalent
forms (targeting the individual filters), as follows

eĥ1
(t) = d(t)− ĥT

1 (t− 1)xĥ2ĥ3 ...ĥN
(t), (11)

eĥ2
(t) = d(t)− ĥT

2 (t− 1)xĥ1ĥ3 ...ĥN
(t), (12)

...

eĥN
(t) = d(t)− ĥT

N(t− 1)xĥ1ĥ2 ...ĥN−1
(t), (13)

where

xĥ2ĥ3 ...ĥN
(t) =

[
ĥN(t− 1)⊗ ĥN−1(t− 1)⊗ · · · ⊗ ĥ2(t− 1)⊗ IL1

]T
x(t), (14)

xĥ1ĥ3 ...ĥN
(t) =

[
ĥN(t− 1)⊗ ĥN−1(t− 1)⊗ · · · ⊗ IL2 ⊗ ĥ1(t− 1)

]T
x(t), (15)

...

xĥ1ĥ2 ...ĥN−1
(t) =

[
ILN ⊗ ĥN−1(t− 1)⊗ · · · ⊗ ĥ2(t− 1)⊗ ĥ1(t− 1)

]T
x(t). (16)

In a similar manner, the reference signal from (7) can be expressed in N equivalent
ways, which can be summarized as

d(n) = hT
n (t)xh1h2 ...hn−1hn+1 ...hN (t) + v(n), (17)

where

xh1h2 ...hn−1hn+1 ...hN (t) = [hN(t− 1)⊗ hN−1(t− 1)⊗ · · · ⊗ hn+1(t− 1)⊗ ILn

⊗ hn−1(t− 1)⊗ · · · ⊗ h2(t− 1)⊗ h1(t− 1)]Tx(t),

with n = 1, 2, . . . , N. For any value of n = 1, 2, . . . , N, expression (17) plays the role
of an observation equation, while (1) represents a state equation. In the framework of
multilinear forms, having N such pairs of state and observation equations, the objective
is to find the optimal recursive estimator of hn(t), for n = 1, 2, . . . , N, i.e., ĥn(t). To
this end, we will follow a multilinear optimization approach [41], by considering that
N − 1 impulse responses are fixed for all the previous time indices, while optimizing the
remaining one at the current time index. In this case, within the optimization criterion of
ĥn(t), n = 1, 2, . . . , N, we may assume that xĥ1ĥ2 ...ĥn−1ĥn+1 ...ĥN

(t) ≈ xh1h2 ...hn−1hn+1 ...hN (t).
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Under these considerations and based on (17), we can introduce the a posteriori errors
related to the N individual filters, which result in

εĥn
(t) = d(t)− ĥT

n (t)xĥ1ĥ2 ...ĥn−1ĥn+1 ...ĥN
(t)

= hT
n (t)xh1h2 ...hn−1hn+1 ...hN (t) + v(t)− ĥT

n (t)xĥ1ĥ2 ...ĥn−1ĥn+1 ...ĥN
(t)

≈
[
hT

n (t)− ĥT
n (t)

]
xĥ1ĥ2 ...ĥn−1ĥn+1 ...ĥN

(t) + v(t)

= µT
hn
(t)xĥ1ĥ2 ...ĥn−1ĥn+1 ...ĥN

(t) + v(t), (18)

where µhn
(t) = hn(t) − ĥn(t) is the a posteriori misalignment (or the state estimation

error) of the nth individual filter, with n = 1, 2, . . . , N. Similarly, we can define the a priori
misalignments mhn(t) = hn(t)− ĥn(t− 1), n = 1, 2, . . . , N, so that [based on (1)]

mhn(t) = µhn
(t− 1) + wn(t) (19)

and, consequently,

Rmhn
(t) = Rµhn

(t− 1) + σ2
wn ILn , (20)

for n = 1, 2, . . . , N, where Rmhn
(t) = E

[
mhn(t)m

T
hn
(t)
]

and Rµhn
(t) = E

[
µhn

(t)µT
hn
(t)
]

represent the correlation matrices of the a priori and a posteriori misalignments, respec-
tively.

As explained in Section 2, according to (6), we can only identify the individual
impulse responses up to some arbitrary scaling factors, ηn, n = 1, 2, . . . , N. However,
in terms of identifying the global impulse response (or, equivalently, the output signal),
the group η1h1(t), η2h2(t), . . . , ηNhN(t) is equivalent to the group h1(t), h2(t), . . . , hN(t).
Thus, in order to simplify the notation, the scaling factors do not appear explicitly in the
misalignments.

In the context of the multilinear optimization strategy and the linear sequential
Bayesian approach [43], the optimum estimates of the state vectors, ĥn(t), n = 1, 2, . . . , N,
have the recursive forms

ĥ1(t) = ĥ1(t− 1) + kĥ1
(t)
[
d(t)− ĥT

1 (t− 1)xĥ2ĥ3 ...ĥN
(t)
]

= ĥ1(t− 1) + kĥ1
(t)e(t), (21)

ĥ2(t) = ĥ2(t− 1) + kĥ2
(t)
[
d(t)− ĥT

2 (t− 1)xĥ1ĥ3 ...ĥN
(t)
]

= ĥ2(t− 1) + kĥ2
(t)e(t), (22)

...

ĥN(t) = ĥN(t− 1) + kĥN
(t)
[
d(t)− ĥT

N(t− 1)xĥ1ĥ2 ...ĥN−1
(t)
]

= ĥN(t− 1) + kĥN
(t)e(t), (23)

where kĥn
(t), n = 1, 2, . . . , N are the so-called Kalman gain vectors, and eĥ1

(t) = eĥ2
(t) =

· · · = eĥN
(t) = e(t) [based on (9) and (11)–(13)]. Next, the Kalman gain vectors are obtained

by minimizing the cost functions:
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Jĥ2ĥ3 ...ĥN

[
kĥ1

(t)
]
=

1
L1

tr
[
Rµh1

(t)
]
, (24)

Jĥ1ĥ3 ...ĥN

[
kĥ2

(t)
]
=

1
L2

tr
[
Rµh2

(t)
]
, (25)

...

Jĥ1ĥ2 ...ĥN−1

[
kĥN

(t)
]
=

1
LN

tr
[
RµhN

(t)
]
, (26)

where tr[·] denotes the trace of a square matrix. This leads to

kĥ1
(t) =

Rmh1
(t)xĥ2ĥ3 ...ĥN

(t)

xT
ĥ2ĥ3 ...ĥN

(t)Rmh1
(t)xĥ2ĥ3 ...ĥN

(t) + σ2
v

, (27)

kĥ2
(t) =

Rmh2
(t)xĥ1ĥ3 ...ĥN

(t)

xT
ĥ1ĥ3 ...ĥN

(t)Rmh2
(t)xĥ1ĥ3 ...ĥN

(t) + σ2
v

, (28)

...

kĥN
(t) =

RmhN
(t)xĥ1ĥ2 ...ĥN−1

(t)

xT
ĥ1ĥ2 ...ĥN−1

(t)RmhN
(t)xĥ1ĥ2 ...ĥN−1

(t) + σ2
v

, (29)

and

Rµh1
(t) =

[
IL1 − kĥ1

(t)xT
ĥ2ĥ3 ...ĥN

(t)
]
Rmh1

(t), (30)

Rµh2
(t) =

[
IL2 − kĥ2

(t)xT
ĥ1ĥ3 ...ĥN

(t)
]
Rmh2

(t), (31)

...

RµhN
(t) =

[
ILN − kĥN

(t)xT
ĥ1ĥ2 ...ĥN−1

(t)
]
RmhN

(t). (32)

The resulting Kalman filter for multilinear forms is defined by the relations (11)–(13),
(20), (27)–(32), followed by the updates (21)–(23), as summarized in Table 1. In order to
remain consistent with [40], we will refer to this algorithm as the tensor-based Kalman
filter (KF-T).

An estimation of the global impulse response can be obtained based on (10). Alterna-
tively, the conventional Kalman filter can be used to find ĥ(t), based on the observation
(7) and a state equation for the global impulse response h(t) [similar to (1)]. In this case,
the computational complexity of the conventional Kalman filter would be proportional to
O(L2), where L = ∏N

n=1 Ln (i.e., the length of the global impulse response, as explained in
Section 2). On the other hand, the KF-T algorithm combines the solutions of N Kalman-
based filters of shorter lengths (i.e., Ln, n = 1, 2, . . . , N), so that its computational cost
is proportional to ∑N

n=1O(L2
n). Moreover, even if they are interconnected, these N in-

dividual filters can work in parallel, since the update of each filter at the discrete-time
index t depends on the coefficients of all the other filters from the previous time index, i.e.,
ĥn(t− 1), n = 1, 2, . . . , N.
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Table 1. Tensor-based Kalman filter (KF-T) for multilinear forms.

Inputs:

x(t), d(t)
Initialization:

ĥ1(0) =
[

1 0 · · · 0
]T

ĥk(0) =
1
Lk

[
1 1 · · · 1

]T , k = 2, . . . , N

Rµhn
(0) = εnILn , εn > 0, n = 1, 2, . . . , N

Parameters: σ2
v and σ2

wn
, n = 1, 2, . . . , N

For discrete-time index t = 1, 2, . . .

For n = 1, 2, . . . , N
Equations (14)–(16):

xĥ1ĥ2 ...ĥn−1ĥn+1 ...ĥN
(t) =

[
ĥN(t− 1)⊗ ĥN−1(t− 1)⊗ · · · ⊗ ĥn+1(t− 1)⊗ ILn

⊗ ĥn−1(t− 1)⊗ · · · ⊗ ĥ2(t− 1)⊗ ĥ1(t− 1)
]T

x(t)

Equations (11)–(13):

ŷ(t) = ĥT
n (t− 1)xĥ1ĥ2 ...ĥn−1ĥn+1 ...ĥN

(t)

e(t) = d(t)− ŷ(t)
Equations (20):

Rmhn
(t) = Rµhn

(t− 1) + σ2
wn

ILn

Equations (27)–(29):

kĥn
(t) =

Rmhn
(t)xĥ1ĥ2 ...ĥn−1ĥn+1 ...ĥN

(t)

xT
ĥ1ĥ2 ...ĥn−1ĥn+1 ...ĥN

(t)Rmhn
(t)xĥ1ĥ2 ...ĥn−1ĥn+1 ...ĥN

(t) + σ2
v

Equations (30)–(32):

Rµhn
(t) =

[
ILn − kĥn

(t)xT
ĥ1ĥ2 ...ĥn−1ĥn+1 ...ĥN

(t)
]
Rmhn

(t)

Equations (21)–(23):

ĥn(t) = ĥn(t− 1) + kĥn
(t)e(t)

Equation (10):

ĥ(t) = ĥN(t)⊗ ĥN−1(t)⊗ · · · ⊗ ĥ2(t)⊗ ĥ1(t)
Outputs:

ŷ(t), ĥ(t), ĥn(t), n = 1, 2, . . . , N.

4. Connection with Tensor-Based Adaptive Filters

The KF-T algorithm developed in the previous section represents a generalization
of the Kalman filter for bilinear forms (i.e., the particular case N = 2) presented in [27].
Nevertheless, it is also connected with other tensor-based adaptive algorithms, as will be
shown in this section.

In [40], the tensor-based RLS (RLS-T) algorithm was introduced in the context of
multilinear forms. At first, the RLS-T algorithm with the forgetting factors equal to one [44]
has a striking resemblance to the KF-T using σ2

wn = 0, n = 1, 2, . . . , N. However, the
KF-T does not rely on any matrix inversion, which is not the case for the RLS-T algorithm.
Moreover, the RLS-T depends on the correlation matrices of the input signals, while the KF-
T is related to the correlation matrices of the misalignments. This is a more proper approach
in system identification scenarios, as was outlined at the end of Section 2. Additionally, the
RLS-T algorithm does not depend on the variance of the additive noise (i.e., the parameter
σ2

v ), or on the uncertainties in the system (i.e., the parameters σ2
wn , n = 1, 2, . . . , N), since

hn(t), n = 1, 2, . . . , N are considered as deterministic in its derivation. Nevertheless, these
specific parameters of the KF-T allow for better control of the algorithm. For example, large
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values of σ2
wn , n = 1, 2, . . . , N are suitable when the uncertainties in the system are high,

in which case a good tracking behavior of the algorithm is needed; usually, the price is
a lower accuracy, i.e., a higher misalignment. On the other hand, lower values of these
parameters lead to improved accuracy, but reduce the tracking capability.

An interesting connection can be established between the KF-T and the tensor-based
NLMS (NLMS-T) algorithm [39,40], which was also developed in the framework of mul-
tilinear forms. Let us consider that the KF-T has started to converge. Consequently, in
the steady-state of the algorithm, we may also consider that Rmhn

(t), n = 1, 2, . . . , N tend
to become diagonal matrices. This approximation is reasonable, taking into account that
the misalignment of the individual coefficients tend to become uncorrelated. Hence, we
can use

Rmhn
(t) ≈ σ2

mhn
(t)ILn , (33)

where σ2
mhn

(t), n = 1, 2, . . . , N represent the elements from the main diagonal of the
respective matrices. Furthermore, using the notation

δhn(t) =
σ2

v
σ2

mhn
(t)

, n = 1, 2, . . . , N, (34)

the expressions of the Kalman gain vectors from (27)–(29) simplify to

k̃ĥ1
(t) =

xĥ2ĥ3 ...ĥN
(t)

xT
ĥ2ĥ3 ...ĥN

(t)xĥ2ĥ3 ...ĥN
(t) + δh1(t)

, (35)

k̃ĥ2
(t) =

xĥ1ĥ3 ...ĥN
(t)

xT
ĥ1ĥ3 ...ĥN

(t)xĥ1ĥ3 ...ĥN
(t) + δh2(t)

, (36)

...

k̃ĥN
(t) =

xĥ1ĥ2 ...ĥN−1
(t)

xT
ĥ1ĥ2 ...ĥN−1

(t)xĥ1ĥ2 ...ĥN−1
(t) + δhN (t)

, (37)

so that the updates (21)–(23) become

ĥ1(t) = ĥ1(t− 1) + k̃ĥ1
(t)e(t)

= ĥ1(t− 1) +
xĥ2ĥ3 ...ĥN

(t)e(t)

xT
ĥ2ĥ3 ...ĥN

(t)xĥ2ĥ3 ...ĥN
(t) + δh1(t)

, (38)

ĥ2(t) = ĥ2(t− 1) + k̃ĥ2
(t)e(t)

= ĥ2(t− 1) +
xĥ1ĥ3 ...ĥN

(t)e(t)

xT
ĥ1ĥ3 ...ĥN

(t)xĥ1ĥ3 ...ĥN
(t) + δh2(t)

, (39)

...

ĥN(t) = ĥN(t− 1) + k̃ĥN
(t)e(t)

= ĥN(t− 1) +
xĥ1ĥ2 ...ĥN−1

(t)e(t)

xT
ĥ1ĥ2 ...ĥN−1

(t)xĥ1ĥ2 ...ĥN−1
(t) + δhN (t)

. (40)

These updates are specific to a tensor-based variable-regularized NLMS algorithm
tailored for multilinear forms, namely VR-NLMS-T. Such an algorithm is defined by the
error signals from (11)–(13) and the updates (38)–(40). In this case, the control parameters
are grouped into the variable regularization factors δhn(t), n = 1, 2, . . . , N.
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The VR-NLMS-T algorithm represents a simplified form of the KF-T. Neverthe-
less, due to the assumptions (33), the convergence features of the KF-T outperform
the VR-NLMS-T algorithm. Starting from the VR-NLMS-T algorithm, we can show
the connections with other tensor-based algorithms. For example, using constant val-
ues for the regularization parameters in the denominators of (38)–(40), i.e., δhn(t) =
δn, n = 1, 2, . . . , N, while multiplying them with some normalized step-sizes 0 < αn ≤ 1
(n = 1, 2, . . . , N) the nominators in (38)–(40), we obtain the NLMS-T algorithm [39,40].
Furthermore, replacing xT

ĥ1ĥ2 ...ĥn−1ĥn+1 ...ĥN
(t)xĥ1ĥ2 ...ĥn−1ĥn+1 ...ĥN

(t), n = 1, 2, . . . , N by

∑N
n=1 xT

ĥ1ĥ2 ...ĥn−1ĥn+1 ...ĥN
(t)xĥ1ĥ2 ...ĥn−1ĥn+1 ...ĥN

(t), the tensor LMS algorithm [23] is obtained.

5. Simulation Results

In this section, simulation results are provided in order to support the performance of
the proposed KF-T and the main theoretical findings related to this algorithm. The goal
of this analysis is fourfold, as follows. First, we evaluate the influence of the uncertainty
parameters (i.e., σ2

wn , n = 1, 2, . . . , N) on the performance of the KF-T. Second, we out-
line the connection between the proposed Kalman-based algorithm and its tensor-based
counterparts, as discussed in Section 4. Third, we assess the performance of the KF-T as
compared to the conventional Kalman filter. Finally, we analyze the behavior of the KF-T
in a more general framework, for the identification of nonseparable systems.

The experiments are performed in the context of the multilinear framework presented
in Section 2. The order of the system is N = 4 and the input signals that form the tensor
X (t) are AR(1) processes in most of the experiments. These inputs are obtained by filtering
white Gaussian noises through an AR(1) model with a pole at 0.99. Such a high correlation
degree (due to the pole close to 1) represents a challenge for most adaptive filters [20–22],
in terms of their convergence features. In the last two experiments, we also used real-
world speech sequences (corrupted by background noise) as input signals, which are also
challenging due to their nonstationary character.

The MISO system used in simulations is characterized by four individual channels
(i.e., N = 4), where their impulse responses are chosen as follows. The impulse response
h1(t) contains the first L1 = 16 coefficients of the first network echo path from the ITU-T
G168 Recommendation [45] (which is a standard for digital network echo cancellers). The
impulse response h2(t) is randomly generated (with Gaussian distribution), using the
length L2 = 8. The lengths of the other two impulse responses, i.e., h3(t) and h4(t), are set
to L3 = 4 and L4 = 2, respectively. Their coefficients follow an exponential decay based
on the rule alk−1

k , lk = 1, . . . , Lk, k = 3, 4, using a3 = 0.8 and a4 = 0.3, respectively. The
length of the global impulse response h(t) is L = ∏N

n=1 Ln, which, in our case, results in
L = 1024. Such a length could be prohibiting in terms of implementation, especially for
the Kalman-based and RLS-based adaptive filters. On the other hand, the tensor-based
algorithms combine the solutions of N shorter filters of length Ln, n = 1, 2, . . . , N, which is
much more advantageous, since, usually, Ln � L (as in the current setup).

The output signal y(n) from (4) is corrupted by an additive white Gaussian noise, v(n);
its variance is set to σ2

v = 0.01. We assume that this parameter is available in simulations.
In practice, it can be estimated in several ways, e.g., [46,47]. Nevertheless, the influence of
these different estimates on the performance of the proposed KF-T is beyond the scope of
this paper. Finally, the reference signal results based on (7).

Two performance measures are used in simulations. First, the identification of the
global impulse response is evaluated based on the normalized misalignment (NM), in dB,
which is computed as

NM
[
h(t), ĥ(t)

]
= 10log10


∥∥∥h(t)− ĥ(t)

∥∥∥2

‖h(t)‖2

, (41)
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where ‖·‖ stands for the Euclidean norm. Second, since the identification of the individual
impulse responses is influenced by the scaling factors [according to the discussion related to
(6)], a proper performance measure is the normalized projection misalignment (NPM) [48],
which is evaluated as

NPM
[
hn(t), ĥn(t)

]
= 10log10

1−

 hT
n (t)ĥn(t)

‖hn(t)‖
∥∥∥ĥn(t)

∥∥∥
2
, (42)

for n = 1, 2, . . . , N.
In the first set of experiments, we evaluate the impact of the uncertainty parameters

on the performance of the proposed KF-T. The values of σ2
wn , n = 1, 2, . . . , N are subject to a

compromise between the main performance criteria, i.e., fast convergence/tracking versus
low misadjustment (i.e., good accuracy). The best accuracy of the solution is obtained for
σ2

wn = 0, n = 1, 2, . . . , N, i.e., when there are no uncertainties in the system. Such a setup
is suitable in stationary environments. As can be seen in Figures 1 and 2 (in terms of the
NM and NPM, respectively), the lower the values of σ2

wn , n = 1, 2, . . . , N, the lower the
misalignment of KF-T. On the other hand, larger values of these parameters improve the
tracking capability of the algorithm, but achieve a higher misadjustment, reducing the
accuracy of the solution. This behavior is supported in Figure 3, where an abrupt change
in the system is considered in the middle of the experiments, by changing the sign of the
coefficients of h1(t). Since the initial convergence rate is not relevant in this case, and for a
better visualization, we focused only on the tracking behavior in Figure 3. Despite having
the lowest misalignment (i.e., the best accuracy), the KF-T using σ2

wn = 0, n = 1, 2, . . . , N
has the slowest tracking capability. Nevertheless, larger values of σ2

wn , n = 1, 2, . . . , N lead
to a significantly better performance in terms of tracking, while slightly sacrificing the
accuracy of the solution (i.e., achieving a slightly higher misalignment level).
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Figure 1. Normalized misalignment (NM) of the KF-T using different values of σ2
wn

, n = 1, 2, . . . , N,
for the identification of the global impulse response, h(t).
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Figure 2. Normalized projection misalignment (NPM) of the KF-T using different values of
σ2

wn
, n = 1, 2, . . . , N, for the identification of the individual impulse responses, hn(t), n = 1, 2, . . . , N.

(a) NPM
[
h1(t), ĥ1(t)

]
, (b) NPM

[
h2(t), ĥ2(t)

]
, (c) NPM

[
h3(t), ĥ3(t)

]
, and (d) NPM

[
h4(t), ĥ4(t)

]
.
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Figure 3. Normalized misalignment (NM) of the KF-T using different values of σ2
wn

, n = 1, 2, . . . , N,
for the identification of the global impulse response, h(t). The first individual impulse response
changes from h1(t) to −h1(t) in the middle of simulation.

The connections between the proposed KF-T and other tensor-based adaptive algo-
rithms were shown in Section 4. For example, the KF-T with σ2

wn = 0, n = 1, 2, . . . , N
resembles the RLS-T algorithm [40] using the forgetting factors λn = 1, n = 1, 2, . . . , N.
This aspect is supported in Figures 4 and 5, in terms of the NM and NPM, respectively. Both
algorithms achieve similar initial convergence rates. However, the KF-T reaches a lower
misalignment level and outperforms the RLS-T algorithm, thus supporting the discussion
from Section 4. Moreover, in Figure 4, we also introduce comparisons with the solutions
provided by the conventional and iterative Wiener filters (WFs) [38]. Both tensor-based
algorithms outperform the conventional WF in terms of the accuracy of their solutions (i.e.,
lower misalignment). The KF-T converges (faster than the RLS-T) to the solution obtained



Sensors 2021, 21, 3555 13 of 21

by the iterative WF for multilinear forms [38]. Nevertheless, as mentioned in Section 2
[in the discussion that follows (8)], the KF-T overcomes the inherent limitations of the
iterative WF (e.g., time-invariant framework, estimation of the statistics, and the matrix
inversion operation).
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Figure 4. Normalized misalignment (NM) of the RLS-T algorithm using λn = 1, n = 1, 2, . . . , N,
the KF-T using σ2

wn
= 0, n = 1, 2, . . . , N, and the conventional and iterative WFs [38], for the

identification of the global impulse response, h(t).
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Figure 5. Normalized projection misalignment (NPM) of the RLS-T algorithm using λn = 1, n =

1, 2, . . . , N and the KF-T using σ2
wn

= 0, n = 1, 2, . . . , N, for the identification of the individ-

ual impulse responses, hn(t), n = 1, 2, . . . , N. (a) NPM
[
h1(t), ĥ1(t)

]
, (b) NPM

[
h2(t), ĥ2(t)

]
,

(c) NPM
[
h3(t), ĥ3(t)

]
, and (d) NPM

[
h4(t), ĥ4(t)

]
.

Based on the assumption from (33), it was also shown in Section 4 that the KF-T
behaves like a VR-NLMS-T algorithm, which is defined by the relations (34)–(40). This
behavior is supported in Figures 6–8, when using different values of σ2

wn , n = 1, 2, . . . , N.
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The KF-T and the VR-NLMS-T reach the same misalignment level for the same values
of the uncertainty parameters. On the other hand, due to the assumption in (33), the
VR-NLMS-T algorithm experiences a slower convergence rate as compared to the KF-T. In
fact, as outlined in Section 4, the VR-NLMS-T algorithm represents a simplified version
of the KF-T, with a lower computational complexity (but paying a price in terms of the
convergence features).
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Figure 6. Normalized misalignment (NM) of the KF-T and VR-NLMS-T algorithm (using different
values of σ2

wn
, n = 1, 2, . . . , N), for the identification of the global impulse response, h(t).

Figure 7. Normalized projection misalignment (NPM) of the KF-T and VR-NLMS-T algorithm
using σ2

wn
= 10−7, n = 1, 2, . . . , N, for the identification of the individual impulse responses,

hn(t), n = 1, 2, . . . , n. (a) NPM
[
h1(t), ĥ1(t)

]
, (b) NPM

[
h2(t), ĥ2(t)

]
, (c) NPM

[
h3(t), ĥ3(t)

]
,

and (d) NPM
[
h4(t), ĥ4(t)

]
.
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Figure 8. Normalized projection misalignment (NPM) of the KF-T and VR-NLMS-T algorithm
using σ2

wn
= 10−8, n = 1, 2, . . . , N, for the identification of the individual impulse responses,

hn(t), n = 1, 2, . . . , n. (a) NPM
[
h1(t), ĥ1(t)

]
, (b) NPM

[
h2(t), ĥ2(t)

]
, (c) NPM

[
h3(t), ĥ3(t)

]
,

and (d) NPM
[
h4(t), ĥ4(t)

]
.

In Figures 9 and 10, the NM and NPM performance of the proposed KF-T are compared
to its tensor-based counterparts, i.e., the NLMS-T and the RLS-T algorithms [40]. The
specific parameters of the KF-T are set to σ2

wn = 10−9, n = 1, 2, . . . , N, while the RLS-T
algorithm uses the forgetting factors λn = 0.999, n = 1, 2, . . . , N, in order to target a
similar convergence behavior. The normalized step-sizes of the NLMS-T algorithm are
set to αn = 0.25, n = 1, 2, . . . , N, which represent the fastest convergence mode [39,40].
The NLMS-T and RLS-T algorithms reach similar misalignment levels, while the KF-T
outperforms its counterparts in terms of both convergence rate and misalignment. As
expected, the RLS-T is significantly faster (in terms of the convergence rate) as compared
to the NLMS-T algorithm. Nevertheless, the KF-T provides an initial convergence rate
that is slightly better as compared to the RLS-T algorithm, while also achieving a lower
misalignment level (i.e., a better accuracy of the solution).
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Figure 9. Normalized misalignment (NM) of the NLMS-T algorithm using αn = 0.25, n = 1, 2, . . . , N,
the RLS-T algorithm using λn = 0.999, n = 1, 2, . . . , N, and the KF-T using σ2

wn
= 10−9, n =

1, 2, . . . , N, for the identification of the global impulse response, h(t).
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Figure 10. Normalized projection misalignment (NPM) of the NLMS-T algorithm using αn =

0.25, n = 1, 2, . . . , N, the RLS-T algorithm using λn = 0.999, n = 1, 2, . . . , N, and the KF-T
using σ2

wn
= 10−9, n = 1, 2, . . . , N, for the identification of the individual impulse responses,

hn(t), n = 1, 2, . . . , n. (a) NPM
[
h1(t), ĥ1(t)

]
, (b) NPM

[
h2(t), ĥ2(t)

]
, (c) NPM

[
h3(t), ĥ3(t)

]
, and

(d) NPM
[
h4(t), ĥ4(t)

]
.

The conventional Kalman filter (KF) can also be used for the identification of the
global impulse response, h(t), as explained in the end of Section 3. In this case, there is a
single adaptive filter (of length L) that has to be updated, while the overall computational
complexity is proportional to O(L2). Due to the large number of coefficients, dealing
with such a long adaptive filter raises significant challenges in terms of the complexity,
convergence, and accuracy of the solution. On the other hand, the proposed KF-T can
obtain the estimate of the global impulse response by combining the solutions of much
shorter adaptive filters of lengths Ln, n = 1, 2, . . . , N, with ∏N

n=1 Ln = L. Therefore, the
expected gain is twofold, in terms of both performance and complexity. This is supported
in Figure 11, where the performance of the proposed KF-T is compared to the conventional
KF. The specific parameters are set to target the best accuracy of the solution, i.e., σ2

wn = 0,
n = 1, 2, . . . , N in case of the KF-T, while the conventional KF uses the same null value for
its uncertainty parameter. The proposed KF-T outperforms the conventional KF in terms of
accuracy, achieving a significantly lower misalignment level. Moreover, the complexity
of the KF-T is proportional to ∑N

n=1O(L2
n), which is much more advantageous compared

to the conventional KF, especially for Ln � L, with n = 1, 2, . . . , N. For example, related
to the experiment given in Figure 11, we could mention that the simulation time (using
MATLAB R2018b) of the proposed KF-T was less than one minute, while the conventional
KF took almost one hour to reach the final result. The experiment was performed on an Asus
GL552VX device (Windows 10 OS), having an Intel Core i7-6700HQ CPU@2.60 GHz, with 4
Cores, 8 Logical Processors, and 16 GB of RAM.
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Figure 11. Normalized misalignment (NM) of the KF-T using σ2
wn

= 0, n = 1, 2, . . . , N and the
conventional KF using the same value of its uncertainty parameter, for the identification of the global
impulse response, h(t).

In the last set of experiments, we focus on a more challenging scenario, when the global
impulse response of the system is not separable. In this case, we target the identification
of h(t) + u(t), where h(t) is specified in the beginning of this section [i.e., h(t) = h4(t)⊗
h3(t)⊗ h2(t)⊗ h1(t)], while u(t) is randomly generated, with Gaussian distribution, and
its variance is set to υ‖h(t)‖2/L (using different values of υ). Clearly, the higher the value of
υ, the more challenging the decomposition of the global impulse response. Since the KF-T
is based on the decomposition in (10), it cannot model the noisy part u(t). Nevertheless, as
can be seen in Figures 12 and 13 (in terms of the NM and NPM, respectively), the KF-T is
able to achieve a reasonable attenuation of the misalignment (i.e., a good accuracy of the
estimate) even for larger values of υ. Consequently, the proposed KF-T has uses beyond
the identification of rank-1 tensors, when the global impulse response contains a dominant
separable (i.e., decomposable) part.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Iterations 10
4

-40

-35

-30

-25

-20

-15

-10

-5

0

N
M

 (
d
B

)

KF-T,  = 10
-2

KF-T,  = 10
-3

KF-T,  = 10
-4

Figure 12. Normalized misalignment (NM) of the KF-T using σ2
wn

= 0, n = 1, 2, . . . , N for the iden-
tification of the global impulse response, h(t) + u(t), where u(t) is randomly generated (Gaussian
distribution), with variance υ‖h(t)‖2/L, using different values of υ.
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Figure 13. Normalized projection misalignment (NPM) of the KF-T using σ2
wn

= 0, n = 1, 2, . . . , N
for the identification of the individual impulse responses, hn(t), n = 1, 2, . . . , N, which result from
the decomposition of h(t) + u(t), where u(t) is randomly generated (Gaussian distribution), with

variance υ‖h(t)‖2/L, using different values of υ. (a) NPM
[
h1(t), ĥ1(t)

]
, (b) NPM

[
h2(t), ĥ2(t)

]
,

(c) NPM
[
h3(t), ĥ3(t)

]
, and (d) NPM

[
h4(t), ĥ4(t)

]
.

The previous experiment is repeated in Figure 14, but using real-world speech se-
quences (corrupted by background noise) as input signals. Due to the nonstationary nature
and highly correlated character of the speech signals, the performance of any adaptive
algorithm is influenced in such a scenario. This is also the case for the KF-T, which pays
with a slower convergence rate, as compared to the case analyzed in Figure 12. Neverthe-
less, this performance criterion can be improved by using higher values for the uncertainty
parameters, σ2

wn , n = 1, 2, . . . , N. This is further supported in Figure 15, where we can
notice a higher convergence rate of the KF-T when increasing the values of σ2

wn , while
causing a slight increase in the misalignment level.
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Figure 14. Normalized misalignment (NM) of the KF-T using σ2
wn

= 0, n = 1, 2, . . . , N for the iden-
tification of the global impulse response, h(t) + u(t), where u(t) is randomly generated (Gaussian
distribution), with variance υ‖h(t)‖2/L, using different values of υ. The input signals are speech
sequences.
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Figure 15. Normalized misalignment (NM) of the KF-T using different values of σ2
wn

, n = 1, 2, . . . , N,
for the identification of the global impulse response, h(t) + u(t), where u(t) is randomly generated
(Gaussian distribution), with variance υ‖h(t)‖2/L, using υ = 10−3. The input signals are speech
sequences.

6. Conclusions

In this paper, we have presented a tensorial Kalman filter tailored to the identification
of multilinear forms. The solution was developed in the framework of a MISO system,
while the identification problem was reformulated based on linearly separable systems
modeled as rank-1 tensors. We have also shown how the resulting KF-T algorithm is
connected to the main categories of tensor-based adaptive filters, i.e., the NLMS-T and the
RLS-T algorithms. In this context, the specific uncertainty parameters of the KF-T allow
for better control of this, as compared to its counterparts. The simulation results indicated
the good performance features of the KF-T and also supported the discussion related to
its connection with other tensorial algorithms. Future works will focus on finding a more
practical way to evaluate the uncertainty parameters, e.g., following a similar approach to
variable adaptation factors, which act as time-dependent parameters. In addition, we aim
to extend the decomposition-based technique to the identification of nonseparable systems
(which could be modeled as higher rank tensors), in order to develop a more general and
efficient version of the tensorial Kalman filter.
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