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Abstract: Condition monitoring is an indispensable element related to the operation of rotating
machinery. In this article, the monitoring system for the parallel gearbox was proposed. The novelty
detection approach is used to develop the condition assessment support system, which requires
data collection for a healthy structure. The measured signals were processed to extract quantitative
indicators sensitive to the type of damage occurring in this type of structure. The indicator’s values
were used for the development of four different novelty detection algorithms. Presented novelty
detection models operate on three principles: feature space distance, probability distribution, and
input reconstruction. One of the distance-based models is adaptive, adjusting to new data flowing in
the form of a stream. The authors test the developed algorithms on experimental and simulation
data with a similar distribution, using the training set consisting mainly of samples generated by the
simulator. Presented in the article results demonstrate the effectiveness of the trained models on both
data sets.

Keywords: novelty detection; data stream; soft computing; gearbox; fault detection

1. Introduction
1.1. Condition Monioring of Rotating Machinery

Condition monitoring (CM) maintains an essential role in all industrial areas where
rotating machinery is applied. Implemented a monitoring strategy allows for cost-efficient
maintenance and avoidance of catastrophic failures. In most monitoring systems, assess-
ment of the condition involves vibration signatures’ acquisition. The following actions in-
clude extraction of damage-sensitive features and data processing to determine the machine
state. More detailed information related to the CM can be provided in references [1–3].

There are three major approaches to solve this problem. In the first one, the condition
assessment requires only data acquired for an unknown state and a comparison of selected
features with proper norms. No information on the previous condition of a particular
machine is needed. The described approach is very general and easy to implement. In
general, such a system is not sensitive in detecting minor faults that do not cause significant
alteration of signal features. However, recent developed real-time algorithms based on
eigen perturbation techniques have indicated fault identification of the order 1–5% in
real-time. Moreover, studies have also demonstrated the effectiveness of perturbation
schemes in a non-stationary time-varying environment with numerical, experimental, and
practical applications [4].

The second approach requires a database of signals, including examples acquired on
similar machines in healthy and damaged conditions. The obtained data collection allows
for designing and training a classifier model for small faults prediction. Unfortunately,

Sensors 2021, 21, 3536. https://doi.org/10.3390/s21103536 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4574-2580
https://orcid.org/0000-0002-5143-6002
https://orcid.org/0000-0001-9350-4125
https://orcid.org/0000-0003-2555-0052
https://orcid.org/0000-0002-5289-9826
https://www.mdpi.com/article/10.3390/s21103536?type=check_update&version=1
https://doi.org/10.3390/s21103536
https://doi.org/10.3390/s21103536
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21103536
https://www.mdpi.com/journal/sensors


Sensors 2021, 21, 3536 2 of 20

such an approach is rarely feasible due to the costly acquisition of signals representing
multiple instances of various faults. In work [5], the authors noted a so-called reassembly
problem, where an artificial introduction of damage causes structural changes that render
pre-acquired baseline signals no longer relevant.

The last approach is a combination of these two. It is based on acquiring signals
for one particular machine under monitoring over a long period of its operation. Such
a database contains reference patterns for upcoming signals of an unknown state. Any
significant alteration from the reference, detected in new data, serves as an indicator of
failure. If a single signal feature is used to this end, the approach is called trend analysis. It
mostly relies on visual representations, which are sometimes costly to acquire over data
transmission systems. For such cases, real-time methods perform analysis online and
alleviate data transmission from site to lab, thereby reducing cost. Kalman Filter techniques
and eigen perturbation approaches have found extensive applications in this regard [6].
The analysis of multiple features at the same time and the atypical behavior is detected
not only in their values but also in relationships between them is referred to as novelty
detection, anomaly detection, or outlier analysis [7,8].

1.2. Novelty Detection in Condition Monitoring

The article [9] defines novelty detection (ND) as a machine learning class of problems,
which is based on identifying new concepts in unlabeled data. The ND idea relies on
determining the frontier delimiting the distribution of the initial observations in feature
space. If further observations are located within the frontier-delimited subspace, they
are considered as coming from the same (normal) population as the initial observations.
Otherwise, they are labeled as novelty with given confidence in the assessment.

Various approaches related to the designation of the normal subspace boundaries were
developed. Some of the methods are based on the approximation of unknown probabilistic
density function (pdf) by known density functions. The most widely used function is
Gaussian distribution which was applied inter alia in works [5,10–13]. Others employ as
a boundary the distance threshold from the initial observations. In the articles [12,14–16]
novelty detection system were implemented based on Euclidean and Mahalanobis distances
as metrics. For several presented literature applications, storage of reference observations is
required. However, recently developed recursive canonical correlation analysis algorithm
do not require a reference for accurate assessment [17]. Another approach to ND also
relies on a distance metric, but this time the distance is not measured from reference points
stored in memory but from a sample’s reconstructed version [5,18–21]. In the last quoted
approach, the boundary is defined by a trained model. Their location concerning the
developed frontiers determines the membership of the data sample under investigation.
The most widely used models in this class are Support Vector Machines (SVMs), which
were applied by [22] for the online damage detection system.

ND models found applications in condition monitoring for maintanace of rotating ma-
chinery. In articles [5,13,18,22–25] novelty detection algorithms were presented for gearbox
monitoring. Other applications include bearings fault detection [14,19,26,27], maintenance
support system for gas turbines [10,11,28] and rope inspection [21]. The solutions presented
in these articles are, however, usually at the experimental stage. Majority of solutions is yet
to be tested under industrial, practical conditions.

1.3. Contribution and Organization of This Paper

The task of ND in condition monitoring will have a vital role in the following years
and still does not have a reliable solution. Despite the many implementations presented
in the previous chapter, the industrial standard for condition monitoring is dominated by
determining the structural condition based on analyzing the frequency spectrum content
and comparing the values of the calculated indices with the norms [29,30]. This is due to
the lack of clearly defined standards for the application of algorithms supporting structure
condition assessment. A general framework has been proposed in the literature [31]. The
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presented solutions guide the system development, but it requires samples for different
structure states. Collecting such a set for a specific machine is problematic because it
requires operation with damage. Therefore, it becomes reasonable to use ND algorithms,
which may not adapt fully to the described framework.

To answer the problem, the article is devoted to verifying and comparing the efficiency
of four different ND methods in condition monitoring for a parallel gearbox. Authors
implement a data-distribution-based (DDB) method, the nearest neighbor (NN), the on-
line novelty and drift detection algorithm (OLINDDA), and a model-based ensemble of
classifiers. The article is a continuation of the analysis presented in [5], where the tests
of different ND models were conducted on data from the epicyclic gearbox. That paper
focused on detecting faults that were artificially introduced into the analyzed structure
without considering the damage severity on the detection threshold.

This paper covers the described problem by introducing different types of damage
with variable severity into acquired signals. The algorithms process them sequentially,
which mimics the signal processing in condition monitoring and allows the introduction of
OLINDDA, developed for ND in data streams [32]. Another novelty is the ensemble built
using an Overproduce-and-Choose methodology. The verification is performed based on
the simulation data that covers a real object’s model and then on the object itself.

The remainder of the paper is organized as follows: The first section describes methods
used for detection of novelty in this work, the next two sections provide an evaluation based
on simulation and experimental data, including their description, signal processing, feature
extraction, and results discussion. Finally, the last section summarizes and concludes
the article.

2. Novelty Detection Models
2.1. Unidimensional Distribution-Based (Uddb) Approach

In this approach, for each data feature, the probability distribution is estimated. The
simplest and most commonly applied solution is the assumption of a normal distribution
of measured data. The values of the average x and standard deviation σ are calculated
from training data. From these two quantities, two threshold values for each dimension are
set. In general, the threshold values are equals: x + 3σ and x− 3σ. Due to this formulation,
the model considers many novelty points as normal. The visual concept of the described
method is presented in Figure 1a. Blue dots refer to positions of normal data samples
in feature space. Dotted lines represent thresholds derived from the assumed type of
distribution of these data. Magenta point refers to a novel sample, here detected as normal.

(a) (b)

Figure 1. (a) The idea of a unidimensional distribution-based model with selected distribution shapes
and a threshold for two-feature space and (b) the idea of nearest-neighbor model with highlighted
normal region.
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2.2. Nearest-Neighbor (Nn) Approach

The Nearest-neighbor (NN) model is based on the unlabeled point’s calculated dis-
tances to all points considered during training. If the minimal calculated distance is smaller
than the threshold value, then the unlabeled point belongs to the normal class. Otherwise,
it is considered a novelty. The threshold value is derived from the calculation of average d
and standard deviation σd of distances between nearest neighbors in a training set of points.
In other words, for each point in a training set, its closest neighbor is located. Distances
d between these pairs of points are used in threshold calculation. The threshold is set as
d + 3σd. The visual concept of the described method is presented in Figure 1b.

The construction of the considered model is very intuitive. However, it requires
significant computational effort due to comparison with each database point. Like all
distance-based NN methods, it is also sensitive to low data density in feature space and
scales poorly to high-dimensional feature spaces.

2.3. Online Novelty and Drift Detection Algorithm (Olindda)

The Online Novelty and Drift Detection Algorithm (OLINDDA) is a two-stage al-
gorithm dedicated to detecting new and modifying previously learned concepts from
unlabeled samples. The learned concepts are stored in clusters that are represented as
hyperspheres with centroid and radius. The idea of OLINDDA is presented in Figure 2.

The training process is divided into two separate stages. In the initial phase called
offline presented in Figure 2a, the decision model is derived from an unlabeled data set
assuming that all training samples belong to a normal class. During this stage, the training
data is divided into clusters by the k-means algorithm. The defined clusters are stored
as hyperspheres with cluster centroid µi as a center and maximum distance between the
centroid and outlier cluster points as a radius. Additionally, for all the defined clusters,
the information about minimal cluster density is stored in the form of cohesiveness and
representativeness. For this work, the cohesiveness measure was defined as:

dcoh =
d(xj, µi)

n(Ci)
(1)

where n(Ci) is number of samples belonging to cluster Ci and d(xj, µi) is the sum of squares
of distances between examples belonging to Ci and the centroid µi defined by:

d(xj, µi) = ∑
xj∈Ci

(xj − µi)
2. (2)

The representativeness is defined as the number of samples belonging to cluster n(Ci).
More measures have been described in [33].

In the second phase called online presented in Figure 2b, the model receives new
unlabeled data samples. If the new example belongs to any of the defined clusters, it is
considered as normal. Otherwise is labeled as undefined and stored in short-term memory
(STM) of the model. When STM reaches full capacity, the algorithm begins processing
undefined points. The analysis employs the clustering of undefined data by k-means
algorithm and validation of the received clusters by the criterion of minimal density,
derived in the offline phase. There are three possible cases considered for obtained clusters:

• Cluster that fulfills density criteria and is far from normal data is classified as novelty,
• Cluster that fulfills density criteria and is close to normal data is classified as

normal-extended,
• Cluster that not fulfill density criteria is classified as noise,
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(a)

(b)

(c)

Figure 2. The Online Novelty and Drift Detection Algorithm block diagram for: (a) offline stage;
(b) online stage; (c) updated model with convex hull.

The decision of new clusters membership depends on its centroid’s distance from the
centroids of normal clusters. The algorithm applies those points to construct bounding
volume. If the centroid of the unlabeled cluster is within the bounding volume, then it is
considered normal-extended.

The most common bounding volume is hypersphere, with the center in the centroid of
the normal clusters centroids and the radius as the maximum distance between the centroid
and normal clusters centroids. However, the hypersphere assumption imposes a constraint
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of the same distance on every feature dimension. This increases the misclassification of
novelty data. Therefore, in this article, the authors applied a convex hull as abounding.

Figure 2c illustrates the procedure for two-dimensional feature space. The convex hull
is constructed based on centroid points for normal clusters to cover all those points inside.
In the next step, valid clusters (dot-blue) with designated centroid points are introduced to
the obtained bounding box. If valid cluster centroid is located in the interior is considered
as normal-extended (x green). Otherwise is classified as novelty (+ magenta). The recently
added normal-extended clusters will not affect the shape of the designated convex hull.

2.4. Auto-Associative Neural Network (Aann)

The auto-associative neural network (AANN) is a multilayer perceptron (MLP) trained
for reproducing input values at its output. The network architecture employs bottleneck
to prevent duplicate entries and force generalization: one hidden layer is designed to
contain fewer neurons than the input layer. Example of AANN architecture is presented in
Figure 3a.

(a)

(b)

Figure 3. Auto-associative neural network: (a) architecture with marked bottleneck; (b) different
normal regions for trained networks.

During operation, the unlabeled sample is reconstructed by the AANN model. The
error between the sample and its reconstruction is calculated and compared to the threshold
value. If the error is smaller than the threshold value, the sample is considered normal.
Otherwise, it is labeled as a novelty. The threshold value is described by ε + 3σε where ε is
average and σε its standard deviation from reconstruction error ε for testing dataset.

The training process of AANN is non-deterministic. Therefore, each network, trained
on the same training set, gives different normal regions, as presented in Figure 3b. Si-
multaneous training of several networks and constructing an ensemble, in which their
responses are averaged together, producing a more reliable representation of a normal
region in feature space [34–36].
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2.5. Ensemble Approach

An ensemble is a set of models whose outputs are combined. The obtained set tends to
have a smaller estimation error than the individual models. The ideal ensemble members
should be diverse, meaning that their errors should be uncorrelated and accurate, meaning
that they provide good-enough classification on their own [37]. The most straightforward
approach to ensemble design requires using a group of standard classifiers with diversity
enforced by the randomness of their training. Considering this reason, AANNs are natu-
ral candidates for ensemble construction due to pseudo-random initializations of initial
weights. However, there are no requirements regarding the type of classifiers. Any classifier
can be included in the ensemble, provided that it allows for maintaining diverse results.

This basic approach can be further extended using the overproduce-and-choose
method [38], in which the actual ensemble is built from a subset of potential ensemble mem-
bers that were all trained on the subsets of training data. The choice can either be based
on the potential ensemble members’ performance on a separate validation dataset [39].
Another selection method based on validation results obtained in the initial training [40].
In this article, the latter was used.

The ensemble construction schematic is presented in Figure 4. Models process in-
put features and produce prediction, which is then aggregated. The aggregation is here
performed as majority voting.

Figure 4. Ensemble block diagram.

3. Evaluation of Simulation Data
3.1. Simulation Data Description

The simulated data are generated from an object representing a drivetrain, which includes
a driving shaft associated with referential speed, a one-stage parallel gearbox, a power take-off
shaft, and a rolling element bearing (REB). The gearbox is a speed reduction with 23 teeth on
the driving shaft gear and 67 teeth on the power take-off shaft gear. The total transmission
ratio is 23/67 = 0.34328. The simulated object operates at three nominal speeds of 3000, 4200,
and 6000 rpm with a typical minor speed fluctuation of around 12 rpm.

The simulated data represent eight modes of object structural failures. The list of
existing modes is presented in Table 1. Each failure mode is represented by Failure De-
velopment Function (FDF) defining the evolution of a particular fault. For the generation
of vibrational signals in mode, the simulated object requires 3 FDFs, which indicate the
shaft, gearbox, or bearing faults. The FDFs for nominal velocity of 3000 rpm are presented
in Figure 5. Each mode contains 150 independent vibrational signals, 10 s. long with a
sampling frequency of 25 kHz. Along with the vibrational signal, the object generates a
phase marker signal to determine the instantaneous speed.
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Table 1. Failures modes of generated data.

Mode nr Mode Name Mode Description

1 No fault no fault in the entire drivetrain
2 Imbalance logarithmic development of the drive shaft imbalance
3 Gearbox logarithmic development of the general transmission fault
4 REB logarithmic development of the REB inner race fault
5 Imbalance and Gearbox simultaneous development of the drive shaft imbalance and the transmission fault
6 Simultaneous simultaneous development of all the considered faults
7 Miscellaneous simultaneous development of all the considered faults with different functions
8 Miscellaneous (high var) simultaneous development of all the considered faults with different functions and high variance

Figure 5. Failure Development Functions (FDFs) for nominal velocity 3000 rpm taken from the book [30].

The simulated model consists of two elements—a synthetic model of vibration signal
and a synthetic model of development of particular fault of rotary machinery. Depending
on the simulated fault mode, consecutive vibration signals are modified differently. Each
vibration signal is constructed as a phenomenological-behavioral model with generalized
angular deterministic (GAD) [41] shaft components (AM-FM harmonics) and gearbox
components (AM-FM harmonics with multiple double sidebands), as well as generalized
angular–temporal deterministic (GATD) [42] rolling-element bearings components (AM-
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FM cyclo-nonstationary components with additional phase-locked amplitude modulation).
Fault development is modeled as a combination of linear, 2nd order polynomial, or expo-
nential growth of amplitudes of individual signal components with relatively low (MODE
2–7) and relatively high variance (MODE 8), as presented in Figure 5. More about the
simulated object and the generated signals can be found in the book [30].

3.2. Signal Processing and Feature Extraction

During years of research related to condition monitoring (CM), many signal processing
and feature extraction algorithms have been proposed. From the fundamental calculation
of filtered raw signal root mean square (RMS) to more sophisticated as spectral kurtosis.
The detailed description of the various algorithms are described in works [3,30,43].

The choice of signal processing methods for simulation data was based on contextual
knowledge. Much of the damage manifests itself in the presence of additional harmonics
at specific frequencies. Therefore, spectral analysis was introduced, and the signal was
resampled into the order domain based on the phase marker information.

The imbalance is manifested by an increase in the fundamental harmonic amplitude,
directly related to the rotational velocity. The raw signal from the generator is supposed
to imitate the acceleration waveform. Therefore, to obtain the velocity signal, one must
perform the numerical integration operation.

The last applied processing algorithm was time-synchronous analysis, often used to
detect gear failure in Vibro-diagnostics. The detailed list of signal processing algorithms
and extracted features is gathered in Table 2. The normalized trends for three modes are
presented in Figure 6.

Figure 6. Features trends for the three failure modes described in Section 3.1.
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Table 2. Signal processing algorithms and extracted features.

Signal Processing Methods Chain Extracted Features

linear detrending-signal resampling-spectrum RMS, Skewness
linear detrending-highpass filtration (10 Hz cutoff)-integration RMS
linear detrending-time synchronous analysis-spectrum Peak to peak (PP), RMS

3.3. Model Training

After extracting the features described in the Table 2, authors started developing
ND models. For this work, four different models were developed based on algorithms
described in Section 2. Those models were:

• Unidimensional distribution-based (UDDB) model,
• Nearest-neighbor (NN) model,
• The Online Novelty and Drift Detection Algorithm (OLINDDA) based model,
• Auto-associative neural networks (AANNs) ensemble,

The ND models were trained on features extracted for the first mode of failure (see
Section 3.1), which represented a healthy machine. The training dataset was randomly split
in the ratio: 70% for training purposes and 30% for testing false-positive responses. The
training and testing subsets in feature space are presented in Figure 7.

Figure 7. Training dataset points in feature space.

The fourth model consisting ensemble composed of 15 AANNs was trained, using the
Oveproduce-and-Choose method, in the following manner. For the development of the en-
semble, 100 networks were trained on previously split sets. After this process, 15 networks
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with the best score on the testing set (lowest number of false-positive classification) were
selected for ensemble construction.

The models were trained on a computer containing an Intel Core i7-8750H CPU
with 16 GB of RAM. The development times for each model are included in Table 3. The
training time allocated to Ensemble is distinguishing from other models due to algorithm
construction. For UDDB, NN and OLINDDA, exactly one model was developed, while for
Ensemble, up to 100 different networks were trained.

Table 3. The computational times for model training.

UDDB NN OLINDDA Ensemble

training time [ms] 0.52 2.24 7.55 30,523.48

3.4. Results of Model Evaluation

All trained models were evaluated on simulated vibrational data, which contained
failure modes from 2 to 8 (5) for three rotational velocities. Since the results for each
rotational speed were similar, the article presents those selected for 3000 rpm. The features
in each failure mode were processed sequentially from the 1st to 150th signal as a data
stream from a CM system.

In order to present different types of faults, in this subsection only outcome of mode 2,
3, 4 and 6 analysis for one shaft velocity will be discussed (see Section 3.1). The results are
presented in Figures 8 and 9.

The four subfigures in each figure (a,b and d,e) reveal sequence of novelty prediction
(novelty) and novelty reference (novelty reference) in comparison to the failure develop-
ment functions (FDFs). In the juxtaposition of the novelty waveforms from these figures,
the deviation of models from most samples in the immediate vicinity is present. When such
fluctuations occur for an undamaged machine, it indicates false alarms, which generate
additional costs.

The rest subfigures in each figure (c,f) contain confusion matrix values in form of bar
graphs. All points are divided into 4 groups: True Negatives (TN), False Negatives (FN),
True Positives (TP), and False Positives (FP). The values representing the efficiency and
false positives percentages for each of the modes are presented in Table 4.

Table 4. The false positive percentage (FPc) and total efficiencies percentage (TEc) in failure modes.

Failure Mode Measure UDDB NN OLINDDA Ensemble

Imbalance FPc [%] 8 1 4 1
TEc [%] 93 93 95 91

Gearbox FPc [%] 3 1 3 1
TEc [%] 85 86 87 84

REB FPc [%] 6 1 2 1
TEc [%] 97 99 91 94

Simultaneous FPc [%] 11 2 5 3
TEc [%] 94.5 99 97.5 98.5



Sensors 2021, 21, 3536 12 of 20

(a) (d)

(b) (e)

(c) (f)

Figure 8. The results obtained for the failure mode 2-Imbalance (a–c) and mode 3-general gears failure (d–f). ND waveforms prediction
for drive shaft velocity: 3000 rpm (a,b) or (d,f); Bar plots containing confusion results for 3000 rpm (c) or (f).
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(a) (d)

(b) (e)

(c) (f)

Figure 9. The results obtained for the mode four-rolling element bearing (REB) failure (a–c) and mode 6-simultaneous failures (d–f).
ND waveforms prediction for drive shaft velocity: 3000 rpm (a,b) or (d,f); Bar plots containing confusion results for 3000 rpm (c) or (f).

The novelty reference was obtained from FDFs. For FDFs values corresponding to the
normal state, the novelty reference is equal 0. For values significantly different from the
normal range, the novelty reference is set to 1. For signals in between, the function takes
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the value 0.5 and, it is not accounted for confusion matrix results. The novelty reference
was unknown for the ND algorithms.

The discussion will begin from Mode 2-Imbalance. The results of sequence novelty
evaluation are presented in Figure 8a–c. Considering the false positives criterion, the NN
and Ensemble would cause the least number of false alarms. Regarding the total efficiency,
the best performance in detecting imbalance was obtained by OLINDDA.

Another of the analyzed failures is mode 3-Gearbox, which simulated the generalized
gear failure. The waveforms showing the development of damage for 3000 rpm are
presented in Figure 8d,e. Considering ND indication fluctuations for the normal state, all
presented models reveal similar behavior. Based on Figure 8f, it is impossible to determine
which one was the best in terms of the smallest number of false-positive (FP) classifications.

The last type of analyzed failure concerns rolling elements bearings (REB), simulated in
mode 4. The waveforms containing the development of damage for 3000 rpm are presented
in Figure 9a,b, and the collective results are presented in Figure 9c. Consideration of
the number of false alarms exposes a similar prediction rate for all presented models
visible in Figure 9a,b. The exception is NN, which manifests in the smallest number
of false positives (FPs). The highest ratio of false negatives (FNs) reveals OLINDDA
in Figure 9c. Other models also reveal some difficulties with REB failure detection, but
comparing to OLINDDA are better. In this statement, the UDDB manifests the highest rate
of correct classification.

An explanation of the NN and UBBD improvement is related to the last waveform
in Figure 6. The rolling bearing failure occurrence is manifested in the increase of the
spectrum RMS indicator. Referring to the algorithm’s feature space, the distance to the
samples related to the damage state is distinguishable even for a slowly developing fault.
Such behavior allows for proper classification by distance-based algorithms such as NN.
The mentioned above damage aspect favors the UDDB algorithm, which assesses states
based on one dimension threshold.

The important observation concerning all models is their high sensitivity for detecting
this type of damage. Compared to gearbox failure (Figure 8f) or imbalance (Figure 8c), the
improvement in performance is significant.

The last results presented in Figure 9e,f show the occurrence of all failures simulta-
neously. The efficiency of the models achieved in this scenario is the highest one. Here,
the model’s efficiency is derived from detecting the failure to which the model is most
sensitive. In the case of UDDB and NN, such failure is an inner race fault. The OLINDDA
and Ensemble algorithms achieved the highest performance rate when compared to results
obtained for each failure separately. The combination of failures activates these algorithms
to achieve better performance.

An important aspect regarding the implementation of the algorithms is their computa-
tional complexity. Table 5 shows the average model execution time. The shortest execution
time is achieved by the UDDB model, while the longest by OLINDDA. The explanation
is related to updating the model with new clusters, which takes time but improves the
efficiency of structure assessment. Considering both the computation time and efficiency,
NN proves one of the highest accuracies with fast execution.

Table 5. Model execution time.

UDDB NN OLINDDA Ensemble

mean execution time [µs] 1.1 76.2 791.9 271.6

4. Evaluation on Experimental Data
4.1. Test Bench Description

Experiments have been conducted on an AMC Vibro VibStand 2 test bench. VibStand
2 test bench configuration is similar to the simulation data generator presented in Section 3.
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It includes driving an electric motor followed by the parallel gearbox with a reduction ratio
of 0.34328. The illustration of the test bench is presented in Figure 10.

Figure 10. Test bench used in experiments.

Data acquisition was performed with AMC Vibro VibMonitor. As sampling frequency
and acquisition time was selected, for each signal, respectively, the following values:
25 kHz and 10 s. Data were gathered with the PCB 333B30 piezoelectric accelerometer
mounted on the bearing, similar to the data generator presented in Section 3. Additionally,
the phase marker was recorded directly from the AMC Vibro VibStand 2 test bench. A
total of 119 measurements belonging to one measurement series were recorded. Dur-
ing signals acquisition, the developing unbalance for the power take-off shaft axis was
intentionally introduced.

4.2. Signal Processing and Feature Extraction

Due to the similar structure of the data used during the simulation studies, it was de-
cided to utilize the same signal processing algorithms. The reasons behind their application
are described in detail in this Section 3.2. The normalized trends calculated for extracted
features from measurements are presented in Figure 11.

Figure 11. Features’ trends for experimental data described in Section 4.
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The presented functions have a similar shape to those obtained for simulation signals
in Figure 6. For the normal state of the structure, the values are below 1. When failure
emerges, the values of features start to increase. This particular type of damage is charac-
terized mainly by two features: RMS calculated from the velocity spectrum and Skewness
derived from the frequency spectrum. This aspect is consistent with the simulation data.

4.3. Model Training

Because of the low number of normal data samples (only 10 representing the intact
state), the training dataset was built by adding to simulation data the experimental samples.
The combined samples were divided into a ratio of 70% of training and 30% of testing data.
The selected samples concerning previously selected measurement data are presented in
Figure 12. The abbreviation sim stands for points from the simulation data, and exp from
the experiment.

Models were trained on the same computer. The development times for each model
are included in Table 6. The training time allocated to Ensemble is shorter than the initial
training time presented in Table 3. It is related to the fact that the procedure retrains only
previously selected 15 networks.

Table 6. The computational times for model retraining.

UDDB NN OLINDDA Ensemble

training time [ms] 0.49 2.32 7.65 4612.51

Figure 12. Training dataset points in feature space including points intended for models update.

4.4. Results of the Model Evaluation

The retrained models were tested on extracted features from collected data series.
The results are presented in Figure 13. The Figure 13a,b contain waveforms presenting
model prediction (novelty), reference (novelty reference) and fault index. The Figure 13c
represents confusion matrix in the form of bar graphs, representing following numbers:
true negatives (TNs), false negatives (FNs), true positives (TPs) and false positives (FPs).
The efficiencies and false positives percentages for each of the experimental data have been
collected in Table 7.
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Table 7. The false positive percentage (FPc) and total efficiencies percentage (TEc) in experimental data.

Measure UDDB NN OLINDDA Ensemble

FPc [%] 38 15 8 15
TEc [%] 80.5 92.5 95.5 92.5

(a)

(b)

(c)

Figure 13. ND results of 6 different models. (a,b) Waveforms; (c) confiusion matrix in form of
bar graph.
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The novelty reference was obtained by built from fault index before the analyses and
was unknown for the ND methods. For fault index values corresponding to the normal
state, the novelty reference is equal 0. For values significantly different from the normal
range, the novelty reference is set to 1. For signals in between, the function takes the value
0.5 and, it is not accounted for confusion matrix results.

Considering the number of false positives (FP), OLINDDA and Ensemble perform the
best. The worst prediction is obtained for the UDDB model. The explanation is related to
model architecture, where a few additional points do not affect the distribution parameters.
Other methods have no such limitations and therefore produce improved results.

Regarding the overall miss-classification rate, the best performance in detecting inbal-
ance was obtained by the Ensemble method. The combination of responses from different
models improved the resultant novelty prediction.

5. Summary and Conclusions

In this paper, four different ND methods for CM were implemented. The tests were
performed on simulation and experimental vibration signals. The algorithms’ inputs
consisted of a vector of features calculated from signals by three different signal processing
algorithms. Since the simulation signals had a similar distribution of frequency components
to experimental signals, they were introduced to the overall training data.

The data included in the article contained three types of damage: unbalance, gear
meshing problem, and bearing failure. All the algorithms scored the lowest in detecting gear
damage. This fact is a consequence of the lowest increase in the values of the features. At a low
damage severity, sample values did not differ from those obtained for the normal condition.

Worth considering are the results obtained for the shaft unbalance in the drive chain.
As described in the paper, the results revealed that all algorithms performed equally well
with the simulation and experimental data. It justifies the use of data generators for model
preparation. Especially since collecting data from a damaged object is problematic and can
cause permanent damage.

The paper also compares the presented models by relating them to the problems
encountered in CM. The serious problem is false alarms reported for an undamaged
machine. In this category, the best models were NN and Ensemble, which obtained
the lowest number of false positives (FPs). Considering the number of effectiveness, NN
reached better results. The ensemble model was associated with a relatively high proportion
of false-negative (FNs) samples. The calculation costs criterion favors the NN model.

The OLINDDA detector results are ambiguous. The mentioned detector obtained the
lowest number of misclassifications on experimental data (low number of false-positive
(FPs) and false negatives (FNs). However, regarding the simulation data results, a different
view of the OLINDDA detector emerges. Simultaneously, it is the most effective for
one type of failure and the worst for another. The algorithm is additionally the most
computationally expensive of those discussed in the article.

The worst performance from tested ND models presented a UDDB detector. Consider-
ing all the presented results, the mentioned model reported the highest rate of false alarms.
Regarding ND capabilities, the model is mediocre in comparison to others. On the other
hand, the computational cost for this model is the lowest, which enables implementation
in embedded systems with low computing power. The presentation of UBBD in the article
is a reference for other multidimensional algorithms which still have not a well-established
place in industrial practice.
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Abbreviations

The following abbreviations are used in this manuscript:
AANN Auto-Associative Neural Network
AM Amplitude Modulation
CM Condition Monitoring
DDB Data-Distribution-Based
FDF Failure Development Function
FM Frequency Modulation
FN False Negatives
FP False Positives
GAD Generalized Angular Deterministic
GATD Generalized Angular-Temporal Deterministic
MLP Multilayer Perceptron
ND Novelty Detection
NN Nearest Neighbor
OLINDDA OnLIne Novelty and Drift Detection Algorithm
SVM Supported Vector Machine
STM Short Term Memory
TN True Negatives
TP True Positives
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