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Abstract: In transportation at open-pit mines, rocks dropped as a mining truck is driven will wear
out the tires of the vehicle, thus increasing the mining cost. In the case of autonomous vehicles, the
vehicle must automatically detect rocks on the transportation roads during the driving process. This
will be a new challenge: rough road, rocks of small size and irregular shape, long detection distance,
etc. This paper presents a detection method based on light detection and ranging (lidar). It includes
two stages: (1) using the modified cloth simulation method to filter out the ground points; (2) using
the regional growth method based on grid division to cluster non-ground points. Experimental
results show that the method can detect rocks with a size of 20–30 cm at a distance of 40 m in front of
the vehicle, and it takes only 0.3 s on an ordinary personal computer (PC). This method is easy to
understand, and it has fewer parameters to be adjusted. Therefore, it is a better method for detecting
small, irregular obstacles on a low-speed, unstructured and rough road.

Keywords: intelligent mining; autonomous vehicle; obstacle detection; cloth simulation; lidar
point cloud

1. Introduction

Reducing the cost of transportation is an important goal for open-pit mines [1,2]. With
the application of unmanned vehicles and light detection and ranging (lidar) equipment in
a variety of enclosed scenarios [3–5], the transportation of open-pit mines is also expected
to realize unmanned operations, but the literature [6–8] has proposed that the current
unmanned vehicles will cause extra tire wear when facing bad road conditions. In addition,
in the path planning task, the passability of rough roads needs to be analyzed [9–12].
Therefore, it is of great significance to realize the automatic detection of rocks on the road
while the truck is driving.

At present, there is a lack of mature methods for detecting rocks on transportation road
in open-pit mines. Although scholars in the field of autonomous driving have proposed a
variety of obstacle detection methods [13–16], they are different from the main obstacles
on transportation roads in mining. These methods deal with the detection of common
objects on urban structured roads, such as motor vehicles, pedestrians, bicycles, etc. These
objects are characterized by large scale, regular shape, and high recognition. Therefore, the
problem of detecting rocks on transportation road in open-pit mines is a new challenge.

Obstacle detection methods based on lidar sensors can be divided into methods based
on deep learning and traditional methods. Scholars such as Minemura [17] proposed an
optimized convolutional neural network LMNet to handle point cloud target detection
tasks, and expand the receptive field of the network by expanding convolution.

This method runs fast, but sacrifices accuracy. Scholars such as Beltran [18] proposed
a birdNet framework to process point cloud target detection tasks, projecting point cloud
data into a cell code for bird’s-eye projection, and using a convolutional neural network to
estimate the target position and direction. Scholars such as Abdelkarim [19] extended the
yolo(you only look once) framework to the task of 3D point cloud target detection, which
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balanced the detection accuracy and speed. Scholars such as ShaoshuaiShi [20] proposed
the PointRCNN framework, which divides the original point cloud into foreground and
background, and directly generates a small amount of high-quality 3D region proposal
from the point cloud in a bottom-up manner to perform accurate box refinement and
confidence prediction. Deep learning-based methods require a large amount of labeled
training data. The quality of the detection effect depends largely on the richness of the
training data, and the principle is difficult to explain clearly.

Traditional methods generally assume that the road surface is locally flat. Scholars
such as Tongtong Chen [21] proposed a ground segmentation method based on Gaussian
process, using one-dimensional Gaussian process regression to classify the midpoint of
each segment. This method divides the space into independent fan-shaped areas and
cannot guarantee the continuity of the overall ground. Scholars such as Rummelhard [22]
proposed a point cloud segmentation method based on spatio-temporal conditional random
field, which considered the time sequence relationship between point cloud data. The
estimated value of this method for each node is easily affected by its surrounding points.
Scholars such as Thrun [23–25] proposed a height map method, which processed a 3D point
cloud into a 2D raster map, and used methods such as height difference for classification
within the raster. Although this method is highly efficient, its accuracy is difficult to adapt
to unstructured roads. Scholars such as Narksri [26] proposed a ground segmentation
method that is robust to slopes. This method deals with slopes on flat roads and cannot
achieve satisfactory results for rough roads.

The above methods have been proved to be successful in some tasks, but the good
results obtained by these methods are limited to the common obstacle types on structured
roads. In the task of detecting small-scale and irregular-shaped obstacles on rough roads, it
is difficult to obtain satisfactory results from these methods [21].

Transportation roads in open-pit mines are unstructured and rough, and the rocks
on the roads are small and irregular in shape. These two characteristics require that
the method of filtering ground points has strong generalization, and the accuracy of the
method is high enough. This paper proposes a two-stage detection method for rock
obstacles on transportation roads in open-pit mines. In the first stage, the cloth simulation
method [27] in the field of computer graphics is introduced and modified to obtain an
approximate simulation of the rough surface of the road and realize the filtering of ground
points. The following modifications have been made to the original cloth simulation
method: (1) limiting the movement of particles to the vertical direction. The original
cloth simulation method is used to deal with three-dimensional simulation problems. The
purpose of this paper is to obtain the degree of protrusion of the obstacle relative to the
ground. The method only focuses on the z-axis coordinates of the point cloud. Therefore,
the method limits the movement of particles in the z-axis direction. (2) The collision
detection of particles is modified to compare the height difference. When the height of a
particle is lower than the height of its adjacent grounding point, the particle needs to be
set to be immovable, and its height must be reset to the height of its adjacent grounding
point. This collision detection is intuitive and is a simple but very effective method that can
simplify calculations and reduce time consumption. (3) The internal constraints between
particles are simplified to the spring force between the current particle and the particles
in its 4 neighborhoods. It will not have an obvious effect on the results, but it can reduce
the time complexity of the method and reduce the running time of the program. This is a
reasonable and effective modification. In the second stage, after filtering the ground points
the non-ground points are clustered by grid division based on the regional growth method,
and the bounding box of the object is calculated. The method proposed in this paper does
not require the assumption of local flat of the road, and it is easy to understand.

The remainder of this paper is organized as follows. A new detection Algorithm 1
is proposed in Section 2. Section 3 presents the experimental results, and the proposed
Algorithm 1 is discussed in Section 4. Finally, Section 5 concludes this paper.
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Algorithm 1. Regional growth clustering based on grid division:

1: Input:
2: Point cloud = {P}
3: Initialize:
4: {grid_pts}← {P}(project {P} to grid unit according to the coordinate)
5: {bin_mat}← ∅
6: {use_mat}← ∅
7: {label_mat}← ∅
8: Label← 0
9: Algorithm:
10: for i = 1 to N step 1; j = 1 to M step 1
11: if bin_mat[i][j]==0 or label_mat[i][j] 6=0
12: continue
13: end if
14: Creating a variable neighborPoints, which is used to store the neighborhood unit that meet
the conditions.
15: {neighborPoints}←∅
16: neighborPoints.push(grid_pts[i][j])
17: label + 1
18: label_mat[i][j]←label
19: while {neighboorPoints} is not empty
20: cur_voxel←neighborPoints.pop()
21: for k=1,2,3,4
22: getting the index m,n of the k-th neighborhood grid unit of cur_voxel
23: if bin_mat[m][n]==0 or use_mat[m][n] 6=0
24: continue
25: end if
26: label_mat[m][n]←label
27: neighborPoints.push(grid_pts[m][n])
28: use_mat[m][n]←1
29: end for
30: end while
31: end for
32: Output:
33: {label_mat}

2. Method

The method is divided into two stages. The first stage is to filter ground points. The
original data are cropped and only the data in the valid range are retained. The z-axis
coordinates of the point cloud are inverted and the modified cloth simulation method
are used for ground recognition. The second stage is to cluster non-ground points. After
filtering the ground points, the remaining points are projected into the grid unit according
to its own coordinates. Setting a grid unit as the seed point, and the grid unit are clustered
through the greedy search strategy. Finally, we calculate the bounding box for each
clustered object. The code to implement this method is based on C++ and PCL(Point Cloud
Library), and the technical route is shown in Figure 1.

2.1. Modification of Cloth Simulation Method

Cloth simulation is a method that is used to simulate cloth in computer programs. In
fact, the cloth in the real world is represented in a computer program as a grid connected
by particles. The particles have mass and the interaction between the particles is called the
mass-spring model [28], Figure 2 shows the structure of the grid. The particles represent the
nodes of the grid. The nodes have no volume and are only given constant mass. Particles
fall under the influence of gravity, and there is an interaction between connected particles
during the falling process. The final position of the particles in space determines the final
shape of the cloth.
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Figure 2. Cloth grid simulated in a computer program. Flexion springs resist bending stresses; sheer
springs resist sheering stresses; traction springs resist stretching stresses.

To solve the problem of filtering ground, the following modifications have been made
to the cloth simulation method: (1) the movement of particles is simplified to one direction
movement. The method only focuses on the z-axis coordinate information of the point
cloud. When updating the position of the particles in each iteration, only the vertical
position change of the particles needs to be updated. (2) The collision detection of particles
is modified to height difference comparison. The movement of the particles is restricted
to the vertical direction, so when the height of the particle is lower than the height of the
adjacent ground point, the particle is set to be unmovable and the height of the particle is
reset to the ground height. (3) The internal constraint between particles is expressed as the
spring force between the current particle and its four neighboring particles. The purpose
of this modification is to simplify the calculation steps without affecting the results and
reduce the running time of the program. By calculating the distance between the current
particle and the surrounding four neighboring particles, it is compared with the distance
between the particles when the cloth is initialized. According to the amount of change
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between these two distances, the internal force of the particle can be calculated simply.
Figure 3 shows the internal constraints between cloth particles.
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In order to determine the shape of the cloth after each iteration, it is necessary to
calculate the position of each particle after each iteration. The position of the particle is
determined by the force on the particle. According to Newton’s Second Law, Formula (1)
can be obtained:

mat = Fext + Fint (1)

where at represents the acceleration of the particle at time t; m represents the mass of the
particle, which can be set as a constant; Fext represents the external force on the particle,
usually referring to gravity, which can be expressed as a constant; Fint represents the
internal force on the particle. The vertical component of spring force is used as the internal
force constraint on the current particle.

In this paper, the internal force between particles is expressed as a simple spring force
model, calculated according to Formula (2):

Fint = k×∑4
i=1 xi × sinαi (2)

where k represents the coefficient of elasticity between particles, xi represents the change in
the distance between particles during the falling process relative to the distance between
particles when the cloth is initialized, and sinαi represents the angle between the virtual
spring and the horizontal plane.

The particle position after each iteration is obtained by the Taylor expansion method.
We perform right Taylor expansion and left Taylor expansion on X(t), and omit the
third term.

X(t + ∆t) = X(t) + V(t)× ∆t + at ×
∆t2

2
(3)

X(t− ∆t) = X(t)−V(t)× ∆t + at ×
∆t2

2
(4)

where V(t) represents the velocity of the particle at time t.
The particle position after each iteration is obtained by adding Formulas (3) and (4):

X(t + ∆t) = 2X(t)− X(t− ∆t) + at × ∆t2 (5)

The relationship between the position of the particle and the force exerted by the
particle is obtained simultaneously by Formulas (1) and (5):

X(t + ∆t) = 2X(t)− X(t− ∆t) +
F
m
× ∆t2 (6)

where F represents the sum of external and internal forces experienced by the particle.
After inverting the original point cloud, small holes were formed by the bumps on

the ground. Restricting the movement of particles in these holes [29] can speed up the
convergence of the iterative falling process of particles. By comparing the height difference
between the current particle and the surrounding particles, the particles of different heights
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are moved the same distance in the opposite direction. According to the different cloth
hardness values, the particles can be moved multiple times to ensure faster convergence of
the iteration process. The process diagram is shown in Figure 4. The moving distance can
be calculated according to the following formula:

d =
1
2

n(zi − z0) (7)

where d represents the distance, each particle should move, n is 0 or 1, when the particle
type is movable, n is 1, and when the particle type is unmovable, n is 0, and zi is the height
value of the particle adjacent to the current particle, and z0 represents the height value of
the current particle.
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2.2. Ground Filtering Based on Modified Cloth Simulation Method

In order to accurately obtain the road surface from the point cloud, inspired by the
cloth filtering method [29], we imagine a piece of cloth placed on the road surface and
falling due to gravity. The final shape of the cloth is the shape of the ground containing
obstacles. If the ground is reversed in advance, the final shape of the cloth is a pure road
surface without obstacles. Based on this method, we have realized the filtering of rough
ground, and achieved satisfactory results. Figure 5 shows the idea of this method.
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Figure 5. The idea of the cloth simulation method.

First, we invert the z-axis coordinates of all points. Then, the cloth is simulated to
fall under the constraints of external gravity and internal spring force. By affecting the
interaction between particles and the iteration termination conditions, the final cloth shape
can accurately represent the road surface. Finally, the cloth is used as a reference for
classifying the original point cloud as ground points or non-ground points.

The ground point recognition based on the cloth simulation method can be summa-
rized as the following steps:

1. Inverting the original point cloud. Figure 5 shows the process.
2. Initiating the cloth grid and setting the height of all particles above the highest point

of the point cloud. Figure 6 shows the process.
3. Projecting the grid particles and point cloud to the same horizontal plane, and finding

the nearest ground point for each grid particle.
4. For each particle, calculating the displacement under the constraints of gravity and

internal spring force. When the height of the particle is lower than the height of its
nearest neighboring ground point, setting the particle as an unmovable particle.
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5. For the particles in the hole region, calculating their displacement under the constraint
of the height difference of the neighboring particles. Figure 4 shows the process.

6. Repeating 4–5, when the height change of all particles is small enough to reach the
convergence condition, or the number of iterations exceeds the specified maximum
number of iterations, the iteration process is terminated.

7. Comparing the distance between the points in the point cloud and the corresponding
grid particles. Points smaller than the threshold are recognized as ground points;
points greater than the threshold are recognized as non-ground points.
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2.3. Grid Division Clustering Based on Regional Growth Method

After filtering ground points, non-ground points need to be clustered. The distribution
of non-ground points in space is very discrete. At the same time, in order to speed up the
search for neighboring points in space, this paper uses 2D grids to spatially divide the
point cloud.

The core idea of the region growth method is to search from the seed point and merge
the surrounding area with the target like the seed point according to the pre-defined rules,
then forming a new seed point, and repeating the search process until there is no target
that meets the conditions.

Before the greedy search, five variables need to be defined, which are the two-
dimensional array grid_pts, bin_mat, use_mat, label_mat, and integer Label. Among
them, grid_pts is used to describe the grid storing the point cloud, and the point cloud is
projected to the corresponding grid unit according to their coordinates; bin_mat is used to
indicate whether the current grid unit contains point cloud data, and its value is only 0 or 1;
use_mat is used to indicate whether the current grid cell has been processed, and its value
is only 0 or 1; label_mat is used to indicate which cluster the point cloud in the current grid
cell belongs to; the integer Label is used to represent the total number of clusters.

First, the clustering algorithm needs to set the size of the grid, and project the points
to be processed to the corresponding grid unit according to the coordinates. Cells that
contain points inside are marked as real cells; cells that do not contain points inside are
marked as empty cells. Then, the clustering algorithm uses a greedy search strategy to
traverse and search all grid cells. The rule for judging whether a unit is added to the seed
set is to judge whether the unit is a real unit and has not been processed. The pseudo code
of the clustering algorithm is shown below.

After the clustering process, a bounding box needs to be calculated for each object. For
each object after clustering, traversing all the points in the cluster, finding the coordinates
of the points located on the boundary, and using them as the coordinates of the bounding
box. For safety reasons, the bounding box can be appropriately enlarged. In other words,
an expansion factor can be adopted to appropriately enlarge the bounding box.

2.4. Parameter Description

The method proposed in this paper has four parameters that need to be adjusted
experimentally: the resolution of the cloth grid (grid resolution, GR); the height threshold
(HT) that distinguishes ground points from non-ground points; the spring coefficient (SC);
and the voxel resolution (VR) in the clustering process.

Due to the small volume of the falling rocks, there are few lidar points reflected by
the rock itself, which is difficult to identify. This requires the resolution of the cloth grid
to be set smaller. The height difference threshold depends on the size of the rocks, and
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it is necessary to ensure that the rocks are not mistakenly identified as ground points.
The elastic coefficient between the cloth particles is determined by experiment. The grid
resolution in the clustering process is related to the size of the rocks.

In addition to the above four parameters, there are three other parameters: the cloth
hardness (CH), the max iteration times (MI), and the time step (TS) in the iteration process.
But for all datasets, the values of these three parameters are the same. Through refer-
ence [29] and the experimentals, for all datasets, the cloth hardness value is set to 3, the
max iteration times is set to 500, and the time step is set to to 0.65. These three parameters
are set to these values to ensure that the program reaches the convergence condition.

3. Results
3.1. Data

Data were collected on the transportation road of an open-pit mine. The equipment
and rocks are shown in Figure 7. The lidar sensor used in the experiment was the DJI(Da
Jiang Innovations) horizon. The horizon lidar uses non-repetitive scanning technology, and
the area scanned by lidar will increase over time. The effective scanning distance with a
reflectivity of 10% is 90 m, the horizontal field of view is 81.7◦, and the vertical field of view
is 25.1◦. The horizon lidar is suitable for obstacle detection tasks on the road in front of
the vehicle. The lidar sensor and other positioning equipment were installed on the top of
the vehicle, and multiple rock obstacles were randomly placed on the road in front of the
vehicle. The experiment measured four datasets at different distances. Table 1 shows the
distance and rock size for each dataset.
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Table 1. Rock size and placement distance.

Distance/m Rock1 (cm3) Rock2 (cm3) Rock3 (cm3) Rock4 (cm3) Rock5 (cm3) Rock6 (cm3)

12–17 20 × 20 × 23 40 ×20 × 20 18 ×15 × 10 — — —
35–40 14 × 10 × 8 15 × 12 × 14 25 × 15 × 13 33 × 19 × 25 32 × 18 × 21 10 × 10 × 10
36–44 14 × 10 × 8 15 × 12 × 14 25 × 15 × 13 33 × 19 × 25 32 × 18 × 21 10 × 10 × 10
44–52 14 × 10 × 8 15 × 12 × 14 25 × 15 × 13 33 × 19 × 25 32 × 18 × 21 10 × 10 × 10

Two things need to be explained about the data. First, the sizes of the rocks used in
this paper were about 10–35 cm. Rocks of this size can cause damage to a tire and are
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difficult to detect by conventional methods. Those rocks larger than 40 cm in size are easily
detected by conventional methods; rocks smaller than 10 cm in size will not cause damage
to truck tires and do not need to be detected. Therefore, the rock size selected in this paper
was representative. Second, the mining truck driver has a larger blind spot for observing
the road ahead. The distance between the rocks and the vehicle in the experiment was
greater than the effective observation distance of the mining truck driver. The above two
points show that the size and distance of the rocks during the experiment had sufficient
redundancy compared with the actual situation.

3.2. Result

According to the experimental results, for dataset2, dataset3, and dataset4, when the
cloth grid resolution is set to 0.08 m, the height difference threshold for distinguishing
ground points and non-ground points is set to 0.08 m, the coefficient of elasticity is set to
0.6, and the grid resolution in the clustering process is set to 0.5 m, the experimental results
are good. The rocks on the road can be accurately detected and it does not take long. For
dataset1, when the resolution of the cloth grid is set to 0.08 m, the threshold of the height
difference between ground points and non-ground points is set to 0.05 m, the coefficient of
elasticity is set to 0.8, and the grid resolution in the clustering process is set to 0.5 m, the
experimental result is good. The best parameters of all datasets are shown in Table 2.

Table 2. Parameter description.

Dataset Distance/m Number of Rocks
Parameter Value

GR HT SC VR

1 12–17 3 0.05 0.05 0.8 0.5
2 35–40 6 0.08 0.08 0.6 0.5
3 36–44 6 0.08 0.08 0.6 0.5
4 44–52 6 0.08 0.08 0.6 0.5

In this paper, qualitative analysis and quantitative analysis are used to evaluate
the proposed method. For qualitative analysis, the detection results are visualized and
compared with the original point cloud data. The visualization results of the four sets of
data are shown in Figure 8.

In order to quantitatively analyze the results, this paper calculates two types of
indicators on the data. The first type of index is the number of detected non-rocks objects
divided by the total number of rocks. The lower the value, the better the experimental effect.
The second type of index is the number of detected rocks divided by the total number of
rocks. The higher the value, the more ideal the experimental effect. The calculation results
are shown in Table 3.

Table 3. Index calculation results of the four sets of data.

Dataset Number of
Rocks Detected

Number of Non-Rocks
Detected Index1 Index2

1 2 1 1/3 2/3
2 5 3 1/2 5/6
3 6 2 1/3 1
4 5 3 1/2 5/6
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Figure 8. The experimental results of the whole dataset, the left is a partial enlarged view, and the
right is a global view. The red rectangle includes the right detected rocks, the detected obstacles
outside the red rectangle are errors (a,b) show the results of dataset1, two of the three rock blocks
were detected; (c,d) show the results of dataset2, and five of the six rock blocks were detected;
(e,f) show the results of dataset3, all six rock blocks have been detected; (g,h) show the results of
dataset4, five of the six rock blocks were detected.
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The red rectangle in Figure 8 includes the detected rocks. The detected obstacles
outside the red rectangle are errors, which indicates that the method is wrong to identify
the ground as an obstacle. It can be seen from the experimental results that for the third set
of data, all six rocks were detected; but for the other three sets of data, some rocks were
not detected. There are two reasons for this. One is that the effective scanning distance
and accuracy of lidar equipment are limited. The lidar used in the experiment has an
effective detection range of 90 m for a human-sized target. The size of the rocks used in the
experiment is much smaller than the human target, so the lidar cannot scan small-sized
rocks at a long distance. Another reason is the position and attitude of the rock relative to
the lidar. The working principle of lidar is that the emitted light beam hits the surface of
the object, and then the lidar receives the returning light beam, so the lidar can only scan a
part of the entire surface of the object. When the surface area of the rock facing the lidar is
very small, the reflected laser beam is very sparse, resulting in low density of the generated
point cloud data. This effect is shown in Figure 9.
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Figure 9. The relationship between object posture and point cloud density. Figure (a) shows the
situation where the larger surface of the object points to the lidar; figure (b) shows the situation
where the smaller surface of the object points to the lidar.

It can be seen from the experimental results that errors always occur at the farthest
point of the point cloud or on both sides of the boundary. There are two reasons for the
errors. One is that the detection accuracy of lidar at long distances has decreased. The
lidar calculates the three-dimensional coordinates of the object based on the returned beam.
For small-scale rocks at a long distance, the detection accuracy of the lidar decreases, so
the calculated three-dimensional coordinates are distorted, which causes errors. Another
reason is that the edge of the transportation road is very rough, so there are small chaotic
rocks, which have an impact on the Algorithm 1.

4. Discussion
4.1. Result Analysis

The result is mainly affected by four factors, which are the resolution of the cloth grid,
the threshold of the height difference between ground points and non-ground points, the
elastic coefficient between cloth particles, and the grid resolution in the clustering process.

The higher the resolution of the cloth grid, the smaller the size of the grid and the
greater the total number of particles. Considering the size of the rocks used in the ex-
periment, the result is good when the cloth grid resolution is around 0.08 m after many
experiments. The effect of different grid resolutions on the results is shown in Figure 10.
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Figure 10. The effect of cloth mesh resolution on the results.

The height difference threshold that distinguishes ground points and non-ground
points has an important influence on the results. After the iteration process is over, the
final shape of the cloth grid represents the road surface. The height difference between
the space point and its neighboring cloth particles is calculated and compared with the
threshold. If the difference is less than the threshold, the space point is classified as a
ground point; otherwise, the space point is classified as a non-ground point. If the height
difference threshold is too large, the Algorithm 1 will incorrectly classify non-ground points
as ground points; by contrast, if the height difference threshold is too small, the Algorithm
1 will incorrectly classify ground points as non-ground points. After many experiments,
when the threshold value is around 0.08 m, the classification effect is good. The effect of
different height difference threshold on the results is shown in Figure 11.
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The elastic coefficient between the cloth particles affects the internal spring force
constraint. The function of the internal spring force constraint is to exert an upward force
on the falling particles, which has an upward effect on the particles returning them to their
correct positions. Considering an extreme case, if there is no spring force between the
particles, the falling of the particles in the holes is only restricted by collision detection. The
particles fall to a very deep position in the holes, which makes it impossible to accurately
simulate the road surface. For different cloth grid resolution and height difference threshold,
the best elastic coefficient can be determined through experiments. The effect of different
elastic coefficients on the results is shown in Figure 12.

The grid resolution in the clustering process affects the result of the Algorithm 1 for
clustering non-ground points belonging to different objects. In the clustering process, the
neighborhood of the seed point is searched. This search method has a great relationship
with the grid size. When the Algorithm 1 searches for the neighborhood, the points
belonging to different objects will be merged. The grid resolution for spatial division of the
point cloud during the clustering process also needs to be carefully set. In the clustering
process, if the size of the grid resolution is set too large, then multiple adjacent objects will
be merged, which will cause the area of the bounding box to expand and reduce the area of
the road where the vehicle can travel. After many experiments, it is finally determined that
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the grid resolution is 0.5 m, and satisfactory results are obtained for all datasets. The effect
of different grid resolutions on the results is shown in Figure 13.
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4.2. Further Analysis

The purpose of this paper was to detect rocks with a size of about 10–40 cm on the
transportation roads of open-pit mines. Because the volume of these rocks is relatively
small, and there is no fixed shape feature, the rocks are not easy to detect using conventional
methods. At the same time, the transportation roads of open-pit mines are rough and
unstructured, which requires a certain generalization of the method. A two-stage method
proposed in this paper can effectively detect these rocks.

The first stage of the method uses a modified cloth simulation method to filter ground
points from the original point cloud data. First, by reversing the original point cloud data,
the convex part of the transportation road is transformed into a concave part, and the pure
surface is located at the relatively highest point in the point cloud. Secondly, particles of
constant mass fall from a height and, under the action of internal constraints, the particles
will eventually stay near their corresponding actual ground points. Finally, the final shape
of the cloth grid is determined, and the ground points can be identified by comparing them
with the original point cloud data. This method is suitable for processing unstructured
roads. After further modification, it can be used for rough road recognition in the field
scene, and it has a certain versatility.

The second stage of the method uses grid division clustering based on area growth
method to obtain the bounding box of each rock. In order to speed up the clustering
process, this paper does not directly use a single point as the basic search unit, but uses a
spatial grid division method to divide the point cloud into regular-sized grids unit. Each
grid unit is used as the search unit of the area growth method, and the search process uses
a greedy search strategy. The key to the clustering process is not to mistakenly identify
multiple adjacent objects as one object, which will increase the volume of the bounding
box and cause the truck’s drivable area to become smaller.
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The physical properties of the object itself (such as density, material) also affect
the scanning effect of the lidar sensor. The wavelength of the light beam emitted by
the lidar is fixed, so the reflectivity of the light beam to objects of different densities is
different, which will affect the density of the point cloud data and the detection results.
The influence of the density of the scanned object on the reflectivity of the laser beam is
complex, involving knowledge of optics and physics. Due to the lack of corresponding
equipment and background knowledge, this paper does not undertake further research on
this subject.

In addition, the method only uses the Z-axis coordinate information of the point cloud,
and does not consider the local geometric characteristics of the point cloud. Future research
may consider the X-axis and Y-axis coordinates of the point cloud, and then assist in the
detection from the perspective of the local features of the point cloud.

4.3. Time Analysis

The machine used in the experiment is an ordinary personal computer (PC, (CPU-Intel
Corei7, RAM-16G, OS-Ubuntu16). Under the best parameters, each group of data is tested
multiple times, the fastest and slowest running time are counted, and the average time is
calculated. The results are shown in Table 4.

Table 4. Time analysis.

Group Number of
Experiments Fastest Time/s Slowest Time/s Average Time/s

1 20 0.28 0.30 0.29
2 20 0.29 0.31 0.30
3 20 0.28 0.31 0.30
4 20 0.29 0.32 0.30

The source code of the Algorithm 1 proposed in this paper is written in C++ language
and uses central processing unit (CPU) multi-thread acceleration. It can be seen from
Table 4 that the running time of the method is about 0.3 s. When the truck is loading ore,
the driving speed is about 10 m/s. The running time of the method satisfies the reaction
and avoidance time of the mining truck, so the method has a certain safety redundancy.
Future research can use the graphics processing unit (GPU) parallel computing method to
optimize the code, so that the program running speed is further accelerated to meet higher
real-time requirements.

5. Conclusions

This paper proposes a new method for the detection of rock obstacles on rough
roads during the driving process of mine trucks. First, the method modifies the cloth
simulation method to make it applicable to the ground point filtering task of rough roads;
secondly, the method uses the regional growth clustering method of grid division to achieve
rapid clustering. The running speed of the method meets the real-time requirements of
autonomous vehicles. Experiments show that for the high-density point cloud data scanned
by lidar, the method can accurately detect rocks with a size of 20–30 cm and above at about
40 m within a safe time of 0.3 s. For a fully loaded mining truck with a driving speed of
30 km/h, this is sufficient time for the vehicle to avoid obstacles. The method is easy to
understand, and there are fewer parameters that need to be adjusted. With high-precision
lidar, the method can detect small-scale rocks on rough transportation roads in open-pit
mines. This method can be extended to the detection of small-scale irregularly shaped
obstacles on unstructured rough roads.

The effect of this method mainly depends on four parameters, which are the resolution
of the cloth grid, the threshold of the height difference between ground points and non-
ground points, the elasticity coefficient between cloth particles, and the grid resolution in
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the clustering process. The optimal values of these four parameters can be determined
through experiments.

The problem discussed is a brand new research task, so there is a lack of mature and
reliable methods. The method proposed in this paper also requires a lot of scenarios and
data to verify it. The internal constraints between particles are simply expressed as spring
forces in the method. Such a representation method cannot accurately simulate the internal
interaction between particles. In addition, the effect of the method is related to the quality
of the point cloud, which places higher requirements on the detection accuracy of the lidar.
In order to improve the effect of the method, in the future we will try to extract features
based on the geometric information of the object to optimize the detection process.
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