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Abstract: This article presents an overview of research aimed at developing a scientific approach to 

creating multisensor optical systems for chemical analysis. The review is mainly based on the au-

thor’s works accomplished over the recent 10 years at Samara State Technical University with broad 

international cooperation. It consists of an introduction and five sections that describe state of the 

art in the field of optical sensing, suggested development methodology of optical multisensor sys-

tems, related aspects of experimental design and process analytical technology followed by a col-

lection of practical examples in different application fields: food and pharmaceutical production, 

medical diagnostics, and ecological monitoring. The conclusion summarizes trends and prospects 

of the multisensory approach to optical spectral analysis. 
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1. Introduction 

The importance of chemical analysis in the modern world is constantly growing. 

High demands on production efficiency, product quality, and environmental security 

stimulate the development of instrumental analytical methods. Scientific and technical 

advances open more and more opportunities for the introduction of analytical control in 

various areas of human activity: industry, science, medicine, ecology, and even in the per-

sonal environment in everyday life. 

The analysis of complex multicomponent mixtures is no longer the prerogative of 

specialized laboratories. To solve modern analytical tasks, new devices are needed that 

can rapidly monitor the state of the analyzed object on-site, in the production line, or in 

the field, without permanent sampling. The analysis result should be output without any 

delay, typically in real time. If necessary, the analyzer must perform tens and hundreds 

of measurements per second. 

The optical methods represent one of the leading directions in the development of a 

new instrumental base for modern chemical analysis. Currently, this area is experiencing 

rapid growth, which is largely associated with the technical advances of photonics, 

namely, with the improvements of existing systems and the emergence of new detection 

systems, light sources, optics, and light-guiding materials. Optical analysis has a number 

of practical advantages that include high information content, non-destructiveness, and 

adaptivity to various objects and media. An important prerequisite for the growing pop-

ularity of optical (primarily, spectroscopic) methods is the perfection of information tech-

nologies: computers, embedded electronics, and modern methods of multivariate data 

analysis, also known as chemometrics. 

Historically, traditional optical spectroscopy has evolved into a universal analytical 

solution focused on laboratory measurements of preselected samples of various 
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composition. For this reason, it is badly suited for solving modern analytical problems, 

such as process monitoring, express analysis, and field research. The low throughput of 

laboratory spectroscopy does not meet the growing number of analyzed samples and ob-

jects to be controlled. The technological complexity of all-purpose spectrometers deter-

mines their stationary use and expensiveness, thereby preventing the dissemination of 

optical spectroscopic methods beyond research institutions, large enterprises, and analyt-

ical centers [1]. 

This situation is starting to change due to the growing development of miniature 

spectrometers [2–4] based on modern sensing and micromechanics technologies, typically 

having much lower prices compared to the respective lab solutions. The emergence of 

mini-spectrometers is an important trend in the modern instrumental analytics today that 

will have an even higher impact in the future. However, in many cases such devices are 

“semi-finished” products that have signal stability, reproducibility, standardization, and 

other issues. In practice, mini-spectrometers and similar devices require further develop-

ment, e.g., adding light sources and measurement interfaces, low-level signal processing, 

etc., which should be done with a particular application in mind. 

Some tasks of operative analytical control of various samples and matrices, especially 

in the industrial sphere, are successfully solved using simple single-channel sensors, in-

cluding optical ones. A single-channel optical (photometric) sensor determines the con-

centration of a component through its correlation with some measurable property of the 

sample, for example, with the optical density at a selected wavelength. Single-channel 

sensors are well suited for solving specialized tasks, such as determining the concentra-

tion of a suspended component from the medium turbidity, or analyzing samples in 

which only the determined component gives an optical response. Therefore, the applica-

bility of photometry is limited by the requirement that there are no side factors affecting 

the measurement. In the quantitative analysis of mixtures, where the analytical signals of 

various components overlap significantly (which includes the overwhelming majority of 

real samples), the information content of a single-channel sensor often becomes insuffi-

cient and cannot provide the required accuracy of analysis. 

In recent years, optical spectroscopy has been developed towards specialized analyt-

ical devices intended for specific practical applications. These devices, called optical mul-

tisensor systems (OMS), occupy an intermediate position between single-channel photo-

metric sensors and universal laboratory spectrometers. At the same time, they have sev-

eral striking characteristic features that allow them to be distinguished into a new separate 

class of optical analyzers. OMS operate in a wide spectral region and can be designed to 

solve various analytical problems associated with the determination of both individual 

substances and generalized indicators of chemical composition. Besides, they use a small 

number of sensory channels, for example, recording the total absorbance at certain wave-

length intervals; the lack of selectivity is compensated for by using the mathematical mod-

eling both at the channel optimization stage and in the analysis of measured data. Scien-

tific research in this area and existing implementation examples show the huge potential 

of OMS. Their further development is expected to bridge the gap between today’s grow-

ing demand for analytical control and the limited capabilities of traditional methods. 

Moreover, this development will help in the formation of new application areas for chem-

ical analysis. Further systematic development and wide dissemination of optical multi-

sensor systems require solving a number of scientific, technical, and methodological prob-

lems, which explains the relevance of this work. 

The work presented in this paper was generally aimed at developing the scientific 

foundations of the multisensor approach in optical spectral analysis and the creation of 

optical multisensor systems for a wide range of analytical applications. To achieve this 

goal, a number of tasks have been solved. First of all, it was necessary to formulate a gen-

eral approach to the creation of optical multisensor systems for specific practical applica-

tions and to develop new and improved OMS optimization methods and algorithms. 

Since the optimization is based on the data of a predesigned experiment, it was necessary 
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to systematize the requirements for training and tests samples used in a multicomponent 

calibration experiment, and to propose an efficient experimental design for building suf-

ficiently accurate application-driven prediction models on a minimum sample set. It was 

also necessary to develop a methodology for using the multisensory approach in process 

analytical technology (PAT) to create OMS capable of real-time monitoring of the process 

state and product quality during production. For the currently working OMS, it was nec-

essary to develop new and improve the existing analytical methods in order to expand 

the scope and improve the analytical characteristics of such systems. The paper presents 

selected practical applications of optical multisensor systems in various practical areas 

including food analysis, pharmaceutical production, biotechnology, medicine, and envi-

ronmental monitoring. This research was presented on the basis of the author’s habilita-

tion work. The dissertation [5,6] was defended in 2020 at Lomonosov Moscow State Uni-

versity. 

2. Optical Multisensor Systems in Analytical Spectroscopy: State of the Art 

2.1. Modern Trends in Optical Spectroscopic Analysis 

Optical spectroscopy is one of the most widespread methods of chemical analysis 

that has a 150-year history [7]. It has traditionally been developed as a universal method 

for qualitative and quantitative analysis of a wide range of objects. Hence, the prevailing 

trend is the growing technical complexity of devices to expand their spectral and dynamic 

ranges, resolution, precision, and reproducibility of analysis. As a result of this develop-

ment, the modern spectrometers are firmly associated with massive and highly expensive 

devices used to analyze preliminary acquired samples in centralized laboratories under 

the supervision of qualified personnel. 

An alternative to the traditional spectral analysis began to develop in the last two to 

three decades. The emerging trends are associated with the fact that the currently domi-

nant laboratory approach does not meet the growing needs of society in chemical analysis. 

This is primarily due to the constant increase in the number of samples and controlled 

parameters in existing fields of activity, such as manufacture quality control, environmen-

tal monitoring, and medicine. This growth has been accompanied by the emergence of 

new challenges, areas, and forms of analysis, such as field analysis (also without sam-

pling), in-line analysis in real time, remote analysis (e.g., space measurements), ultra-fast 

analysis (as in sorting cereals), and distributed sensor networks. 

Industrial needs largely dictate the observed conceptual shift for increased product 

quality requirements, primarily in food and pharmaceutical production. These changes 

have led to the emergence of a new applied scientific discipline called process analytical 

technology (PAT) [8–10]. The main goal of PAT is to implement the concept of built-in 

quality, i.e., transition from the output product control to monitoring the process itself 

[11,12]. Successful introduction of PAT implies, among other requirements, new ap-

proaches to data acquisition and analysis, first of all, significantly reducing the time from 

sample measurements to analysis results. Therefore, the process monitoring should be 

performed in real time or with an insufficient delay. Depending on the delay, the methods 

of analysis are usually classified as at-, on-, and in-line ones [12]. Fast and non-destructive 

optical techniques, including ultraviolet and visible (UV/Vis), near infrared (NIR) [13], IR 

[14], Raman [15], and fluorescence spectroscopy are considered to be flagship analytical 

tools of PAT [10]. 

A separate important trend in the development of analytical spectroscopy is its de-

centralization and personalization. The emergence of personalized chemical analysis is 

associated with the expanding range of analyzed objects and its further “democratization” 

due to the availability, miniaturization, and autonomy of analytical instruments, primar-

ily optical ones. The significant increase in the availability of optical analyzers is going to 

create new applications and consumer markets. Low-budget analysis can potentially 

cover the small- and medium-level businesses, become a consumer’s individual tool for 
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product quality control or environmental monitoring, penetrate school education, and fill 

many other niches. Extrapolating this trend into the future, it is easy to envision a new 

category of domestic and personal spectral analyzers. The personalization of analysis is 

greatly facilitated by modern computer development and the wide availability of cellular 

phones equipped with a powerful processor and a built-in camera as an optical detector. 

An implementation example of a smartphone-based optical device is the prototype of a 

miniature analyzer of creatinine content in urine developed at the St. Petersburg State 

University (SPbSU) [16]. A review of such devices is given in [17]. In general, the attitude 

towards chemical analysis as an expert field is changing. We are observing preconditions 

for its wider and even mass use in the future. 

In this situation, traditional sample-based lab spectroscopy no longer meets the cur-

rent challenges. To bridge the gap, a new analytical methodology is required, including 

both new approaches to analysis (for example, specialization) and decision-making ap-

proaches, such as interim analysis or screening [1]. One of the answers to new analytical 

challenges is the development of optical multisensor systems. Such paradigmatic changes 

would require new technical solutions using the latest developments. One of the most 

striking examples of this kind is the growing analytical use of monochromatic light 

sources, such as lasers and light-emitting diodes (LEDs) to create multiwavelength sen-

sors [18–20]. The appearance of pyroelectric detectors, such as Fabry–Pérot interferometer 

[21] and miniaturized spectrometers on their basis [2–4], stimulate the development of 

portable analyzers. Modern measurement interfaces and probes [22–25] as well as new 

light-guiding materials in a broad spectral range including mid-IR [26] enable flexible in-

line spectroscopic monitoring of industrial processes. In general, the multisensor ap-

proach offers higher flexibility for the optical spectroscopic analysis. The variety of de-

signs associated with the modern technical solutions enables the application of analysis 

on many samples and conditions, and allows one to carry it out at different distances from 

the object. 

The recent progress achieved in the field of chemometrics for multivariate data anal-

ysis [27,28] is one of the key factors in the development of spectral analysis in general and 

multisensor systems in particular. The possibility of complete use of the redundant infor-

mation supplied by modern instrumental methods leads to a paradigmatic shift in ap-

proaches to chemical analysis, which generally impacts the quantitative analysis, but can 

be used for the qualitative and spectral interpretation methods as well [29]. This is mainly 

related to the spectroscopic data, but there are other successful examples of the chemo-

metrics application in chemistry [30,31]. 

2.2. Optical Multisensor Systems 

The author’s work [5] systematically introduces the concept of optical multisensor 

system as a new class of analytical spectroscopic devices. In accordance with the proposed 

definition, OMS is a specialized spectrometric analyzer of low selectivity, including two 

or more optical chemical sensors or sensory channels (in the nomenclature of IUPAC [32]) 

optimized for a particular application. 

The definition of multisensor system was initially introduced in electrochemistry for 

the gas analyzers called “electronic nose” [33] and was firmly established in the works on 

“electronic tongue” by Prof. Vlasov’s group at SPbSU [1,34]. The need to introduce a new 

term to an essentially spectrometric device is due to its conceptual differences from both 

traditional and modern process spectrometers. In addition, the OMS terminology reflects 

the new focus of optical spectroscopy towards the development of specialized analyzers 

as opposed to universal ones. 

The main differences between OMS and traditional lab spectroscopy [6] are pre-

sented in Table 1. Being the embodiment of a new, i.e., multisensor, approach in optical 

spectral analysis, OMS has a number of features that allow it to be distinguished into a 

separate class of analytical devices. The initial specialization for a particular application 
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that is embedded in the very design of OMS is its main conceptual difference from other 

spectrometers. There are also several other, less obvious differences of OMS. 

Table 1. Typical characteristics of OMS compared to traditional optical spectroscopy. 

# Parameter of Analyzer Spectrometer OMS 

Usage 

1 Application area universal specialized 

2 Autonomy no can be independent 

3 Dimensions desktop miniature 

4 Portability stationary portable 

5 Place of analysis installation site arbitrary 

6 User qualification specialist not required 

7 Price higher lower 

8 Technical maintenance regularly required minimal/not required 

Technical features 

9 Selectivity high low 

10 Number of channels hundreds a few 

11 Spectral scale uniform individual 

12 Spectral range maximum wide individual 

13 Optical channels resolved can overlay 

14 Resolution maximal (excessive) can be inapplicable 

15 Measurement speed up to milliseconds up to microseconds 

16 Device standardization hardware software 

Math and software 

17 Application of chemometrics recommended required 

18 Hardware and software external  built-in 

19 Prediction model local global 

OMS specialization consists in using the required minimum of constituting spectral 

channels on selected application-based wavelengths, instead of hundreds of channels in a 

spectrometer. Traditional spectrometric channels are evenly distributed over the entire 

technically accessible region to provide high resolution ability and versatility of analysis. 

The variables in high-resolution spectra are considered monochromatic (or resolved), i.e., 

taking a narrow wavelength interval that does not overlap with the neighbors. This is not 

always the case in practice, but the channel resolution from each other is highly desirable. 

On the contrary, OMS channels are generally wide; they can be spaced apart or strongly 

overlap, so that the very term “resolution” can even be inapplicable. High spectral reso-

lution that is important for component identification is not critical in quantitative analysis. 

On the contrary, the possibility of using the most informative wavelengths and spectrum 

regions makes it possible to avoid areas of noise and irrelevant signals. Therefore, the 

resolution reduction has a positive effect of eliminating and averaging the data noise and 

hence improves the reproducibility and accuracy of the analysis. The use of chemometrics 

largely compensates for the loss of resolution during the transition from the laboratory 

analysis to multisensor technologies [35]. 

The human eye is a striking example of natural OMS. The variety of shades we per-

ceive is the result of processing signals from three cross-sensitive optical sensors of low 

selectivity. Evolution has optimized the sensitivity spectra of individual eye sensors for 

orientation in the environment; therefore, color perception by humans and different spe-

cies of animals do not coincide. In this terminological context, the optical multisensor sys-

tem can be called “electronic eye”. 

OMS selectivity to the analyzed substances is not required, but possible. It can be 

observed, if a pure component signal occurs on an individual wavelength, but this is not 
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generally expected or pursued as a goal. For example, the use of LEDs, with their rela-

tively high emission bandwidths that grow rapidly with the wavelength [36], intrinsically 

assumes the low selectivity of analyzer. Following the vocabulary of electrochemical sen-

sors, one can talk about cross-sensitive channels [34]. In this case, the analysis automati-

cally implies the use of chemometrics tools. 

The measurement speed is particularly important for in-line analysis. Therefore, it is 

generally higher in process spectrometers than in laboratory ones. As a rule, the minimal 

spectrum acquisition time is several milliseconds, for example, in spectrometers with a 

diode-array detector (DAD) [37]. Avoiding the use of light dispersion in some OMS types 

and significant technical simplification of the device create the potential for increasing the 

speed of analysis by several orders of magnitudes, e.g., to several microseconds, which is 

demanded by some applications. 

The problem of possible absence of the hardware standardization of OMS (which is 

embedded in the very design of lab spectrometers) is solved by using mathematical meth-

ods. Thus, the identity of analysis results for the same sample by two different OMS can 

be achieved using model transfer methods, despite possible differences in the measure-

ments performed by non-standardized instruments [38–40]. 

Thus, the use of chemometrics becomes almost compulsory for building predictive 

models on OMS data. In widespread OMS used for a popular application, for example, in 

the analysis of common food products, equipping each device with its own (local) calibra-

tion model may be impractical. As an alternative, universal (also called global [41–44]) 

models can be constructed. The global model can be hosted “on the cloud” for its facili-

tated use by distributed sensor systems. For traditional spectrometers, it is typical that the 

software is located on a computer connected to the device. It includes a preinstalled 

chemometric model, which produces the analysis results, e.g., predicted concentrations. 

Optical multisensor systems, on the contrary, tend to have full autonomy, making use of 

a built-in microcomputer, which calculates and outputs the results. 

A significant simplification of the design while maintaining the spectroscopic princi-

ple of data collection in the OMS leads to a manifold reduction in the analyzer cost and 

dimensions. Let us consider NIR spectrophotometers as an example. Its transformation 

into OMS can reduce its price hundreds of times, and its weight or dimensions, tens of 

times. OMS autonomy is also achieved by the rejection of a permanent connection to an 

external computer and by making the main power supply optional. The power required 

for the device operation can be supplied by a battery. The autonomy and diminutiveness 

of OMS determine their portability, which is one of the most useful properties creating 

new application areas for multisensor systems. The availability of OMS, together with 

their miniature size, allows the creation of distributed sensor networks using multiple 

devices simultaneously for complete control of a complex object. This can be done, for 

example, by installing the sensors in various points along the production line or the spatial 

coverage of territories for environmental monitoring. 

High hardware adaptability is an important advantage of OMS. For technical adjust-

ment of the optimal wavelengths to a new application, it is sufficient to replace the ele-

ments that determine the optical properties of the system channels, such as LEDs or filters. 

This creates opportunities for a modular OMS design, which paradoxically combines nar-

row specialization and versatility. 

A multisensor system can be thought of as a device for collecting, transmitting, and 

transforming information, i.e., as an information flow (Figure 1). The diagram equally de-

scribes the information flow of any spectroscopic technique; it is used here for the conven-

ience of further discussion of OMS development approaches. The flow describes the 

source light transformation by the sample, its conversion to data at the detector, and then 

the modeling result using the software. 
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Figure 1. OMS information flow diagram (“*” denotes transformation). 

The primary information carrier is the electromagnetic radiation in optical spectral 

range emitted by a source (or multiple sources). Instead of conventional monochromators 

and gratings dispersing the light, the modern sources include optical devices producing 

monochromatic radiation, such as LEDs [18,20,45–48], lasers, or laser diodes [49], as well 

as optical filters [49–51]. The lighting can be stationary or can operate in a pulse mode [19]. 

The analytical information is collected by the interaction of light with the sample, 

which changes its spectral composition. The measurement interface is a set of optome-

chanical devices. It is responsible for the collection of relevant information during the 

light-to-sample interaction by transforming the light before and after the sample, as well 

as the sample shape at the moment of measurement. Examples of commonly used meas-

urement interfaces are cuvette, flow cell, probe, and optical window. Analysis may occur 

at the contact between the sample and interface elements. Lenses, attenuated total reflec-

tion (ATR) crystals, mirrors, and optical filters are standard attributes of the measurement 

interfaces. 

When passing through the detector, the information carrier changes. The light is con-

verted into an electrical analog signal, which is then digitized. Consequently, the detector 

shapes an analytical signal of OMS information channels. 

The final step in the OMS information flow is prediction, that is, the application of a 

preliminary built mathematical model to new measurement data in order to convert the 

analytical signal into a quantitative or qualitative result. For example, a calibration model 

is needed if the purpose of the analysis is to determine a sample component concentration. 

Thus, the predictive model is an indispensable element of the information flow that re-

quires the use of an external or built-in computer. In addition to its device-controlling 

function, the computer serves to calculate and display the results of analysis. In some 

cases, as in the class discrimination tasks, the result can be displayed using color signals. 

For example, in spectroscopic detection of the tumor margin [52–54], green light usually 

designates “yes”, red—“no”, yellow—“margin”, and white—the measurement error. 

An OMS classification has been proposed by the author [5]. OMS types are deter-

mined by their construction principles, i.e., by nodes of the information flow (Figure 1), 

where the OMS channels are formed to provide their specialization for an application. 

Thus, the channel formation can occur at the light source (OMS of the first type), for ex-

ample, if monochromatic sources such as LEDs are used. It can also occur at the detector 

(type 2), e.g., when using (photo) diode arrays, or by selecting a few spectral intervals 

from high-resolution spectral data (type 3). The development examples for each OMS type 

will be shown later. 

There are important special cases of OMS, in which the diagram in Figure 1 can be 

simplified. Thus, the right half of the flow after the sample can be replaced by human 

perception, i.e., by the eye as “detector” and the brain as “computer”. For example, the 

fluorescent color of a laser-illuminated sample indicates the presence of a certain chemical 

component, and the observed intensity indicates its concentration. Alternatively, the light 

source may be natural, such as sunlight. Moreover, the light source itself can be a sample, 

for example, in the spectral analysis of emitting objects—lamps, liquid crystal displays, 

etc. 
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2.3. Data Analysis in Spectroscopy and OMS Applications 

The methods of chemometrics are used in many fields, but their main application is 

in analytical chemistry, primarily in spectroscopy [27]. Mathematical methods of spectral 

preprocessing [55–59], exploratory data analysis [55,60–64], variable and object selection 

[65–68], as well as their further improvement play a key role in OMS development success. 

There are several unsolved mathematical and methodological problems associated with 

the specific nature of OMS complicating their creation, data acquisition, and application. 

These include a small number of variables, their uneven distribution along the spectral 

axis, hardware standardization issues, and a potentially large number of measurements. 

This imposes certain restrictions on the use of common algorithms for spectroscopic data 

analysis and creates a need to develop new approaches. 

In optical spectroscopy, there is a relationship between method selectivity and the 

importance of using multivariate data analysis. Thus, mid-IR and Raman spectra contain 

well-defined absorption bands, but due to their large number, the probability of overlap-

ping peaks is high. Although the use of chemometrics is still optional in this case, it is 

recommended in most practical applications. The multivariate approach becomes critical 

for the accuracy of analysis based on NIR spectra, where “pure” variables are practically 

absent due to large bandwidths, as well as the possible influence of water absorption and 

scattering effects. A special case of very low selectivity is presented by the quantitative 

analysis of spectral data based on small shape differences of diffuse peaks and scattering 

profiles of the mixture components. An example of this kind is a developed method (Sec-

tion 6.1) for fat and total protein determination in milk from visible and shortwave (SW) 

NIR spectra obtained in the transmittance [69–73] or reflectance mode [74]. 

One of the main issues related to OMS development is the mathematical optimization 

of the optical properties of OMS channels for a specific application including their work-

ing wavelengths, interval widths, and weighting functions. It was shown that in the case 

of complex mixtures, scattering media, and low-selectivity methods of analysis, the use of 

the traditional expert approach based on a priori knowledge of the spectral properties of 

analyzed samples may be suboptimal [70]. The same applies to well-known interval se-

lection algorithms, such as interval partial least-squares (iPLS) [66,70] and genetic algo-

rithm (GA) [65,73,75]. 

The methods of multivariate calibration and discriminant analysis as well as the cor-

responding chemometrics software, being well established in the analysis of traditional 

spectral data, may require some adaptation to the peculiarities of OMS themselves and to 

their new practical applications. Thus, the limited number of channels, typically a few 

instead of hundreds, prevents the use of spectral smoothing and derivative preprocessing 

[57,59], as well as some baseline correction [76] and variable normalization [55,56,58] 

methods on OMS data. In this situation, new approaches are necessary to increase the data 

information content in complex cases. The decrease in the number of channels may also 

require an increase in the number of samples in order to preserve the statistical represent-

ativeness of the data [77]. On the other hand, multiple linear regression (MLR), the classi-

cal least-squares approach shows in some cases better calibration results on a few preop-

timized data variables than more sophisticated projection methods, such as partial least-

squares (PLS) regression [40,78]. MLR simplicity presents a significant advantage in the 

analysis of big data, in particular, for autonomous process sensors having less powerful 

computers and limited data storage. 

At the same time, the construction of accurate and reliable calibration models and 

their verification should be based on statistically representative, but possibly small and 

therefore carefully designed sets of samples. This and similar experimental issues have 

been considered by a separate scientific discipline called the design of experiment (DoE) 

[79–81] that will be more closely considered below. 

The methods of multivariate curve resolution (MCR), also known as spectral unmix-

ing [61–64,82,83], has important applications in various practical areas, including PAT 

[10]. The MRC method can be beneficial in the development of OMS, in particular, for 
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extracting the spectra of pure components from the mixture spectra, e.g., in determining 

the optimal optical configuration of sensor channels. With OMS data, MCR is typically 

used for exploratory data analysis. However, for certain conditions, MCR can be used to 

construct multivariate calibration models on a few samples only, as shown in [84]. 

When developing and using OMS, special attention should be paid to the problems 

of model validation [55]. The need for constant comparison of analysis results obtained 

by different devices requires a reliable answer about the advantage of a particular method 

or technical solution. This is necessary to compare OMS with the full-spectrum method, 

as well as differing sensor types in a chosen application or different versions of the same 

OMS in the course of the development [53,54,70,74]. 

Model transfer methods can be used [38–40] to compensate for the lack of equipment 

standardization, i.e., possible measurement discrepancy by serial OMS of the same type. 

The intended manifold replication of OMS created for a single application and their pos-

sible worldwide distribution make universal (global) models [41–44] preferred to local 

ones, which need to be built for each device individually. The global modeling strategy is 

an important prerequisite for developing cloud-based data analysis solutions as an alter-

native to the modern desktop chemometrics software. 

Inexpensive, compact, and fast OMS-analyzers are going to become the main drivers 

of PAT development. Process chemometrics covers a variety of topics and aims to answer 

many practical questions. What tasks are usually solved during the process analysis? 

What risks should be avoided or minimized [85]? How to find the necessary or optimal 

combination of sensors [86]? What is the best way to acquire spectral data and reference 

samples [87,88]? What methods of data preprocessing and analysis algorithms are better 

suited for a given analytical problem [89]? How to get an adequately accurate predictive 

model for process monitoring at minimal cost and effort [90]? How to make sure that data 

quality and model reliability are sufficient [91,92]? How to transform the acquired 

knowledge about the process into a control strategy [92]? These and other foundational 

questions should be asked and answered at the design stage of the process, before the data 

collection begins. 

The literature review performed in [5] outlines the current state of science and tech-

nology in the development of optical multisensor systems and helps in paving the way 

for their further development. The importance has been shown of creating compact and 

inexpensive specialized devices based on spectroscopy, which significantly increase the 

efficiency of the analysis of complex objects in determining both individual components 

and cumulative chemical indicators. This expands the capabilities of express analysis, 

field measurements, and in-line monitoring of technological processes. The achievement 

of this goal requires solving a number of problems that form the scientific foundation of 

OMS development, starting with the general methodology for their creation. 

3. OMS Development Methodology 

3.1. General Approach to OMS Development 

This section is devoted to the theory and practical aspects of developing multisensor 

systems. In the proposed approach, the OMS is intrinsically designed as a simplified al-

ternative to the traditional spectroscopy (a full-spectrum method). The simplification is 

achieved through method specialization, which is based on a selection of the most suitable 

spectral intervals for analysis. The mathematical optimization is performed on the full-

spectrum data of a designed experiment [5,45]. 

The OMS development cycle consists of five stages, including certain sequence of 

tasks [6], as shown in Table 2. Each stage serves to achieve a specific goal, and their results 

influence further development decisions. OMS design begins with an analysis of require-

ments of the intended practical application, which determine the properties and the 

budget of the developed analyzer. The study of method feasibility, its operability, and 

achievable accuracy, as well as the decision on the expedience of development itself, are 
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made on the basis of preliminary measurements of model samples by the selected full-

spectrum method or method combination. 

Table 2. The main stages and tasks of OMS development. 

# Stage Tasks 

1 Design 
analysis of requirements, choice of spectroscopy method, full-spectrum measure-

ments, channel optimization  

2 Creation of prototype loop: prototype creation/improvement—testing  

3 Production loop: production model improvement—testing  

4 Commissioning 
installation (if required), loop: building a preliminary prediction model—testing, 

building a working prediction model 

5 Technical support 
device diagnostics and support, model diagnostics, model improvement (local or 

global) 

Note: Underlined steps are related to the application of chemometrics. 

The design stage ends with the optimization of OMS information channels carried 

out on the preliminary obtained data of the full-spectrum method. Each channel is char-

acterized by the properties of the corresponding spectral interval: central wavelength, 

width, and weighting function; and possible channel configurations should be ranked by 

building and testing calibration models. Thus, finding the best set of intervals from full-

spectrum data is a multiparametric optimization problem, the complexity of which grows 

rapidly with the number of channels. 

3.2. Channel Optimization Algorithm 

To speed up the calculations, an approach based on an adapted genetic algorithm 

(GA) [65] including two optimization cycles (Figure 2) has been proposed and tested in 

the work [73]. The outer loop performs a random change of populations (a set of parame-

ters to be optimized) in order to increase the likelihood of finding the best or most accepta-

ble solution. In the inner cycle, the so-called evolution of each population is carried out 

and a local optimal solution is found. At each evolution step, a multivariate calibration 

model is built for the currently tested intervals, and the root mean-square error (RMSE) 

of calibration (RMSEC) is used as the objective function that should be minimized. Each 

new internal optimization solution is validated in the external cycle, for example, using 

cross-validation (CV). The solution with the minimum RMSECV is saved. To reduce the 

calculation time, restrictions can be imposed on channel properties—their quantity, 

width, and relative positions to each other. 

An important extension of the algorithm has been proposed, which allows including 

preprocessing parameters of the analyzed full-spectrum data, such as the derivative or-

der, the smoothing degree, etc., in the optimization (together with the properties of the 

intervals). The proposed approach can be used to improve calibration models in the anal-

ysis of spectral data [5]. 
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Figure 2. Block diagram of genetic algorithm for OMS channel optimization. 

3.3. Illustration of OMS Development Stages Using a Practical Example 

As an example, let us consider the development of LED OMS for the express analysis 

of milk based on the light scattering [69–71], as described in Section 6.1. The motivation 

for this study was the current demand for an inexpensive, compact, and portable analyzer 

for the determination of fat and total protein in milk. Based on the application require-

ments, the region of visible and short-wavelength NIR light (400–1100 nm) was selected 

for the analysis, test sample sets were developed [69,70], and full-spectrum measurements 

were carried out. The experiments have shown the efficiency of the method in the pres-

ence of a significant (exceeding natural) variation in the fat globule sizes. Using the calcu-

lated variable intervals, an optimal set of LEDs for constructing OMS was selected [73]. 

At the next stage of development, the measurement geometry and interface are opti-

mized (Figure 1), as well as other variable technical parameters of the channels, such as 

radiation intensity and pulse frequency of the LEDs. In this case, the physicochemical 

properties of the sample should be taken into account: aggregation state, homogeneity, 

turbidity, flowability, optical density, shape (including the volume available for measure-

ment), surface nature, etc. Optimization of the measurement technique is an expert task 

that requires participation of an analyst with knowledge of chemistry, physics, and spec-

troscopy, as well as data analysis methods. This work assumes the presence of a working 

analyzer, and it is carried out in the second stage, the purpose of which is to create an 

OMS prototype that meets the requirements. The initial prototype configuration is created 

based on the theory and mathematical models. Its further step-by-step improvement re-

quires testing after each constructional change on a specially developed standard series 

of samples. The prototype refinement and testing loop continues until the specified re-

quirements are met. It is important that the testing methodology allows model 
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comparison of different prototypes with each other and with the results of full-spectrum 

analysis. In the milk example, spectroscopic determination of fat and protein can be per-

formed in transmission [69,70,72] or diffuse reflection [71,74] mode. Tests of several pro-

totypes and measurement geometries using the developed test set have shown the oper-

ability of both measurement modes and made it possible to determine the optimal path 

length. 

At the prototyping stage, it is also necessary to ensure the required data quality, in 

particular, the measurement precision (reproducibility). The data quality is provided both 

technically and mathematically by normalizing the data with respect to a reference sample 

(the standard) in order to represent them in optical density units most suitable for quan-

titative analysis. In addition, the normalization minimizes the dependence of measure-

ments on fluctuations in the light source intensity and on the instrumental drift. The 

choice of a reference sample is often a difficult task, for example, in in-line process moni-

toring. In this work, a reference-free analysis has been proposed [74] using the “internal 

normalization” approach (Section 6.1). It has been successfully tested for the determina-

tion of fat and protein in milk through a diffuse reflection probe. 

At the third stage, the developed prototype turns into an analyzer that is ready for 

serial production. In the course of optimization, materials and constructional solutions 

can be replaced with elements, which are more suitable for production and operation, and 

to obtain a more reliable and economic design. At the second stage, the industrial model 

improvement consists in a cyclic testing of each new version using a test set of samples 

until it reaches the required quality and price. Thus, in the milk analyzer example, you 

will need to select the LEDs of appropriate quality and the probe materials regulated for 

food production. 

To start working with OMS (fourth stage), it must be equipped with a predictive (cal-

ibration or classification) model. In the PAT practice, less accurate preliminary “fast” 

models are often used, which are then additionally trained on historical data in the course 

of analysis. A preliminary model can be obtained using a budget experimental design of 

the calibration set or by transferring a laboratory model to new conditions. The stage ends 

with the creation of a full-featured analytical device equipped with a working model that 

provides the required analysis accuracy. 

The OMS data have their own specifics, which can influence the choice of the data 

preprocessing and calibration methods. Thus, the small number of variables and the ex-

pected (due to the channel optimization) absence of strong correlations between them cre-

ate prerequisites for using the classical MLR regression [37] instead of the widespread 

modern projection algorithms of chemometrics, such as regression by the projection to 

latent structures, also called partial least-squares (PLS) method. However, MLR on prese-

lected spectral variables gives excellent results. Its advantages are the simplicity and lower 

computation load, which are important for autonomous work of OMS. On the other hand, 

the small number of variables makes many data preprocessing methods, such as spectral 

smoothing, inapplicable. When analyzing time series, this limitation can be overcome by 

applying smoothing and other algorithms to variables in the time domain (Section 6.2) 

[6,57], in contrast to the traditional aspect, i.e., to the vectors of spectral data. 

As is seen from Table 2, at the first four stages of OMS development, the versions of 

the analyzer are regularly compared with each other and with the full-spectrum method 

on a limited (as a rule) set of test samples. To increase the reliability of such a comparison, 

we have proposed a multilevel validation of calibration models by segmented CV (SCV) 

using segments of various sizes corresponding to different levels of the experimental hi-

erarchy [5,19,70]. Such a hierarchy should be embedded into the DoE in order to check 

various factors. The factors can be, for example: the instrument precision (repeated meas-

urements), the solid sample inhomogeneity (measurements at different points of the sam-

ple), the sample variability (different sources), etc. It has been shown that the comparative 

analysis of errors of different SCVs among themselves, as well as with RMSEC and inde-

pendent test-set validation (TSV) RMSEP, allows a much better estimate of the model 
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stability of future samples than individual validations. The multilevel (or nested) valida-

tion helps identify the shortcomings of the analytical method, and optimize the modeling 

parameters. 

The multivariate model installed on OMS may need support in the course of its prac-

tical use. This is the content of the last fifth stage of development [6]. OMS model support 

is necessary to ensure that the required analysis accuracy is maintained. The support may 

include the following elements: self-testing of the spectral quality against an internal or 

external standard, testing new data for compliance with the model, taking control samples 

and their laboratory analysis followed by the assessment of prediction error tolerance, and 

continuous measurements in order to detect unwanted time deviations (instrument drift, 

noise growth, changes in the signal shape). If necessary, additional training or complete 

replacement of the model may be required. 

The miniaturization and cost reduction of analysis incorporated in the very concept 

of multisensory approach (Table 1) open up opportunities for widespread replication of 

devices and their mass use in common applications, for example, for determining the nu-

tritional value of milk. This creates the need, on the one hand, to provide many systems 

distributed around the world with an up-to-date model, and on the other hand, the ability 

to continuously update this universal (or global) model using data obtained by individual 

OMS working on-site. The possibility of building a global model and its transfer has been 

tested on the OMS for milk analysis considered here as an example. An important role in 

this example belongs to the same test set of samples that was developed above at the first 

stage. 

The concept of global modeling assuming centralized work with data from distrib-

uted analyzers was implemented in the TPT-cloud software package [93,94] running on a 

remote server “on the cloud” at tptcloud.com (accessed on 15 May 2021) and available via 

a standard internet browser. The software provides mathematical support for the full cy-

cle of creating and using OMS: optimize OMS channels, load data from various sources, 

conduct data preprocessing, build predictive models, and save them for practical use. 

4. Designing a Calibration Experiment 

4.1. General Construction Rules 

The accuracy of analysis directly depends on the structure of data used to build and 

test the final or intermediate (widely used in the OMS development) predictive models. 

This section focuses on the design of the experiment for quantitative spectral analysis of 

mixtures. The construction of calibration models for several components on the same set 

of measurements is an important issue that has not been fully addressed by the theory 

[79]. 

One of the most important differences from the traditional DoE relates to a signifi-

cantly larger number of levels (l) used for varying the values of calibration factors, e.g., 

component concentrations. A well-balanced calibration set should consist of a sufficiently 

large number of samples (N) uniformly distributed over the k-dimensional experimental 

space of factors. The main task, in this case, is to obtain the best model, i.e., to increase the 

accuracy of the subsequent prediction; thus, the optimal set of samples should be pro-

posed before the experiment. Therefore, the way to a “good” calibration lies through re-

ducing the risk of introducing various errors. This can be achieved by the following sys-

tematically formulated requirements given in paper [81]. 

Uncorrelated factors. Pairwise correlations between factors should be kept to a min-

imum. This requirement is of paramount importance. This is the only way to avoid indi-

rect dependence, also called confounding, when the calibration model for one component 

is based on its correlation with another one and not with the measured analytical signal.  

Uniform filling. A well-balanced calibration set should be sufficiently representative 

and include many samples evenly distributed along the factor axes. Therefore, there is a 
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need for a sufficiently large number of planning levels. The design matrix C (N × k) may 

include tens or hundreds of measurements depending on the analytical problem.  

Experimental space coverage. The regression model is intended for prediction on 

new samples lying inside a convex formed by training samples in the factor space. Other-

wise, this is an extrapolation, and prediction reliability is not guaranteed. Therefore, one 

of the tasks of DoE is to provide maximum coverage of the experimental space with sam-

ples. The coverage percentage should be considered as the ratio of the volume of the con-

vex k-dimensional polyhedron formed by the samples to the total volume of the experi-

mental space. The filling is 100%, if all the vertices of the polyhedron contain samples. 

Emptiness of the border regions adjacent to the corners of the experimental space can have 

a particularly negative effect on the prediction quality in the presence of factor interaction, 

for example, due to a chemical complex formation between the components. 

Built-in validation. A well-designed calibration experiment should include a prede-

fined (a built-in) test set of samples or provide a way to create it afterwards. The built-in 

test set must be representative of the training set, and therefore, be generally similar to it. 

At the same time, it should not have close neighboring samples from the training set (the 

worst case is a coincidence). In addition, the test samples should not occupy the utmost 

positions of the coverage area at the boundaries of the experimental space. It is useful to 

have the ability, provided by the DoE scheme, to build a regression model both for the 

full set of samples and for the training set only, while the test samples are excluded. In 

that case, the exclusion of test samples should not lead to any imbalance and significant 

deterioration of the model. Despite the obvious importance of the problem, no DoE meth-

ods have been found in scientific literature that combine training and validation sets of 

calibration samples within one scheme. This shortcoming is inherent even in the classical 

comprehensive full-factor design that has samples on all levels of all factors. 

Interpretability. The arrangement of samples in the experimental space is transferred 

to the factor space of the multivariate calibration model and can be subsequently ana-

lyzed, for example, in PLS score plots. The distortions underwent by the DoE scheme, 

when it is transferred to the space of latent variables (LVs) carry useful information about 

the factor significance in the model, about the presence of interfactor correlations and in-

teractions, non-linearities and outliers, as well as about the physical meaning of LVs them-

selves. 

Additional properties. Calibration DoEs built around a central point are well suited 

for the analysis of objects having an expectedly constant, e.g., natural, standard or target 

chemical composition. The sample of expected composition is then set into the center of 

experimental space and others are alternately added to its periphery. Such “centrifugal” 

schemes can be used to enrich an existing model with new samples and to expand the 

experimental space boundaries, which is not always possible in other DoEs. Some DoE 

methods (for example, random selection of samples) cannot be unambiguously described 

by a combination of N, l, k values. In order to reproduce the experiment in this case, it is 

necessary to store the entire design matrix of concentrations. Another important feature 

of any design is the building simplicity of schemes. The above-described additional prop-

erties of calibration DoE are not mandatory requirements, but they affect the method prac-

ticality and functionality. 

4.2. Diagonal Design 

Based on the formulated requirements, a new approach to the experimental design 

of a multicomponent calibration experiment has been proposed. In accordance with this 

approach, called diagonal design (DD), the samples are systematically distributed along the 

diagonals of the experimental space represented by a square, cube, or hypercube. Conse-

quently, the mutual correlations of the component are minimized, and the uniformity of 

filling the factor space is ensured. DD is unique in that it has a built-in test set. Due to its 

simplicity, it can be implemented without a computer. 
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The main assumption of DD is the linear dependence of the analytical signal on the 

concentration. However, some moderate deviation from linearity is not an obstacle for the 

practical application of the method. The factors in DD must be controlled so that the val-

ues of analyzed concentration can be arbitrarily varied. Multivariate calibration design 

follows three simple rules: 

(a) The experimental space is a hypercube: the intervals of all factors are split into the 

same number of levels; 

(b) The samples are uniformly distributed along the diagonals of the hypercube; 

(c) Each level of each factor is represented by one and only one sample (Latin hypercube 

condition). 

Two additional rules apply to the test set: 

(d) Test samples should not occupy adjacent levels of any dimension of the experimental 

space; 

(e) Edge samples on the diagonals are not used. 

The most practically important case is the simultaneous calibration for two compo-

nents with or without a central point. The central sample, if it exists (its absence does not 

affect further filling) is always placed in the origin and gets ID = 0. 

The ID number of subsequently added samples increases incrementally (Figure 3). 

The samples are added from the center to the periphery following the “rule of the cross”: 

the first sample is placed at the nearest diagonal position of the first quadrant, and subse-

quent odd elements alternate between semi-diagonals in quadrants I and IV, always tak-

ing the next vacant place. After adding an odd sample, its even “twin” is simultaneously 

placed in a symmetrical position on the corresponding adjacent semi-diagonal in quad-

rant II or III. The advantage of the proposed diagonal scheme is its practicality. A two-

component experiment is easy to design on checkered paper. The conditional coordinates 

used here are convenient for the creation of a scheme. After that, they can be easily recal-

culated, e.g., into concentrations. 

 

Figure 3. Two-factor diagonal schemes with the central point for: (a) 27 experiments with a test set 

(black circles) starting with the sample ID = 0 (�2���
�� ); and (b) 25 experiments with a test set (black 

circles) starting with the sample ID = 1 (�2���
�� ); Roman numerals designate the quadrants. 

Two-component schemes and their elements have been tested in the works of the 

author and other researchers. Figure 4 shows the results of simultaneous calibration for 

ethanol and glucose from IR-spectra of aqueous solutions of the components mixed ac-

cording to the scheme �2���
��  (Figure 3b). (Designation �������

�  of an experimental design 

has been introduced; �  means diagonal design; k is the number of factors; N is the 
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number of samples; DS and VS are the sequence numbers of the first samples in the train-

ing and validation (if any) sets, respectively.) This test series of samples was used to com-

pare the full-spectrum method (Figure 4a) and prototypes of the developed OMS for the 

fermentation process monitoring [32]. It has been shown that the presence of a built-in test 

set of samples in addition to full leave-one-out cross-validation (LOOCV) on the entire set 

serves well both for determining the number of latent variables (LVs) in the PLS regres-

sion and for comparing models or analytical methods. Cross-arrangement of samples can 

be easily traced on the graph of PC-scores (Figure 4b,c), thus facilitating their interpreta-

tion. In particular, it reveals the presence of an outlier, the presence of correlation of spec-

tral signals, and possible non-linearity of the response. 

 

Figure 4. Application of a diagonal design �2���
��  (from Figure, where c1 is a decreasing concentra-

tion of glucose and c2 is an increasing concentration of ethanol) for the determination of ethanol 

and glucose in their aqueous mixture by IR-spectra: (a) spectra; and PLS score plots (b) of ethanol 

and (c) of glucose in the first two latent variables. 

4.3. Diagonal Design Generalization for Three and More Components 

The above-described algorithm for alternating filling of diagonals, starting from the 

center, can be generalized for experimental space of any dimensionality k [81]. Its clear 

geometrical illustration is the Archimedean spiral in polar coordinates (Figure 5), which 

helps in planning calibration experiments without a computer. 
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Figure 5. DD filling scheme with four pairs of test samples (black circles) for (a) two, (b) three, and (c) four factors. 

To illustrate the DD filling algorithm, let us consider a three-component system in 

Figure 5b. Each axis outgoing from the origin represents one of the four (2k−1) diagonals of 

the cubic experimental space. The algorithm operates on semi-diagonals identified by unit 

direction vectors pointing to the respective vertices. The direction vectors are designated 

by “+” and “−” signs at the end of an axis in Figure 5. For example, 
���

���
 in Figure 5b 

denotes two halves of the diagonal connecting the cube vertices indicated by the vectors 

(1,−1,1) и (−1,1,−1). The central sample #0 is set at the origin. Each subsequent enumerated 

position along the developing spiral (circles in Figure 5) determines the diagonal being 

filled, and hence the centrally symmetric pair of experiments located on it. The conditional 

coordinates of these experiments are obtained by multiplying the ordinal number of the 

current spiral positions by two corresponding opposite direction vectors. Thus, the central 

element gets the coordinates (0,0,0), moving to the position 1 adds points (1,1,1) and 

(−1,−1,−1), the position 2 generates (−2,2,−2) and (2,−2,2), etc. The resulting three-dimen-

sional DD scheme for 27 samples is presented in Figure 6 using pairwise projection planes. 

The spiral scheme also offers a simple rule of thumb for selecting the test subset sam-

ples. The first pair of test samples follows from the design scheme itself (position 1 in 

Figure 5b). Then, every third position along the developing spiral forms a pair of test sam-

ples that meet the above requirement (d). 

Two- and three-component calibrations are the most important in practice. Further 

generalization of DD for four and more factors is complicated by the loss of filling invar-

iance. In other words, different sequences of diagonals in the algorithm lead to different 

schemes. Therefore, the paper proposes an algorithm for finding an optimal sequence of 

diagonals in the filling scheme. To create effective calibration DoEs for four and more 

components, several extensions of DD have been proposed, in particular, those based on 

the rejection of the Latin hypercube. 
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Figure 6. Diagonal scheme for three factors with 27 samples, with a central sample and a test sub-

set (black circles), starting with sample #1 (�3���
�� ). In each two-factor projection (a–c), the samples 

with negative values of the third (hidden) factor are marked with a cross. 

The theoretical principles of constructing training and test sets for multicomponent 

calibration, as well as the developed DD schemes, were successfully applied in the OMS 

development for a number of applications, in particular, for determining the total fat and 

protein in milk and in-line monitoring of various processes in PAT (Section 5). The reader 

can design the required diagonal calibration scheme for any number of components using 

Matlab code published in [79,81]. 

5. Optical Multisensor Systems in Process Analytical Technology 

5.1. The Concept of Project Trajectory 

Process analytical technology is an important branch of modern analytical chemistry. 

Research in this scientific field covers a wide range of processes—from the lab synthesis 

kinetics to industrial production plants and environmental monitoring. Today, PAT is 

rapidly developing, thus giving momentum to research in the field of spectroscopic anal-

ysis and multivariate data modeling. This section is devoted to the theory of development 

and application of OMS in PAT. A methodological concept of the process trajectory in the 

space of analytical variables has been proposed and systematically elaborated [10]. Rec-

ommendations are given on its use in process monitoring, control, and optimization. In 

particular, a methodology of the development cycle of spectroscopic methods for process 

analysis has been formulated, and the methods of solving its main tasks have been sys-

tematized. 

The trajectory exists in the space of variables chosen by the analyst for presenting the 

process course. In this sense, the trajectory is a projection of the whole process as a com-

plex phenomenon onto the selected space. One can select an infinite number of possible 

spaces and the resulting trajectories of the same process can differ strikingly. The set of 

required variables forming the analytical space is determined depending on the presented 

analytical problem. The analytical space is schematically represented in Figure 7. In the 

following presentation, this diagram will be used to illustrate and discuss the main prop-

erties of trajectory. 
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Figure 7. Process trajectory schematic: the progressed (solid line) and the predicted (dotted line) 

trajectory, sampling points with an error estimate (green circles), analytical (green triangle) and 

time (hollow triangle) cursors, the area of normal process course (shaded), areas of acceptable 

quality of row material and product (gray rectangles). 

Being a natural attribute of all process types, the multivariate trajectory is a conven-

ient tool for systematically considering various PAT aspects. Any tasks of analytical pro-

cess control can be considered from the point of view of capturing, transforming, and 

subsequent use of the respective trajectories. Practical examples of project trajectories 

[10,95] are shown in Figure 8. 

 

Figure 8. Examples of two-dimensional trajectories using in-line prediction: (a) pellet coating pro-

cess; original (gray line) and smoothed (black line) trajectories, as well as reference measurements 

(circles); and (b) milk production process in mass fraction coordinates of fat and total protein; the 

gray color gradient indicates process time. 

5.2. Process Analysis Workflow 

The process analysis is represented by a cyclic diagram in Figure 9 [10]. This diagram 

is divided into three sectors, containing the actions before, during, and after the processing 

time (before the next cycle). Cyclicity is an important concept that reflects the need for 

effective use of the accumulated (in the form of data and models) experience. The scheme 

is designed to assist the development of PAT methods using OMS. The data accumulation 
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is preceded by the choice of optical sensor channels—physical variables of the analytical 

space, in which the primary acquisition of the process data is performed. The main re-

quirement for the sensor channels is their ability to deliver the data necessary for solving 

the problem at hand. The starting set of sensor channels can be redundant. A process spec-

trometer is often used as the first prototype in the OMS development. The measurement 

mode and interface, reference sample, and data acquisition conditions are selected accord-

ing to the task (Section 3). With repeated passes of the cycle in Figure 9, the OMS design 

and the data acquisition parameters can be improved based on the collected experience in 

order to achieve the optimal (from the application point of view) configuration of the sys-

tem channels. 

 

Figure 9. Generalized scheme of process analysis: optional actions are marked in gray; underlined 

font indicates application of chemometrics. 

The application of chemometrics makes it possible to use virtual variables resulting 

from the prediction by a calibration (as well as discrimination or another) model built on 

already collected data. As a rule, this stage is accompanied by compression of the analyt-

ical space using regression and variable selection [45,63,70,73] methods.  

The raw data collected during the process can be preprocessed and help visualize the 

trajectory using a previously created model. Almost any projection method—PCA, PLS 

regression, or MCR [61–64] can be used to resolve and render trajectory from the multi-

variate spectroscopic data. Trajectory visualization is needed, first of all, to perform the 

process monitoring. Progressing trajectory observed in the course of the technological 

process is subject to continuous analysis, i.e., visual assessment by the operator or auto-

matic interpretation using software, for the timely detection of an “alarm” situation. This 

situation means that the process is out of the normal course (Figure 7) and requires any 

control actions for its elimination. The cycle “impact on the process—trajectory analysis” 

is repeated until the problem is completely eliminated (loop in Figure 9). 

The data obtained after the process completion become historical and can be used to 

create a new model or update a previously created one. The historical data can also be 

used for exploratory analysis for in-depth understanding and eventually for the improve-

ment of analytical methods and even the manufacturing process itself. Before the begin-

ning of each new analysis cycle, OMS can be improved both technically by means of fur-

ther optimization of the channel configuration and in terms of the analytical space, by 

choosing new physical and virtual variables. The effectiveness of the improvement should 

be thoroughly tested using a standard validation set of samples and appropriate ap-

proaches such as nested validation (Section 3). 

5.3. Trajectory Application in Process Analytical Technology 

The concept of trajectory is very useful when discussing process analysis in PAT. The 

following PAT goals are usually distinguished: process monitoring, control, 

select sensors
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undertake control actions
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understanding, and optimization. Each of these goals includes a number of specific prac-

tical tasks that can be solved using OMS. Table 3 describes the goals, objectives, and solu-

tions in terms of analytical space and multivariate trajectory [6,10]. 

Table 3. Goals and tasks solved in PAT. 

Goal Task Solution 

Monitor 

alarm row/end product quality trajectory start/end point goes out of acceptability region  

aware normal process course keep trajectory cursor within acceptability region 

determine end-point trajectory cursor reaches predefined end criteria 

real time release 
analytical space includes all critical quality attributes, the ana-

lytical cursor lag is minimized 

Control 

feed-back control return deviated trajectory into the acceptability region  

feed-forward control 
keep predicted trajectory within the product acceptability re-

gion 

Understand 
avoid technical risks investigate trajectory features, study process effects 

avoid process analytical risks use well-designed analytical space and high-quality trajectory 

Optimize 

reduce costs design process with a shorter trajectory 

improve product quality 
design analytical space for precise trajectory, restrict acceptabil-

ity area 

Modern optical analyzers—process spectrometers and OMS—are the most im-

portant PAT tools. Their development and implementation into production is a key con-

dition for solving the main task of process analysis, which is continuous monitoring of 

processes in real time. The number of monitoring objects is constantly growing, which 

brings process control to a qualitatively new level. Strengthening analytical control in 

manufacturing through the widespread use of in-line measurements and, as a result, a 

deeper understanding of technological processes contributes to higher product quality.  

6. OMS Development and Application Examples 

This section contains illustrative examples of the development of OMS and corre-

sponding new or improved analytical techniques in various areas of practical application: 

food and pharmaceutical industries, biotechnology, medical diagnostics, and ecology. The 

presented systems are at different stages of development (Table 2) that follow the princi-

ple of simplifying the full-spectrum method by optimizing it for a selected application. 

The optimization is based on preliminary measurements using a laboratory or process 

spectrometer. 

6.1. Scatter-Based Determination of Fat and Protein in Milk 

A new optical method for the analysis of milk for fat and total protein content using 

spectrally observed light scattering in the 400–1100 nm region has been suggested [69,70]. 

It was presented as the basis for the development of an OMS on light-emitting diodes 

(LEDs). 

A prerequisite for the accurate quantitative determination of colloidal components 

of natural (non-homogenized) milk is the ability of the spectral method in combination 

with chemometric data analysis to distinguish low-selective spectral profiles of scattering 

particles having different types and sizes: protein micelles (mainly 80–200 nm) and fat 

globules (1–15 μm) [71]. To validate the method, a series of calibration experiments was 

performed with artificial milk samples prepared according to the principles outlined in 

Section 4, including the use of DD [69,70]. To account for natural variation in the fat glob-

ule sizes, each sample was analyzed both in its initial state and after a step-wise ultrasonic 

homogenization. Analysis of full-spectrum data (Figure 10a) of the laboratory prototype 

and exploratory factor analysis of a PCA model have shown the feasibility of accurate 
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determination of fat and total protein (Table 4) in natural milk in the presence of particle 

size variability. The sample grouping in accordance with their homogenization degrees 

confirms the result, as observed in Figure 10b [70]. 

Table 4. Nested validation statistics of calibration PLS-models for different OMS prototypes in the analysis of milk for fat 

and total protein content. 

 Method OC a LV b 
RMSE 

Cal. LOOCV SCV TSV 

F
at

 Full-spectrum c 401 5 0.089 0.098 0.102 0.103 

LED-OMS transmittance d 7 5 0.088 0.095 0.099 0.090 

LED-OMS diffuse reflectance (ref.-free) e 9 5 0.094 0.102 0.104 0.091 

P
ro

te
in

 

Full-spectrum 401 4 0.040 0.042 0.043 0.040 

LED-OMS transmittance 7 4 0.051 0.054 0.059 0.054 

LED-OMS diffuse reflectance (ref.-free) 7 5 0.065 0.071 0.073 0.072 

Notes: a The number of optical channels; b the number of LVs in PLS-model; c diode-array spectrometer measurement in 

transmittance mode through a cuvette with optical path of 4 mm; d calculated LED-OMS in transmittance; optimal LEDs 

were chosen from a data base (emission maximum, nm): 400, 430, 450, 507, 831, 850, and 905; e calculated OMS for space-

resolved measurement in diffuse reflectance mode; optimal parameters of calculated LEDs (maximum/half-height width, 

nm) at different channels were: 704/32, 973/54 (C2); 597/24, 616/26, 941/50 (C3); 516/20, 736/34, 852/42, 899/46 (C5) for fat and 

489/18, 876/44 (C1); 419/14, 697/30 (C4); 490/18, 588/24 (C5); 439/16 (C6) for total protein analyzer. 

Global calibration models were built for the initial full-spectrum method imple-

mented on the basis of a laboratory diode-array spectrometer [43]. Both models were 

based on more than 1000 samples collected during a year in the district of Samara and 

adjacent regions. RMSE of both fat and protein determination were about 0.1% in the fat 

and protein content ranges of 1.55–4.97% and 2.27–4.25%, respectively. The possibility of 

model transfer to another spectrometer of the same type by the slope-and-bias correction 

method has been shown. The model is transferred without any significant loss of accuracy. 

The first OMS prototype was built on the basis of three LEDs in the visible region, alter-

nately illuminating milk samples placed in a Petri dish through a light guide connected 

from below [72]. Detection was carried out using a digital camera photographing diffuse 

light spots on the sample surface. Calibration models based on the selected image features 

have shown the fundamental feasibility of LED-based OMS analysis for the determination 

of fat and total protein in natural milk. 

 

Figure 10. (a) Spectra of 96 measurements of the calibration samples (gray lines) with highlighted 

characteristic samples at different homogenization times; and (b) their representation in the PC1–

PC3 plot of the PLS model for fat content. The color saturation corresponds to the fat concentration 

and the marker size corresponds to the sample homogenization degree; circles represent samples 

with predominant variation in fat, and squares—in protein content. 
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LED configurations for OMS for the simultaneous determination of fat and protein 

in transmittance mode were calculated using the optical channel optimization algorithm 

on full-spectrum data (Section 3). The system with 7 LEDs at selected wavelengths proved 

to be almost as accurate as the original method [70]. 

A separate full-spectrum experiment (Figure 11) has shown the effectiveness of using 

spatial resolution (in addition to the spectral information) to increase the accuracy of milk 

analysis in diffuse reflectance mode [74]. The spectral detection at different distances from 

the light source was carried out using a probe with an array of eight fiber channels. For 

the data analysis, we proposed a reference-free method, where one of the probe channels 

was used for internal comparison. 

The calculation of the LED-OMS was carried out on augmented spatially resolved 

data, where all channel data of the same measurement are connected into a single spec-

trum (Figure 12). Each spatial channel has its own optimal set of LED sources (the inven-

tion is patented [48]). Being easy to maintain, diffuse reflectance OMS for milk analysis 

are well suited for the field and in-line analysis. The need to use light guides means 

weaker signal intensities than in a transmission measurement. Nevertheless, the method 

has shown almost the same accuracy (Table 4). This can be explained by the positive effect 

of spatial resolution in combination with the channel optimization and reference-free 

measurement improving the precision. 

 

Figure 11. Experimental set for the space resolved spectroscopic measurement. The arrangement 

of channel on the working surface of the probe is indicated by numbers 1 to 6; L and R are illumi-

nation and comparison channels, respectively. 

 

Figure 12. Calculated configuration of LED-OMS with spatial resolution for the analysis of milk: (a) fat content and (b) 

total protein content; LED emission peaks of the corresponding OMS are shown over the original spectra (gray lines). 
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6.2. In-Line Quality Monitoring of Solid Pharmaceutical Forms 

A number of practical OMS development examples are presented for the in-line qual-

ity monitoring of solid pharmaceutical forms, namely: residual moisture content [57,95], 

concentration of an active pharmaceutical ingredient (API) [10,95], layer thickness of a 

polymer protective coating [95], counterfeits detection [96], and real-time prognosis of ex-

pected product solubility [97]. A DAD process spectrometer in the NIR region was used 

as the main full-spectrum method. The analyzer was equipped with a specially designed 

diffuse reflection probe immersed in the process medium [22].  

One of the issues of in-line analysis of pharmaceutical powders and granules is the 

lack of water determination accuracy due to the high turbulence of fluidized-bed drying 

processes, which leads to strong variations in the total spectral intensity. It has been 

shown [57] that the mathematical preprocessing of spectra (the so-called scatter correc-

tion), which is traditionally used to eliminate this effect, simultaneously eliminates useful 

spectral information associated with the dependence of light scattering on the moisture 

content of the powder. This dependence is manifested in the fact that even the spectral 

wavelengths that do not belong to the absorption bands of water have a high correlation 

with the mass fraction of water in the granulate (Figure 13a). 

To obtain the maximum accuracy of water determination, the modeling was per-

formed on a representative set of designed experimental data (25 process batches, 16,303 

in-line spectra, 301 reference samples). To preserve the entire data variance correlating 

with the water content, the stochastic fluctuations in spectral intensities were eliminated 

by smoothing along the time axis using the moving average method. Such preprocessing 

can significantly improve the data quality, and helps to avoid the information loss caused 

by the scatter correction. The use of DoE in combination with the time-wise smoothing 

made it possible to reduce the RMSE of %H2O (g/100 g) content prediction from the usual 

0.3% to 0.1% in a wide concentration range (Figure 13b) [57]. 

 

Figure 13. In-line determination of residual moisture during a granulate drying process: (a) time dependences of the row 

(gray line) and smoothed (red line) spectral intensities at selected wavelengths, as well as reference values of %H2O 

(crosses); and (b) the predicted versus measured plot of the PLS regression on smoothed data; the calibration and test 

sample sets are designated by the hollow and solid markers, respectively. Time smoothing of the data was performed 

using the moving average with a window width of (a) 47 and (b) 15 points. 

Another example illustrating the effectiveness of time-domain smoothing is the data 

analysis of a low-resolution OMS working in a narrow spectral region. The system was 

installed in the powdered food additive production line for the monitoring of moisture 

content (the composition cannot be disclosed because of the manufacturer requirement) 

[6]. The data are strongly affected by noise, which cannot be eliminated by spectral 

smoothing due to the insufficient number of variables (Figure 14a). Calibration is 
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complicated by the product inhomogeneity and density variations in the flow. PCA ex-

ploration analysis did not reveal any useful internal structure in the raw data. However, 

after the variable smoothing in the time domain, the PCA loadings showed spectral fea-

tures characteristic of water absorption (PC2 in Figure 14b), which indicates the feasibility 

of its quantitative determination. The respective PCA scores reflect the project trajectory 

(Figure 14c) in this case. PC1 most likely reflects the observed decrease in the spectral 

background, which responds to the powder flux density. In the given example, the chosen 

data preprocessing played a decisive role in substantiating the method feasibility. 

 

Figure 14. (a) Process spectra: all data (gray lines), raw spectrum with index 161 (black) and spectrum 161 after the data 

smoothing in the time domain using the moving averaging method with the window width of 101 points (red line); (b) 

PCA loadings and (c) PCA scores for smoothed data. 

Another process that requires in-line monitoring is the protective coating of pellets 

with a polymer shell, which provides a sustained release of the API in the patient’s diges-

tive tract (the so-called targeted delivery). In the first series of experiments, the expediency 

of combining in-line methods of NIR and Raman spectroscopy was shown to obtain an 

informative process trajectory, including the main quality factors of the produced pellets: 

the quantities (thicknesses of the corresponding coating layers) of the applied API and the 

protective coating, as well as the humidity regime were maintained during their spraying. 

The combined data of the methods are well suited for exploratory analysis, in particular 

for MCR, which provides an in-depth understanding of the process. The PLS calibration 

model for water content built on the combined data gives a higher prediction accuracy 

than either method alone. Such synergy is absent for determining the polymer coating 

thickness, where NIR spectroscopy showed the best result. 

A separate task in the analysis of pellet manufacturing processes and in the develop-

ment of the corresponding OMS is the profile prediction of the API release from pellets 

based on the process NIR (the concept of feed-forward control, Table 3). The dissolution 

kinetics determines the quality of the produced pellets, and its in-line monitoring is nec-

essary for the real-time product release (RTR), which is an important task of the PAT. The 

designed experiment [97] included 12 process batches with two types of the coating ma-

terial and different sets of conditions. Solubility tests of the pellet samples taken at differ-

ent production stages from the process environment showed that the fraction of released 



Sensors 2021, 21, 3541 26 of 37 
 

 

API � versus time t, regardless of the material and coating thickness, is adequately de-

scribed by an equation with two constants m and k, similar to the kinetics of autocatalysis, 

where m is responsible for the release rate (slope), and k reflects the induction period (de-

lay): 

�(�, �, �) = 100�
���[(� + �)�] − 1

� + � ���[(� + �)�]
 

The study has shown that the parameter m depends on the coating material only, and 

thus, it can be calculated from the respective batch data using the method of successive 

Bayesian estimation, according to which the data of individual batches are processed one 

by one, and the estimates obtained by a non-linear approximation of the previous batch 

are used as a priori information for the next one. Another constant k is closely related to 

the applied coating thickness (spectrally observed through the total mass of the deposited 

material) and, therefore, can be determined using a calibration on the process NIR spectra. 

A validation using individual batches (Figure 15) has proven that the method is effective 

for practical in-line prediction of solubility profiles, and the obtained results provide val-

uable information for further OMS development and RTR implementation [97]. 

 

Figure 15. Sample dissolution test data (markers) and in-line prediction (lines) of API release for a 

test batch of the pellet coating process. 

In a separate experiment, the feasibility of determining the pellet coating thickness 

through their average size was shown by analyzing digital images of samples taken from 

the process environment [98]. The approach can be presented as the basis of an OMS for 

express analysis at-line or can be modified into an in-line method. 

6.3. Process Monitoring in Biotechnology 

The third example illustrates the development of different OMS for the monitoring 

of biotechnological S. cerevisiae yeast fermentation process based on IR, NIR [35], and flu-

orescence [49] spectroscopy. A multisensor IR analyzer determining the concentrations of 

ethanol, glucose, and fructose using in-line measurements in the attenuated total reflec-

tion (ATR) mode was developed. Two types of ATR probes based on polycrystalline in-

frared fiber (PIR) with different ATR elements were used: diamond crystal (DATR) and 

an inexpensive interchangeable PIR loop (LATR). Two spectrometric technologies were 

also tested in developed OMS: a diffraction-grid spectrometer with a pyrodetector 
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PYREOS (GrS) and a tunable interferometer of the Fabry–Pérot type (FPI). The spectral 

“fingerprints” region of 1150–950 cm−1 was chosen, which contains distinct absorption 

bands of the studied components [35]. 

The development approach described in Section 2 was used, which is based on sim-

plifying the FTIR-DATR “gold-standard” method by means of replacing the spectrometer 

or the probe. Three OMS prototypes were developed and characterized using the test sam-

ple sets of 25 binary ethanol–glucose (EG) and fructose–glucose (FG) mixtures mixed ac-

cording to the �2���
��  scheme of DD (Figure 3b) [81]. The IR spectra of the full-spectrum 

method for the ethanol–glucose system are shown in Figure 4a. The transition from FTIR-

spectrometer to GrS or FPI, as well as the replacement of a diamond probe with an inex-

pensive and easily replicable LATR are associated with a loss of spectral resolution and 

signal quality. Nevertheless, the obtained multivariate models retain high accuracy (Table 

5), which is practically acceptable for a number of process monitoring applications, for 

example, in the food industry. The performance of the GrS-LATR system has been con-

firmed by tests in a fermentation process environment in a laboratory bioreactor. 

Table 5. Nested validation statistics for the PLS calibration models for the determination of ethanol, glucose, and fructose 

built on a designed sample set using the data by different IR-OMS prototypes. 

Set/Analyte Spectral Method Probe LV a 
RMSE 

Cal. LOOCV TSV b 

E
G

-s
et

 et
h

an
o

l FTIR c DATR d 2 4.55 5.79 5.10 

GrS e DATR 2 5.18 6.67 5.63 

GrS LATR f 2 7.76 10.58 8.34 

FPI g LATR 2 7.48 9.74 5.75 

g
lu

co
se

 FTIR DATR 2 5.47 6.66 5.53 

GrS DATR 2 9.77 11.99 10.87 

GrS LATR 2 9.12 11.95 11.62 

FPI LATR 2 8.30 9.87 5.96 

F
G

-s
et

 et
h

an
o

l FTIR DATR 3 0.96 1.14 1.11 

GrS DATR 3 2.21 3.82 3.71 

GrS LATR 3 11.07 17.10 16.45 

FPI LATR 3 2.92 6.64 1.58 

g
lu

co
se

 FTIR DATR 3 2.35 2.92 1.82 

GrS DATR 3 3.76 6.76 4.03 

GrS LATR 3 7.78 14.11 9.30 

FPI LATR 2 8.03 9.65 10.45 

Notes: a The number of latent variables in PLS model; b test set according to DD (Figure 3b); c FTIR-spectrometer Matrix 

MF (full-spectrum method); d ATR probe with diamond element; e spectrometer prototype based on diffraction grid with 

pyroelectric detector; f ATR probe with the replaceable element formed by a PIR fiber loop; g tunable spectrometer-inter-

ferometer Fabry–Pérot. 

In the OMS development, therefore, the chemometric data analysis largely compen-

sates for the lack of selectivity. The considered results show the fundamental possibility 

of creating optical multisensor systems in the IR region for the analysis in the biotechno-

logical process environment, which determine the content of ethanol, glucose, and fruc-

tose in concentrations that are typical for fermentation. The ability to determine various 

carbohydrates independently gives an undoubted advantage over existing single-chan-

nel, for example, refractometric analyzers. 

Two OMS prototypes for in-line monitoring of S. cerevisiae fermentation were devel-

oped on the basis of fluorescence spectroscopy. One of the problems of both simple and 

two-dimensional (2D) fluorometric analysis of such media is the strong superposition of 
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weak signals of biological fluorophores on the excitation band [49]. It is especially chal-

lenging when the fluorescence signal is weak and appears against a noisy background. 

The emphasis of the study was placed on overcoming these effects using the new methods 

of data acquisition and their multivariate analysis. 

The first example shows a positive effect of an additional NIR radiation source from 

a single-channel light-scattering biomass sensor that was present in the bioreactor. The 

additional band with a maximum at 870 nm in the observed in-line spectra significantly 

improves the accuracy of biomass prediction compared to using the individual regions of 

fluorescence or NIR sensor separately. An explanation was found using MCR, which 

showed that the scatter intensity dependence on the yeast cell concentration makes it pos-

sible to distinguish the increasing fluorescence of intracellular fluorophores from the de-

creasing fluorescence of similar substances in the fermentation medium. 

To develop an in-line monitoring method for S. cerevisiae cultivation by means of two-

dimensional fluorimetry, 39 excitation-emission spectral matrices (EEM) including fluo-

rescence spectra at 24 excitation wavelengths were collected during the process. Due to 

the strong dominance of the excitation band in the spectra, the initial process data were 

poorly suited for traditional factor analysis; any standard preprocessing was found to be 

destructive for weak fluorescence signals. A new MCR-based algorithm has been devel-

oped for the analysis of this data, which allowed resolving both the process trajectory and 

pure two-dimensional EEMs of individual fluorophores [49]. 

The tests of various optical spectral methods in four fermentation processes of the 

yeast S. cerevisiae have shown that OMS development is promising, including systems 

based on both IR spectroscopy and fluorimetry (one- or two-dimensional). The maximum 

use of spectral information, as well as the use of exploratory data analysis at the method 

development stage, is important for the fermentation process monitoring. 

IR systems on the basis of modern detectors with the help of chemometrics are able 

to selectively and accurately determine ethanol and various carbohydrates. Fluorimetry 

can determine the biomass content and oxygenation of the medium. Therefore, the meth-

ods can be successfully combined to build informative analytical spaces and process tra-

jectories (Section 4) [10]. 

6.4. Medical Diagnostics 

Medical diagnostics is one more practically important area for the application of 

OMS. In the present series of studies, several prototypes of optical diagnostic analyzers 

for the tumor border detection of the human kidney cancer were developed for the first 

time [19,46,52–54,99]. Spectral histopathology is a relatively new approach in oncological 

diagnostics, which can reduce the probability of error during surgery. In the first example, 

two prototypes of LED-OMS based on NIR spectroscopy, called A and B, were developed 

and tested (Figure 16) [19,46]. The system operation was based on a rapid alternating illu-

mination of the sample at several wavelengths and measuring the diffusely reflected light 

by a photodiode detector (PHD). Four LEDs were chosen for the analysis with central 

wavelengths near the absorption maxima of water (0.94 and 1.44 μm) and lipids (1.17 μm), 

which are known markers of some cancer types. An LED with the maximum emission at 

1.30 μm was added to correct the light scatter effect. Hence, it served as an internal refer-

ence channel in accordance with the reference-free measurement concept (Section 3). A 

preliminary analysis on the full-spectrum NIR data justified this choice of channels [46]. 

The aim of the study was to experimentally confirm the fundamental possibility of recog-

nizing the pathologically altered biological tissue by the proposed method on a limited 

number of available clinical samples. The tumor can be detected through the quantifica-

tion of spectrally active chemical components, i.e., water, lipids, glycogen, and other can-

cer markers, as well as the morphological properties of tissue. 
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Figure 16. (a) Experimental setup and (b) construction scheme of the improved prototype B of the LED OMS: 1—LEDs, 

2—fiber optic cables, 3—stainless steel tube, 4—sapphire window (the prototype A of the probe had a rectangular shape 

and did not have a protective window). 

To increase the reliability of the results, the experimental design had a few hierar-

chical levels, including repeated measurements at several sample points [5,46]. Thus, the 

resulting measurements reflected the tissue variability both within a sample and between 

them. Discriminant analysis (DA) of the data was carried out by the PLS-DA method, 

based on the construction of a calibration model, where healthy and tumor tissue samples 

are coded numerically (0 and 1, respectively). A new sample is assigned according to the 

predicted value with regard to the boundary of 0.5. The obtained values of sensitivity, 

selectivity, and accuracy for the most conservative SCV method indicate the general suit-

ability of LED NIR-OMS for tumor recognition (Table 6) and the feasibility of further de-

velopment of the system. The main problem remains the lack of sensitivity caused by large 

sample variability for the tumor tissue, which can be overcome by using more representa-

tive clinical data in the future. In the course of development, the optical channel configu-

ration (their number and working wavelengths), as well as the measurement geometry, 

must be carefully optimized. The measurement information content can be increased by 

expanding the spectral region or by adding other spectroscopic techniques. 

Table 6. PLS-DA statistics for the diagnosis of kidney cancer by an LED-based OMS. 

Dataset  
Calibration a Segmented Cross-Validation b 

TP c FP d TN e FN f Sn% g %Sp h %Ac i TP FP TN FN %Sn %Sp %Ac 

A33 j 19 1 11 2 91 92 91 18 1 11 3 86 92 88 

B170 k 62 5 70 33 65 93 78 59 7 68 36 64 92 75 

B140 l 64 3 67 6 91 96 94 63 3 67 7 90 96 93 

Notes: a All models are built with two LVs; b cross-validation by segments formed by individual measurement positions; 
c true positive (results) d false positive; e true negative; f false negative; g sensitivity %Sn = 100∙TP/(TP + FN); h specificity 

%Sp = 100∙TN/(FP + TN); i accuracy %Ac = 100∙ (TP + TN)/(TP + FP + TN + FN); j full data for the prototype A; k full data for 

the prototype B; l data of prototype B after outlier elimination: one sample and two measurement positions. 

The diagnostic capabilities of fluorescence and IR spectroscopy have been investi-

gated in the second example, and their combination efficiency within one device has been 

proven [53]. To ensure the data compatibility, IR spectra (recorded on a FTIR-spectrome-

ter with a PIR-fiber ATR probe) and fluorescence spectra (excited by a 473 nm laser and 

recorded through a diffuse reflectance probe) were recorded in the same marked positions 

(31 points in all 8 available samples). The resulting dataset included 92 pairs of IR and 

fluorescence spectra. The pairs were then analyzed both separately and jointly by concat-

enating them into one vector along the spectral axis. For the analysis, the IR spectra were 

limited to the most informative (from the point of view of the known biochemistry of the 

disease) region of 1220–1010 cm−1, and the fluorescence spectra, to the observed signal 

region at 490–680 nm. The optimal solution was sought using a combinatorial approach, 
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which tested all the best preprocessing methods for each of the individual spectral blocks, 

as well as their various combinations in joint data analysis. The best preprocessing results 

selected on the basis of multilevel validation (Section 3) were chosen for the comparison 

of all three methods. Exploratory analysis showed a complete separation of the “cancer” 

and “normal” classes for the combined data only (Figure 17a,c,e). Notably, the models for 

both single and combined data required only two LVs. Maintaining the simplicity of the 

model while adding data is an indication of the complementarity of the combined blocks. 

 

Figure 17. (a,c,e) PCA score plots and (b,d,f) prediction histograms for PLS models (SCV for measurement positions). Data 

used were: (a,b) fluorescence spectra, (c,d) IR-spectra, and (e,f) combined data. In (a,c,e) the red and blue colors designate 

the tumor and healthy tissue, respectively, and the labels indicate the measurement positions. In (b,d,f) the blue, cyan, 

red, and magenta designate TN, FN, TP, and FP results, respectively (see notes to Table 6). 

In the PLS-DA analysis (Figure 17b,d,f), the fluorimetry exhibits a lower discriminat-

ing ability than IR spectroscopy: their best accuracies %Ac according to the SCV results 

were 61 and 92, respectively. In the latter case, the incorrect classification is presented 

mainly by undesirable false negative results, i.e., by the unrecognized cancer (Figure 17d). 

Combining the fluorescence spectra with the second-derivative IR spectra followed by 

their standard normal variate (SNV) preprocessing leads to a decrease in false classifica-

tions to two (%Ac = 98, see Figure 17f). Therefore, the combination shows a synergistic 

effect. This fact makes it possible to suggest that the considered methods are responsible 

for various biomarkers. Moreover, due to the small penetration depth of IR spectroscopy, 

it “works” predominantly at the cellular level, while the fluorescent signal can come from 

a depth of several mm, carrying additional chemical and morphological information. This 

study confirms the feasibility of combining ATR-IR spectroscopy and fluorimetry in one 

analytical device [25]. When developing a multispectral analyzer, an IR spectrometer can 

be replaced by an OMS. Acquisition of fluorescence spectra can be significantly simplified, 

as well. 

  



Sensors 2021, 21, 3541 31 of 37 
 

 

6.5. Environmental Monitoring 

The final practical example is devoted to the development of an express method and 

OMS for the environmental monitoring of soils in order to determine the total petroleum 

hydrocarbons (TPH) using IR measurements through an ATR probe [100,101]. A prelimi-

nary analysis of the IR spectra was performed with a designed series of 57 artificial soil 

samples prepared by mixing a soil substrate, clay, sand, and dolomite flour. This study 

made it possible to investigate spectral properties of soils having various compositions 

and compare them with the spectra of crude oil. Based on this data, the spectral region of 

4000–1700 cm−1 and the chalcogenide IR fiber ATR probe with a working crystal element 

of ZrO2 were found to be optimal for the quantitative analysis of TPH. 

A calibration series of contaminated samples was prepared by adding oil obtained 

from the Mayorskoye field (Orenburg region, Russia) and water, as the main natural fac-

tors affecting the measurement, to 100 g of an artificial soil sample compositionally similar 

to the soil found in the Samara region (Russia). For the measurements, the probe was 

brought into close contact with the tableted sample, so that the crystal was completely 

immersed in it. The training set of 25 samples followed the diagonal scheme �2���
�� (Figure 

3b), in which both components varied in the range of 1–13%. This set was used to build 

calibration models for TPH and %H2O (g/100 g). The most accurate models were achieved 

using the method of interval optimization (Section 3). The following intervals were found 

to be optimal: 5 three-point intervals with averaging and without preprocessing for TPH 

and 4 individual variables after applying preprocessing methods for water. The RMSE 

values for TSV were, respectively: 1.1% for TPH and 0.6% for water at three LVs. 

The main experimental problem of the method is the low overall spectral intensity of 

dry samples and poor measurement precision, which is generally typical for ATR analysis 

of solid materials. The proposed data preprocessing and analysis techniques largely over-

come this negative influence, and the achieved determination errors are acceptable for a 

number of practical analytical tasks. The results obtained make it possible to recommend 

further development of OMS for the field determination of TPH based on IR spectroscopy 

in the range 4000–1700 cm-1 through a fiber-optic ATR probe. Further improvement of the 

method accuracy would require an improved measurement interface. 

Therefore, a large experimental material presented in Section 6 has illustrated the 

principal feasibility of transfer from the full-spectrum measurement to OMS. The analysis 

can be carried out with minimum accuracy loss or even without it. The OMS development 

principles described in previous sections play an important role in achieving the best re-

sults. These are: DoE, the correct choice of the spectral method and measurement geome-

try; exploratory data analysis for a deeper understanding of objects and methods of anal-

ysis; mathematical optimization of optical channels of the future sensor; as well as the 

possible full usage of data-contained information at the modeling stage. 

7. Conclusions 

This work creates the scientific foundations for the development of specialized spec-

troscopic analyzers of low selectivity—optical multisensor systems, which represent a 

new trend in modern analytical spectroscopy. OMS has several unique utilitarian proper-

ties that significantly expand the analytical capabilities of optical spectroscopy compared 

to the traditional laboratory analysis. Some of the most useful features include: diminu-

tiveness, portability, autonomous operation, in-line usability, and wide availability. Their 

anticipated widespread use for solving various problems of qualitative and quantitative 

analysis in industry, medicine, and other practical fields enhances the level of analytical 

control of many important aspects of human activity. 

Many scientific and technical problems have been solved in this work: optimization 

of spectral analyzer for an application, training and validation of mathematical models, 

analytical process control, and others. A general OMS methodology has been proposed, 
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including many practical recommendations for its development stages supported by real 

application examples. 

The work provisions that can be applied in other branches of chemistry are of partic-

ular value from a scientific point of view. These include: the proposed principles of de-

signing a multicomponent calibration experiment, the concept of a trajectory in the ana-

lytical process technology, and new approaches to the multivariate analysis of low-selec-

tivity spectral data. 

The presented results are of high practical importance in solving various problems 

of OMS development, improvement, and their practical application for field measure-

ments, express analysis, and in-line monitoring of various objects and environments. With 

the increasing modern demand for chemical analysis, the role of the scientific approach to 

the development of multisensor systems will permanently increase. 
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2D two-dimensional 

API active pharmaceutical ingredient 

ATR attenuated total reflection 

CV cross-validation 

DAD diode-array detector 

DD diagonal design 

DoE design of experiment 

EEM excitation-emission matrix 

FN false negative 

FP false positive 

FPI Fabry–Pérot interferometer 

FTIR Fourier-transform infrared 

GA genetic algorithm 

iPLS interval partial least squares 

IR infrared 

LED light-emitting diode 

LOOCV leave-one-out cross-validation 

LV latent variable 

MCR multivariate curve resolution 

MLR multiple linear regression 
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NIR near infrared 

OMS optical multisensor system 

PAT process analytical technology 

PHD photo diode 

PIR polycrystalline infrared 

PLS projection on latent structures or partial least-squares 

SNV standard normal variate 

TN true negative 

TP true positive 

TPH total petroleum hydrocarbons 

DA discriminant analysis 

PC principal component 

PCA principal component analysis 

RTR real-time release 

RMSE root mean-square error 

RMSEC root mean-square error of calibration 

RMSECV root mean-square error of cross-validation 

RMSEP root mean-square error of prediction 

SCV segmented cross-validation 

SPbSU St. Petersburg State University 

TSV test-set validation 

UV ultraviolet 

Vis visible 
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