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Abstract: Human presence detection is an application that has a growing need in many industries.
Hotel room occupancy is critical for electricity and energy conservation. Industrial factories and
plants have the same need to know the occupancy status to regulate electricity, lighting, and energy
expenditures. In home security there is an obvious necessity to detect human presence inside the
residence. For elderly care and healthcare, the system would like to know if the person is sleeping
in the room, sitting on a sofa or conversely, is not present. This paper focuses on the problem of
detecting presence using only the minute movements of breathing while at the same time estimating
the breathing rate, which is the secondary aim of the paper. We extract the suspected breathing
signal, and construct its Fourier series (FS) equivalent. Then we employ a generalized likelihood
ratio test (GLRT) on the FS signal to determine if it is a breathing pattern or noise. We will show that
calculating the GLRT also yields the maximum likelihood (ML) estimator for the breathing rate. We
tested this algorithm on sleeping babies as well as conducted experiments on humans aged 12 to 44
sitting on a chair in front of the radar. The results are reported in the sequel.

Keywords: micro-Doppler; occupancy detection; presence detection; vital signs; respiration; spectral-
estimation

1. Introduction

The need for remote human presence detection is growing. Home security systems
use cameras and passive infra-red (PIR) sensors to determine if a person approaching or
is inside the house. Passive infra-red sensors suffers from many false alarm, but more
importantly, they cannot sense minute movements like a still, sleeping person and cameras
are not suitable for applications in which privacy is needed like monitoring an elderly
in the restroom. Radars have become a readily available solution for the consumer, so
in this paper we will focus on the usage of a radar to detect the micro-Doppler effect of
breathing, and thereby determine if a person is there or not. The problem of presence
sensing is basically an decision problem: is there someone in the radar search volume or
not? If the person walks or moves inside the room, a simple moving target indicator (MTI)
followed by a constant false alarm rate (CFAR) detector can be employed to detect the
walking or movement. However, this method will not work properly on a person who
is immobile and only breathing, such as the situation when a person is asleep. Another
critical example is baby monitoring applications: inside the car (in-cabin) elimination of
the forgotten baby syndrome, in-crib detection of sudden infant death syndrome (SIDS),
both relies on accurate, true presence detection.

The topic of human presence detection using radars had been studied before both in
the context of moving and stationary subjects. In [1], the authors showed the possibility
of presence detection with a FMCW 24 GHz radar and compared it to passive-infrared
(PIR) measurements. They utilized an energy detector on the range-Doppler map to decide
whether a target is present or not, and did not deal with complete stationary or sleeping
targets. The algorithm proposed in [2] is based on calculation of the Doppler power to
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identify doorway crossing and thus infer on the occupancy of a given room or space. This
work also dealt with the problem of walking humans only. WiFi signals were used in [3] for
passive-occupancy detection of humans. Though they did not deal with stationary targets,
they reported promising results on people counting and presence detection of walking
humans. Fourier processing with constant energy threshold detector was utilized in [4],
however, stationary human presence accuracy was not reported.

The feasibility of using breathing to detect presence was proven in [5,6], where they
showed that a mechanical target which simulates a breathing human can be detected in
a room with 93% accuracy by using a Doppler radar with a threshold on the root mean
square (RMS) of the received signal, while in [7] a non-adaptive energy threshold detector
calculated from pre-recorded noise data was employed to determine if there is one person or
two in the radar search volume, both in movement and stationary settings. However, high
energy does not mean breathing, or presence. Finally, the usage of convolutional neural
networks (CNN) were investigated in [8], where a Doppler radar and and infrared imaging
device were jointly employed for presence detection of one human in a specific room. They
reported an accuracy of 98.9%. The usage of CNNs bares a complex implementation for
real-time purposes, as well as it relies heavily on visual information from the infrared
imaging device.

Another application in which sensing the vital signs of a human subject is critical is
through-wall and through-debris life sensing. In [9], the detection of vital signs through
walls was investigated. They showed the feasibility of detecting the breathing and heart-
rate of a human subject standing behind a wall, while in [10] they proposed a continuous
wave radar architecture for the purpose of detecting vital signs through highly dense con-
struction materials of about 1.5 m thick. In [11], they used empirical mode decomposition
to prove feasible the detection of breathing, hand waving and body bending behind an
obstacle emulating debris. Through-debris breathing detection was also shown feasible
in [12], where they experiment with a debris setup and a live person lying and breathing
under it. They showed visual results that the human can be detected, though they did
not show how to detect the human in an automated manner. The underlying assumption
of the above papers is that the subject is there. The accurate estimation of the breathing
frequency is also of importance for many applications, including baby monitoring, elderly
care, sleep monitoring and more.

Breathing rate extraction with a pulse-Doppler architecture was presented in [13],
where they visually showed feasibility of extracting the breathing rate of a stationary and
moving human using Fourier analysis. They employed range-Doppler processing, but
there was no outline of how to detect the ’breathing targets’ and verify that it is in fact
breathing, also the accuracy was not evaluated. The authors in [14,15] used the wavelet
transform to overcome the discrete Fourier transform (DFT) resolution insufficiency, and
for the same reason the chirp Z transform was used in [16] to estimate breathing rate.
The chirp Z transform was also used in [17] coupled with an analytical model for the
remote estimation of both breathing and heart-rate. The accuracy of these methods and
a comparison against a known bound was not analyzed. More recent work on remote
breathing extraction can be found in [18,19], in which breathing was extracted with a radar
and a verification that the peak is falling within the breathing band of frequencies was
done. While [18,19] reported accuracy results and evaluation of proposed methods, as we
show in this paper, we achieve better results by using a maximum likelihood estimator.
Furthermore, the verification presented there is not optimal, and does not test adherence to
a breathing model, as the detector we present in this paper does.

The need to rely on the breathing movement for human presence detection stems
from the fact that the use of a moving target indicator (MTI) [20], often fails to detect
stationary humans. MTI is essentially a high-pass filter (HPF) that filters out close to
zero-Doppler targets. This HPF caveat is that it most often filters out the breathing, being
that breathing frequency is very close to the zero frequency (DC), hence, will fail to detect a
sleeping person.
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We propose an algorithm that detects presence using the minute movements of the
abdomen and torso due to breathing, while at the same time, estimates the breathing
frequency. Since detecting moving targets, even targets that slightly shift in their chair, can
be done using MTI, we intentionally deal only with strictly stationary subjects.

Thus, this paper’s contribution is three fold. First, we present a framework of detecting
presence using only the breathing movement. We develop a GLRT detector which, as an
input, takes the suspected breathing pattern and as an output decides whether its breathing
(presence) or not. Second, a maximum likelihood (ML) estimator of the breathing rate is
developed, and shown to asymptotically achieve the Cramer–Rao lower bound (CRB),
and lastly, we show that the GLRT detector and ML estimator are the same mathematical
expression so we inherently get both with one evaluation. We tested this algorithmic
framework performance on various scenarios such as sleeping babies and stationary adults,
and results are reported.

In Section 2, we explain the measurement setup, and immediately move to derive
both the GLRT detector as well as the ML estimator in Section 3. The estimator is also
compared to the CRB. In Section 4, we explain the experiments we have done to verify
our algorithms as well as report the results. We discuss future work in Section 5 and we
conclude the paper in Section 6.

2. Measurement Setup

The radar we use is an ultra wide-band (UWB) radar module named X4M300 (Novelda
AS, Oslo, Norway) which carries XeThru X4 UWB radar chip. We collect the raw data to the
PC through USB. The data are then feeding the algorithm we propose. The radar parameters
are depicted in Table 1.

Table 1. Radar parameters.

Value Units Comment

Pulse Repetition Frequency 40.5 MHz
Center frequency 7.29 GHz

Bandwidth 1.5 GHz 10 cm range resolution
Peak pulse power −0.7 dBm

Azimuth field of view 120 Degrees
Elevation field of view 115 Degrees

Frame rate ∼10 Hz ∼70 dB processing gain

The radar manufacturer tested this hardware for the specific application of breathing
movement sensing for different angles and ranges. They concluded that even when the
torso is 90 degrees rotated towards the radar, the micro-Doppler of the breathing is still
present, and can be reliably detected even from 1.8 m away [21].

2.1. Radar Operation

The radar is transmitting a pulse with a pulse repetition frequency of 40.5 MHz and
receiving the returned pulse. Integration is done on many pulses in order to increase the
signal to noise ratio (SNR) so that the output is an integrated pulse, called a frame, every
0.1 s. In general, the return signal represents a superposition of reflected pulses from the
environment, including, if present, a breathing target. Each sample of this returned frame
represents a range bin or a fast-time bin. Let Nrg be the number of range bins. If we wait
T seconds in slow time or K frames we will get a slow time vs. fast-time matrix of size
K× Nrg, in which each row is a radar frame and each column is the change of radar return
amplitude over T seconds (and K radar frames) of slow time.

If we know the specific range bin in which the breathing phenomenon is present and
extract this column, then we will get a slow time signal that is periodic with a fundamental
breathing frequency fb. The method to extract the relevant range-bin is detailed in the
next section.
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3. Method
3.1. Extracting the Suspected Breathing Signal

Let Dl denote the matrix of size K × Nrg as described above, l is the current frame
index such that the last row in Dl is the lth received radar frame and the first row is the
(l − K + 1) frame.

The columns of this matrix are then filtered with a HPF that filters out all frequencies
below a minimal breathing frequency of 0.15 Hz. Next, each column spectrum is calculated
using the fast Fourier transform (FFT), generating a range-Doppler map.

A maximum peak is then searched for inside the range Doppler map, and its corre-
sponding range-bin is declared as the range bin of the target. The respective column out of
the matrix Dl is extracted and is denoted in this paper as the signal x.

This signal x is then used in to estimate breathing frequency while at the same time to
detect the breathing signal, as seen in the next subsections.

3.2. Fourier Series Expansion

In this section, we show how we represent the extracted signal using Fourier series
(FS), which constructs the detection and estimation problem as a least squares problem.
Since the extracted signal is suspected to be a periodic breathing signal with a deterministic
period inside the observation window, we can represent it as a FS model

x(k) =
M

∑
m=−M

θm exp(−j2πm fbk) + n(k), (1)

where n(k) is a zero mean circularly complex Gaussian r.v. with variance σ2, fb is the
breathing frequency, θm is the m’th Fourier coefficient and M is the number of relevant
breathing harmonies in the signal. Note that fb is unknown as well as the Fourier coeffi-
cients θm. Arranging (1) in a vector-matrix form to account for k = 0 · · ·K− 1 samples we
can write

x = H( fb)θ + n, (2)

where x = [x(0), · · · , x(K− 1)]T , the k, m entry in the matrix H( fb) is given by [H( fb)]km =

exp(−j2πm fbk), θ = (θ0, · · · , θK−1)
T and n = [n(0), · · · , n(K− 1)]T , thus, n ∼ CN

(
0, σ2I

)
.

3.3. Maximum Likelihood Estimation of the Breathing Rate
3.3.1. Derivation of the ML Estimator

Define the parameters in (2) as ϑ =
(

fb, θT)T , then the ML estimator of ϑ is given by

ϑ̂ML = arg
{

min
fb ,θ
‖x−H( fb)θ‖2

2

}
. (3)

Note that the matrix H( fb) is a function of the parameter fb, thus, for the sake of
brevity will be referred to as H in the sequel.

Since the ML estimator of the coefficient vector θ for a given fb is given by θ̂ML =(
HHH

)−1HHx, inserting it back into (3) will yield

f̂b ML = arg

{
min

fb

∥∥∥∥x−H
(

HHH
)−1

HHx
∥∥∥∥2

2

}
. (4)

Since the term H
(
HHH

)−1HH in (4) is the projection matrix into the column space of

H, we define PH = H
(
HHH

)−1HH . Moreover, since I− PH is also a projection matrix, it
satisfies (I− PH)(I− PH) = (I− PH)H(I− PH) = I− PH, we can write

f̂b ML = arg
{

min
fb
‖(I− PH)x‖2

2

}
, (5)
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but

‖(I− PH)x‖2
2 = xH(I− PH)x =

= xHx− xHPHx = (6)

= xHx− ‖PHx‖2
2,

where the last line in (6) is due to the property that a projection matrix P will satisfy
P = P2 = PH .

Since the term xHx is independent of the parameter we can write

f̂b ML = arg
{

max
fb
‖PHx‖2

2

}
, (7)

which can be solved by a line search across valid values of the breathing rate fb ∈ [0.1, 1.0] Hz.
We will see in the next subsection that the value of ‖PHx‖2

2 evaluated at f̂b ML is also
the GLRT value, so we get both the breathing rate estimation as well as the evaluation of
the GLRT test value in one calculation.

3.3.2. Cramér–Rao Lower Bound

The CRB for the estimation of the breathing frequency can be divided to different
cases, dependent on which parameters are assumed to be known. In our case, we are only
interested in the frequency ωb = 2π fb while the amplitudes and phases are unknown and
nuisance. For this case, the CRB for estimating ωb is given by [19,22]

CRB(ω̂b) =
12

(BWeff)2 × K3 × SNR
, (8)

where K is the number of samples, the SNR is defined in (9) and the effective bandwidth,
BWeff is defined in (10).

SNR
de f
=

1
2σ2

M

∑
m=−M

θ2
m, (9)

BWeff
de f
=

1

∑M
m=−M θ2

m

M

∑
m=−M

m2θ2
m. (10)

The effective bandwidth is also knows in the literature as r.m.s. bandwidth [23]. As
seen in (8)–(10) if more harmonies are presented in the signal, the SNR effective bandwidth
increases and the CRB decreases in an inverse relation.

The performance of the estimator in (7) for various SNR values compared to the CRB
is depicted in Figure 1, where it is shown that for SNR > −5 dB the estimator meets
the bound.
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Figure 1. Root mean squared error vs. CRB for number of harmonics M = 1 and fundamental
frequency of 0.312 Hz.

3.4. Generalized Likelihood Ratio Test (GLRT)

As derived in Appendix A the test is given by

max
fb
‖PHx‖2

2

H1
≷
H0

γ, (11)

where γ is the test threshold and is computed in our experiments to a constant false alarm
rate of PFA < 10−7. The calculation of this threshold was done empirically and numerically
using Neyman-Pearson’s theorem [24] .

Monte-Carlo simulation was performed in order to study the separation between
hypotheses. Thus, histograms of the detector value, under both hypotheses for various
SNRs is shown in Figure 2. As shown, a very good separation is achieved for SNR greater
than −5 dB. The Receiver Operating Characteristics (ROC) curve of the test for various
SNR values is given in Figure 3. As depicted for SNR = −5 dB we might be able to estimate
the breathing frequency and meet the CRB but at the operating point we will have quite
a few misses and false-alarms in detection. For lower SNR, the values of the area under
the (ROC) curve or AUC is more informative. It can be seen that as expected for very low
(∼−20 dB) SNR regime the AUC is about 0.5 meaning there is no separation capability
between the hypotheses, but as we go up in SNR and close to −5 dB the near 1 AUC
suggest a very good separation between the hypotheses as shown in Figure 4.
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H0 : Noise only

H1 : SNR=-5 (dB)

0 5 10 15 20 25 30 35
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0 5 10 15 20 25 30 35

GLRT Detector Value (dB)

0

0.02

0.04

0.06
H0 : Noise only
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H0 : Noise only
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H1 : SNR=-1 (dB)

(a) (b)

Figure 2. Histograms of the detector value for both hypotheses and various SNRs. (a) SNR = −5,+5,+15 dB. (b) SNR =
−4,−1 dB.
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Figure 3. ROC Curve—Detection Probability vs. False alarm for various SNR values.
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4. Experimental Results

The algorithm was tested in two distinct settings (Experiments approved by IRB
number FES-HSES1901):

1. Baby sleeping. The proposed method was tested on 2 babies across 4 nights, each
of which representing an uninterrupted, full night sleep, so total of 8 nights were
tested. We placed the radar at half a meter and one meter away from the crib directly
facing its long-side as depicted in Figure 5. Both babies were wearing a swaddle, and
the babies were moving in the crib so random poses with respect to the radar were
presented during the night. Analysis of the SNRs and test distribution are described
below. No false alarms or misses were reported.

2. Adults sitting: The proposed method was tested on nine test subjects, ages 12 to 44,
sitting still without moving in front of the sensor, in various distances, breathing. The
duration was approx. 60 s and sometimes more per test subject. The purpose of this
these experiments was to analyze the errors in breathing rate as reported below. The
setup is as seen in Figure 6. The test subject was sitting on the chair, leaning back,
sitting as still as they can, looking straight to the radar. The distance was measured
both with the radar as well as a measuring tape as seen in the figure.
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Figure 5. Baby crib—radar setup.

Figure 6. Breathing rate estimation—test setup.

4.1. Efficacy of Breathing Signal Extraction

The efficacy of the breathing signal extraction was discussed in [18]. It was tested on
various subjects wearing on their abdomen a Neulog’s respiration monitoring Belt logger
NUL-236 (Neulog, Rochester, NY, USA) [25], used as ground truth. In [18], the efficacy
of the extracted breathing signal was not tested under various distances so we decided
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to further test it with different radar ranges, from 1 m to 4 m. Table 2 summarizes the
subjects parameters, while Table 3 shows the correlation coefficients of the radar extracted
breathing signal to the ground truth. A few examples of the two signals superimposed
on each other are shown in Figures 7–9 . We report a maximum correlation of 0.971 and
minimum of 0.781.The mean correlation coefficient we get over all distances and subjects is
0.881 which suggests a high efficacy of breathing signal extraction.

Table 2. Subjects information.

Gender (m/f) Age (years) Weight (kg) Height (cm)

Subject 1 m 44 96 174
Subject 2 f 40 63 173
Subject 3 f 12 35 145
Subject 4 f 25 60 170
Subject 5 f 28 57 166
Subject 6 f 31 56 162
Subject 7 m 35 77 178
Subject 8 m 41 83 181
Subject 9 m 43 169 175

Table 3. Experiment scenarios correlation coefficients.

Experiment
Number Subject Distance (m) Correlation

Coefficient
True Breathing

Freq (BPM)

1 1 1.13 0.905 24.023
2 1 1.83 0.971 19.921
3 1 2.56 0.929 20.507
4 2 1.54 0.848 16.406
5 2 3.54 0.815 15.234
6 3 1.21 0.864 25.19
7 3 2.68 0.940 25.78
8 3 4.046 0.781 31.640
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Figure 7. Experiment 1 signal extraction. (a) ground truth and radar extracted on top of each other.
(b) correlation scatter.
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Figure 8. Experiment 2 signal extraction. (a) ground truth and radar extracted on top of each other.
(b) correlation scatter.
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Figure 9. Experiment 3 signal extraction. (a) ground truth and radar extracted on top of each other.
(b) correlation scatter.

4.2. Examples of the Test Distribution for Various SNR Regimes

Baby I and II (see Table 4) were recorded sleeping for 4 nights each. We placed
the radar at distances of half a meter and a meter away from the crib directly facing its
long-side as depicted in Figure 5. The two different scenarios make for a variation in
estimated SNR which we can use to visually test the adherence of the test distribution
under both hypotheses to the theoretical above. As can be seen in Figures 10 and 11 the
graphs resembles the theoretical results depicted in Figure 2 for SNR = 9, 14 dB.

Table 4. Baby information.

Gender (m/f) Age (months) Weight (Kg) Approx Radar Range (m)

Baby I m 10 11.2 0.5, 1.0
Baby II f 19 11.5 0.5, 1.0
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Figure 10. Real example of test hypothesis separation. SNR∼= 14 dB. Extracted from an overnight
sleep of Baby I.
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Figure 11. Real example of test hypothesis separation. SNR∼= 9 dB. Extracted from an overnight
sleep of Baby II.

4.3. Accuracy Results

This section will outline the detector performance and ML estimation accuracy results.
In our experiments we took M = 2 harmonies and a time window of 10 s or K = 100 sam-
ples. The time window affects the estimation accuracy as per Equation (8). Shortening
it will provide less information in the observation window and the estimation accuracy
will drop, increasing it will improve it but at the same time increase the risk of losing local
stationarity, i.e., breathing rate change inside the time window. Ten seconds is what we
chose as a trade-off.

4.3.1. Detector Accuracy

The detector accuracy was evaluated across 8 combined nights of sleeping, split
between two baby subjects. The ground truth was a camera synced to the radar. Over
these 8 nights no false alarm or misses were reported. The reason for that is we work on a
good SNR regime in which the separation between hypotheses is good and the sensitive
detector probably needs months of operations to have a false or a miss. Figures 10 and 11
depicts the real, empirical, distribution of the test under both hypotheses. The babies move
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and change pose throughout the night, thus, the test value has a range of between 14 dB
to 33 dB.

4.3.2. ML Estimation Accuracy

The results of the experiments described above performed on the nine subjects in
Table 2 are shown in Tables 5–7. The root mean squared error (RMSE) in BPM for different
distances are summarized. At times, the subjects were instructed to either breathe normally,
or fast, to allow for variations in breathing rate. The table layout the breathing rate, the
RMSE in BPM and the percentage of the RMSE with respect to the true breathing rate. The
true breathing rate is reported and any rate higher than 20 BPM is considered fast. We
report maximal error of 0.170 BPM and maximum percentage of 0.968% of true breathing
rate across all experiments and subjects, which is much better than the performance of the
algorithm we proposed in [18].

Table 5. Root mean squared error results on test subjects for ranges 1–2 m.

Subject Distance (m) RMSE (BPM) True Breathing Freq Mean RMSE
% of Breathing Freq

1 1.13 0.095 21.093 0.450
1 1.83 0.069 19.921 0.346
2 1.54 0.131 16.406 0.798
3 1.21 0.100 25.190 0.396
4 1.32 0.110 14.010 0.785
5 1.61 0.129 13.121 0.983
6 1.51 0.125 16.643 0.751
7 1.42 0.099 16.432 0.602
8 1.70 0.131 15.327 0.854
9 1.30 0.119 17.282 0.688

Table 6. Root mean squared error results on test subjects for ranges 2–3 m.

Subject Distance (m) RMSE (BPM) True Breathing Freq Mean RMSE
% of Breathing Freq

1 2.56 0.096 20.507 0.468
2 2.47 0.151 18.981 0.795
3 2.68 0.100 25.780 0.387
4 2.31 0.120 15.001 0.799
5 2.76 0.099 14.132 0.700
6 2.81 0.133 16.320 0.814
7 2.90 0.148 18.982 0.779
8 2.66 0.129 15.903 0.811
9 2.24 0.090 16.837 0.534

Table 7. Root mean squared error results on test subjects for ranges 3–4 m.

Subject Distance (m) RMSE (BPM) True Breathing Freq Mean RMSE
% of Breathing Freq

1 3.19 0.139 20.732 0.670
2 3.54 0.146 15.236 0.958
3 4.04 0.170 31.640 0.537
4 3.85 0.138 14.390 0.958
5 3.96 0.130 13.417 0.968
6 3.78 0.115 15.901 0.723
7 3.07 0.129 17.003 0.758
8 3.60 0.141 15.390 0.916
9 3.66 0.135 17.100 0.789
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5. Future Work

The below points were identified for future work.

5.1. Sleep Stages Classification

The proposed algorithm is dealing only with presence detection, hence, there is a
spread in values of the detector across time as shown in Figures 10 and 11. It is interesting
to investigate if the GLRT value along with the breathing rate can be used as a descriptor to
classify sleep stages, like awake, deep, light sleep, and Rapid Eye Movement sleep (REM).

5.2. Breathing Extraction under Movements

The proposed algorithm is detecting the movement of the breathing, however, when
shifting in the chair or in bed, the breathing is “masked” by the bulk movement of the
body. While a simple MTI will detect the movement, the breathing estimation during this
movement will be wrong, because the movement is not taken into account in the proposed
breathing model. Investigation of how to deal with remote breathing extraction under
movement is something we plan for the future.

6. Conclusions

A method for the simultaneous presence detection and breathing rate estimation
was presented. The method relies on the detection of minute movements of the torso
due to breathing, such that even when the person is sitting still and breathing only, the
detector is still effectively able to tell that there is a presence. The algorithm expands
the breathing signal using Fourier series, and uses a simple line search for the maximum
likelihood estimation of the breathing rate and the detector value simultaneously. We
analyzed both the detector’s performance as well as the estimator’s performance, both
in a Monte-Carlo setting as well as real life, and concluded that the estimator meets the
CRB and for SNR values greater than −5 dB. Moreover, we report a maximum error of
0.170 BPM for distances up to 4 m. In order to analyze the detector performance in real life,
we tested the algorithm on eight full nights recordings of two babies sleeping, reporting
zero false alarm and zero misses.
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Appendix A. Derivation of the GLRT Detector

The hypotheses testing problem we are dealing with here can be written as

H1 : x = Hθ + n

H0 : x = n, (A1)

where H of size N × N and θ of size N × 1 are unknown deterministic parameters and n is
a vector of noise such that in the general case n ∼ CN (0, Rn).

Using maximum likelihood estimation of the parameters, the GLRT is given by

max
fb ,θ

f (x; H, θ)

f (x; Hθ = 0)

H1
≷
H0

γ1. (A2)
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If we substitute the ML estimator of H and θ we get

f
(
x; Ĥ, θ̂

)
f (x; Hθ = 0)

H1
≷
H0

γ1. (A3)

The distribution of x under each hypothesis is complex Gaussian and is given by

x/H1 ∼ CN
(
Ĥθ̂, Rn

)
,

x/H0 ∼ CN (0, Rn). (A4)

The Gaussian under both hypotheses has the same multiplicative coefficient, hence
after taking the natural logarithm of (A2), omitting the max operation for brevity, we get

−
(
x−Hθ̂

)H
R−1

n
(
x−Hθ̂

)
+ xHR−1

n x
H1
≷
H0

γ2. (A5)

Since the ML estimator of θ, denoted here by θ̂, is given by the weighted least squares
estimator we can write

θ̂ =
(

HHR−1
n H

)−1
HHR−1

n x, (A6)

and

x −Hθ̂ =

= x−H
(

HHR−1
n H

)−1
HHR−1

n x =

= R
1
2
n

[
R−

1
2

n x− R−
1
2

n H
(

HHR−1
n H

)−1
HHR−

1
2

n R−
1
2

n x
]
= (A7)

= R
1
2
n

[(
I− R−

1
2

n H
(

HHR−1
n H

)−1
HHR−

1
2

n

)
R−

1
2

n

]
x.

Since PH̃ = R−
1
2

n H
(
HHR−1

n H
)−1HHR−

1
2

n is a projection matrix into the column space

of H̃ = R−
1
2

n H, and P⊥H̃ = I − PH̃ is also a projection matrix, hence, noting that any
projection matrix P will satisfy P = P2 = PH we can write

x−Hθ̂ = R
1
2
n (I− PH̃)R

− 1
2

n x, (A8)

and (
x−Hθ̂

)H
= xHR−

1
2

n (I− PH̃)R
1
2
n . (A9)

Thus, calculating the first term in the left hand side (LHS) of (A5) we get

−
(
x−Hθ̂

)H
R−1

n
(
x−Hθ̂

)
=

= −xHR−
1
2

n (I− PH̃)R
1
2
n R−1

n R
1
2
n (I− PH̃)R

− 1
2

n x = (A10)

= −xHR−
1
2

n (I− PH̃)R
− 1

2
n x.

Plugging this result into the LHS of (A5) we get

− xHR−
1
2

n (I− PH̃)R
− 1

2
n x + xR−1

n x =

= xHR−
1
2

n PH̃R−
1
2

n x =

∥∥∥∥PH̃R−
1
2

n x
∥∥∥∥2

2
. (A11)
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Setting Rn = σ2I, re-instating omitted the max{·} operation and moving the constant
noise variance σ2 into the RHS to be absorbed in the new threshold γ brings us to the next
expression which concludes our derivation.

max
fb
‖PHx‖2

2

H1
≷
H0

γ. (A12)
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