
sensors

Article

HAGP: A Heuristic Algorithm Based on Greedy Policy for Task
Offloading with Reliability of MDs in MEC of the
Industrial Internet

Min Guo 1,2 , Xing Huang 1, Wei Wang 1, Bing Liang 1, Yanbing Yang 1,3 , Lei Zhang 1,3 and Liangyin Chen 1,3,*

����������
�������

Citation: Guo, M.; Huang, X.; Wang,

W.; Liang, B.; Yang, Y.; Zhang, L.;

Chen, L. HAGP: A Heuristic

Algorithm Based on Greedy Policy

for Task Offloading with Reliability of

MDs in MEC of the Industrial

Internet. Sensors 2021, 21, 3513.

https://doi.org/10.3390/s21103513

Academic Editor: Marco Picone

Received: 13 April 2021

Accepted: 13 May 2021

Published: 18 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science & School of Software Engineering, Sichuan University, Chengdu 610065, China;
guomin@stu.scu.edu.cn (M.G.); 2017223045118@stu.scu.edu.cn (X.H.);
wang.david.wei@stu.scu.edu.cn (W.W.); 2019223049277@stu.scu.edu.cn (B.L.);
yangyanbing@scu.edu.cn (Y.Y.); zhanglei@scu.edu.cn (L.Z.)

2 School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730050, China
3 Institude for Industrial Internet Research, Sichuan University, Chengdu 610065, China
* Correspondence: chenliangyin@scu.edu.cn

Abstract: In the Industrial Internet, computing- and power-limited mobile devices (MDs) in the
production process can hardly support the computation-intensive or time-sensitive applications. As
a new computing paradigm, mobile edge computing (MEC) can almost meet the requirements of
latency and calculation by handling tasks approximately close to MDs. However, the limited battery
capacity of MDs causes unreliable task offloading in MEC, which will increase the system overhead
and reduce the economic efficiency of manufacturing in actual production. To make the offloading
scheme adaptive to that uncertain mobile environment, this paper considers the reliability of MDs,
which is defined as residual energy after completing a computation task. In more detail, we first
investigate the task offloading in MEC and also consider reliability as an important criterion. To
optimize the system overhead caused by task offloading, we then construct the mathematical models
for two different computing modes, namely, local computing and remote computing, and formulate
task offloading as a mixed integer non-linear programming (MINLP) problem. To effectively solve
the optimization problem, we further propose a heuristic algorithm based on greedy policy (HAGP).
The algorithm achieves the optimal CPU cycle frequency for local computing and the optimal
transmission power for remote computing by alternating optimization (AP) methods. It then makes
the optimal offloading decision for each MD with a minimal system overhead in both of these
two modes by the greedy policy under the limited wireless channels constraint. Finally, multiple
experiments are simulated to verify the advantages of HAGP, and the results strongly confirm that
the considered task offloading reliability of MDs can reduce the system overhead and further save
energy consumption to prolong the life of the battery and support more computation tasks.

Keywords: mobile edge computing (MEC); task offloading; reliability; optimization; Industrial
Internet

1. Introduction

In the Industrial Internet, computing- and power-limited mobile devices (MDs) related
to the production process can hardly support computation-intensive and time-sensitive
applications, such as smart sensing for production environments, healthcare monitoring
of production machines, and smart transportation of production materials [1–4]. At the
same time, with the massive amount of MDs connected to the Industrial Internet, security
is also an urgent problem that needs to be solved [5]. Mobile edge computing (MEC) is
hence considered as a promising solution for those issues through processing application
requests approximately close to the MDs [6–8]. When computation tasks are offloaded
to the edge server, extra transmission delay will also be generated, except for inherent
processing latency and energy consumption. Therefore, the trade-off between latency

Sensors 2021, 21, 3513. https://doi.org/10.3390/s21103513 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8803-8550
https://orcid.org/0000-0002-9266-8600
https://orcid.org/0000-0001-6166-890X
https://www.mdpi.com/article/10.3390/s21103513?type=check_update&version=1
https://doi.org/10.3390/s21103513
https://doi.org/10.3390/s21103513
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21103513
https://www.mdpi.com/journal/sensors


Sensors 2021, 21, 3513 2 of 19

and energy consumption is not only one of the main goals for task offloading but also an
important metric for evaluating the performance of an MEC system [9–11]. However, task
offloading decisions in MEC are easily affected by many uncertain factors, such as unstable
mobile wireless channels, resulting in unpredictable latency and more energy consumption
caused by unnecessary task re-transmission, which may seriously degrade the system
performance [12,13]. Moreover, complex task offloading schemes or mechanisms will also
consume precious resources, e.g., battery power in MDs, which will further influence the
system performance [14–16]. Therefore, ensuring reliable task offloading in MEC is a must
and necessary requirement in realistic Industrial Internet application scenarios.

With the widespread popularity of MEC, there are some seminal works considering
the reliability for task offloading in MEC systems [17–21]. In particular, to handle the
uncertain communication condition for transmitting the data and instructions required
by computation tasks, a joint optimization scheme was proposed in [19] to achieve the
trade-off between latency and reliability in task offloading, but it ignores finite computing
power on both MDs and edge servers in real applications. To guarantee the reliability of
both computing modes, a novel optimization problem of computation and transmission
power in task offloading was presented in [20], which is subjected to the latency and
reliability constrained by task queue length violations on the MD and server side. However,
its experiment results show that the reliability is closely related to the task arrival rates,
rather than the computing capability or battery power of MDs. Considering the importance
of MDs for task offloading in MEC, an energy-efficient task offloading scheme was studied
in [21], which satisfies the reliability existing in local and offloading schemes because of
the uncertain computing power and transmission rate, respectively. However, it is still
questionable for the reliability of MDs measured by the battery level. In fact, when the MD
is reliable, the task would be processed by the computing mode with the optimal objective
or dropped actively by the MD with a penalty. Otherwise, the task will be disrupted and
discarded by the exhausted battery power, which will consume more execution overhead
compared with the case of a reliable MD [22–24]. Therefore, to make the task offloading
scheme more suitable for the actual production environment, the limited energy power is
an important constraint that needs to be met.

To address this issue, this paper focuses on the reliability of MDs when making the
offloading decision in an MEC system. In more detail, we define the reliability of MDs with
the residual battery power after the completion of computation tasks according to [25,26].
Subsequently, we formulate an optimization problem by minimizing the weighted sum of
the process latency and energy consumption and then propose a heuristic algorithm based
on greedy policy, namely, HAGP. Finally, the results obtained through extensive simulation
experiments show that the task offloading scheme with reliability of MDs in MEC will
consume a lower system overhead and further prolong the battery lives of MDs, and vice
versa, which is consistent with the actual situations.

In a nutshell, the main contributions of this paper are summarized as follows:

1. We consider a computation task offloading scenario with an edge server and multiple
heterogeneous MDs, where a different type of computation task is randomly requested
by each MD, and the computing power of the edge server is constrained by the number
of channels existing between MDs and the edge server, by which they can exchange
data and information.

2. We define the reliability of MDs as the residual energy of MDs after completing a
computation task and formulate the problem of computation task offloading in this
scenario as a mixed integer non-linear programming (MINLP) problem.

3. We solve the problem with alternating optimization (AP) methods and, based on these,
propose and design a heuristic algorithm, HAGP, to make decisions for processing
computation tasks on MDs, which would minimize the system overhead consisting of
the weighted sum of the process time delay and energy consumption.



Sensors 2021, 21, 3513 3 of 19

4. We conduct extensive simulation experiments and theoretically analyze the results
to verify the performance and confirm the advantages of HAGP by comparing with
several baseline algorithms.

The structure of this paper is organized as follows. Firstly, the system models, in-
cluding the networking model, computation model, communication model, and reliability
model, are built in Section 2. Then, the definition of the system overhead and optimization
problem is formulated in Section 3. Section 4 provides the solving process for the opti-
mization problem and presents the algorithm designed to obtain the offloading scheme.
Subsequently, Section 5 shows the simulation results and verifies the advantages of the
proposed algorithm by comparing with several classical baseline algorithms. Finally, the
conclusion is in Section 6.

2. System Models

This section mainly describes the formulation of different models and builds the
optimization problem that will be solved in the subsequent part of the article. Firstly, we
define the reliability of MDs with residual energy after the execution of a computation task.
Subsequently, we describe the MEC system model used in this paper, i.e., task offloading
with reliability of MDs in an MEC system of the Industrial Internet. Then, both the local
computing model and remote computing model are represented. After that, the overhead
of the system is defined to evaluate the offloading decision. Finally, the optimization
problem is formulated and solved.

2.1. Overall System Model

As shown in Figure 1, the overall system model consists of N heterogeneous MDs
with different computing powers and battery capacities and an edge server which could
be a micro-cell or small-cell base station. For manufacturers in the Industrial Internet,
the more MDs that an edge server can serve with limited computing resources, the more
economic benefits they will obtain [27,28]. Moreover, the distance between each MD and
the edge server can be represented by di, which will cause the differences in channel gains
existing during the data transmission. Additionally, all the MDs can exchange data and
information with the edge server through one of theM wireless channels. Assume the
channels have an individual identity distribution (i.i.d), i.e., the status of channels does not
change during one offloading. For convenience, some important symbols adopted in this
paper and their description are listed in Table 1.

Outer Network

（Internet）
Gateway

MD3

MD2

Inner Network

MDn

MD1

…… 
Edge Server

…… 

Fiber
Link

M Wireless channels

Figure 1. The scenario of task offloading with reliability of MDs in MEC of the Industrial Internet.



Sensors 2021, 21, 3513 4 of 19

Table 1. Important symbols used in the paper and their description.

Symbols Description

N (N) The set of MDs (the number of elements in set)

M(M) The set of wireless communication channels (the number of elements in set)

Q The number of CPU cycle frequency for processing one bit data

Ti The computation task requested by MDi

Si(Smax) The (maximum) size of the computation task requested by MDi (in bit)

Di The deadline of the computation task Ti (in ms)

Im
i

The indicator of whether the computation task on MDi is offloaded, where
m ∈ {l, r, f }

di The distance between MDi and the edge server (in m)

hi
The channel gain between MDi and the edge server during the transmission of the
computation task

fi( f max
i ) The (maximum) frequency of MDi to process the computation task locally (in Hz)

pi(pmax
i ) The (maximum) transmission power of MDi to transmit the computation task (in w)

Lm
i The execution latency of the computation task Ti, where m ∈ {l, r, f } (in ms)

Bi The battery capacity of MDi (in J)

Em
i The energy consumption of the computation task Ti, where m ∈ {l, r, f } (in J)

Consider the computation-intensive application tasks requested by MDi, i ∈ N are
represented by Ti = (Si, Di), where Si is the size of the computation task with the maximum
value of Smax, including the instructions and dataset requested for task processing (in bit),
and Di is the deadline of the computation task (in ms), which means that the computation
task must be completed within the specified time. Here, we assume that there is no buffer
to queue the computation tasks, which means that computation tasks must be processed in
time. The computation tasks are atomic, meaning that they can be either processed locally
or offloaded to the edge server for processing, which can be denoted as Il

i = 1, Ir
i = 1.

Additionally, if the battery power of the MD is too low to support the execution, or the
process latency exceeds the deadline of a computation task, it can be viewed as a fail,
namely, I f

i = 1. In this case, the penalty will be added. Thus, the indicator I = (Il
i , Ir

i , I f
i ) is

denoted, which represents the offloading decision for the computation task requested by
MDi. According to the definition, the offloading decision should be satisfied by

|I| = ∑
s
|Im

i | m ∈ {l, r, f }, i ∈ N (1)

2.2. Local Computing

Assume that the number of the CPU cycle frequency required for MDi to process one
bit of data is Q, which would vary with different applications [29]. In consequence, the
number of the CPU cycle frequency required to complete the computation task Ti is SiQ,
and the latency Ll

i during the computation task processed at MDi can be obtained by

Ll
i =

Si · Q
fi

i ∈ N (2)

where fi represents the computing frequency of MDi to process the computation task Ti
locally. Moreover, according to dynamic voltage and frequency scaling (DVFS), the MDs
can work with different CPU frequencies ranging from 0 to f max

i , that is, fi ∈ [0, f max
i ].

Correspondingly, the energy consumed for local computing is
El

i = κ SiQ f 2
i i ∈ N (3)

where κ is the coefficient of switching capacitance, decided by the chip manufacturer [30],
and the value is usually 10−28 [31].



Sensors 2021, 21, 3513 5 of 19

2.3. Remote Computing

Remote computing in this paper refers to the computation task processed by the edge
server near MDs, which needs to transmit data and instructions through wireless channels
between them. Therefore, in this computing model, we firstly introduce the communication
model [32].

2.3.1. Communication Model

In this paper, there are M orthogonal channels between MDs and the edge server,
which means the edge server can serve M MDs simultaneously at any time. Moreover,
the interference among the occupied channels is ignored. Therefore, from Shannon’s
theorems [33], the uplink rate for transmitting data and instructions of the computation
tasks is

vi = ω log2(1 +
hi · pi

σ
) i ∈ N (4)

where ω represents the bandwidth for transmitting, and σ refers to the background noise
whose value is 10−13 in this paper. Furthermore, pi is the power efficiency of MDi to
transmit the computation task, and hi represents the channel gain of MDi and obeys an
exponential distribution whose unity mean is g0d−4

i , in which g0 is the path loss constant
with a value of 10−4, and di is the distance between MDi and the edge server, following a
uniform distribution with (0,50).

2.3.2. Remote Computing

There are three phrases that should be experienced by a computation task when
the MD chooses remote computing. These contain the uplink transmission of the primal
computation task, processed by the edge server, and the return of the output results.
However, in this paper, the computing capacity of the edge server is limited by the number
of wireless channels between MDs and the edge server. In addition, since the output size
of the computation task is much smaller than the size of input data, the latency for remote
computing is mainly considered as the uplink transmission latency, ignoring the executing
latency and downlink transmission latency, i.e., offloading decisions of MDs should be
satisfied by N

∑
i=1

1{Ir
i =1} ≤ M i ∈ N (5)

Here, 1{A} is a binary function with 1{A} = 1 if A is true and 1{A} = 0 otherwise.
Additionally, based on the communication model described in (4), we can obtain the latency
of remote computing by

Lr
i =

Si
vi

i ∈ N (6)

In this case, this work focuses on MDs and the edge server providing a service to
computation tasks without consuming the energy of MDs; hence, the energy consumption
of remote computing is mainly caused by the transmission process. Since the transmission
power pi (in w) is given, the energy consumption of remote computing can be formally
expressed as

Er
i = pi · Lr

i i ∈ N (7)

where pi represents the energy consumption per unit of time.

2.4. Process Latency Model

As a performance metric of processing computation tasks, process latency can be
summarized as follows according to different offloading decision and computation models.

Li(Ii, fi, pi) = Ii · (Ll
i , Lr

i , L f
i ) = Il

i Ll
i + Ir

i Lr
i + I f

i L f
i (8)

where L f
i is the latency penalty when the computation task is failed, caused by the unrelia-

bility of MDi, which is a constant equal to the maximum deadline of computation tasks.



Sensors 2021, 21, 3513 6 of 19

2.5. Energy Consumption Model

Assume Bi is the initial energy of MDi, i ∈ N, which are different values due to the
heterogeneity of MDs. According to both of the models above, the energy consumption
required to complete a computation task can be represented by

Ei(Ii, fi, pi) = Ii · (El
i , Er

i , E f
i ) = Il

i El
i + Ir

i Er
i + I f

i E f
i (9)

where E f
i is the energy penalty when the computation task is failed. In this paper, the value

of the energy penalty is set as the energy consumed by the maximum computation task.
Here, the residual energy of MDi can be deduced by the equation above.

Ere
i = Bi − Ei(Ii, fi, pi) (10)

2.6. Reliability Model

In the MEC system described in this paper, the computation tasks can be executed
locally or transmitted to the edge server for processing, while both of them will consume
the energy stored in MDs, which is needed to ensure the reliability of MDs. In other words,
MDs must support computation tasks executed locally or offloaded to the edge server
successfully. The reliability model of MDs can be defined according to the description
in [34].

Definition 1 (Reliability of MDs). Reliability of a mobile device refers to the probability of the MD
working normally based on the energy consumption.

With Definition 1, this paper assumes that the MD is reliable if the residual energy is
greater than or equal to 0 after the computation task is accomplished successfully, and vice
verse. In addition, the size of the computation task is subject to the uniform distribution
of 0− Smax. Therefore, joining Equations (9) and (10) and the distribution of the task size,
the reliability of MDs (i.e., the probability of MDi working normally) can be obtained by
substituting the offloading decision:

RPi = Pr(Ere
i ≥ 0) = Pr(Bi − Ei(Ii, fi, pi) ≥ 0)

=

{
Pr(Bi ≥ El

i ) Il
i = 1

Pr(Bi ≥ Er
i ) Ir

i = 1

=


Pr(Si ≤

Bi

κ Q f 2
i
) Il

i = 1

Pr(Si ≥
Biω log2(1 +

hi pi
σ )

pi
) Ir

i = 1

=


Bi

κ SmaxQ f 2
i

Il
i = 1

Bi ω log2(1 +
hi pi

σ )

piSmax
) Ir

i = 1

(11)

3. Problem Formulation

Definition 2 (System Overhead). System overhead refers to the weighted sum of the processing
latency and energy consumption required to successfully execute a computation task.

In this paper, the system overhead is used as a metric to evaluate the performance
of offloading decisions for MDi, i.e., how to process the computation task requested by
MDi. In the definition of the weighted sum, the weighted coefficient λt is the preferred
metric for process latency, and λe is preferred for energy consumption. In addition, both
of the coefficients should be satisfied by the equation λt + λe = 1. Specifically, when the
coefficient λe of the system overhead is larger than λt, the energy consumption will be



Sensors 2021, 21, 3513 7 of 19

mainly considered. For this case, once the computation task is processed locally, a lower
energy consumption means a longer working time of MDi, which implies the battery life
of MDi is prolonged. Conversely, for a delay-sensitive application, the processing latency
coefficient λt is larger to satisfy the requirement of the deadline. Therefore, the system
overhead is used as a main metric for evaluating the performance of offloading decisions
for the MEC system in this paper.

According to the definition above, combined with Equations (2) and (3), the system
overhead of the computation task Ti processed locally is

ohdl
i = λtLl

i + λeEl
i (12)

Subsequently, joining Equations (6) and (7), the system overhead of the computation
task Ti transmitted to the edge server can be obtained by

ohdr
i = λtLr

i + λeEr
i (13)

Additionally, the penalty for a failed computation task Ti can be represented by

ohd f
i = λtL f

i + λeE f
i (14)

In general, the system overhead of MDi in the MEC system to process the computation
task can be expressed as

sys_overheadi = Ii · (ohdl
i , ohdr

i , ohd f
i )

= Il
i ohdl

i + Ir
i ohdr

i + I f
i ohd f

i

(15)

In summary, the computation task offloading in an MEC system of the Industrial
Internet can be formulated as an MINLP, i.e., the cumulative sum of the system overhead
of computation tasks requested by MDi. The formulation of the problem is

P1 : arg
(Ii , fi ,pi)

min
N

∑
i=1

sys_overheadi

s.t. C1 : 0 < RPi ≤ 1 i ∈ N
C2 : 0 ≤ pi ≤ pmax

i i ∈ N
C3 : 0 ≤ fi ≤ f max

i i ∈ N
C4 : Li(Ii, fi, pi) ≤ Di i ∈ N

C5 : |Ii| = 1 i ∈ N

(16)

where C1 indicates that MDi should be reliable to support the execution of the computation
task. C2 and C3 ensure that the transmission power and CPU frequency of MDi are within
the specified range with the corresponding offloading decision, respectively. Besides these,
the deadline of the computation task is also an important factor, and C4 gives the constraint
of the deadline, i.e., the computation task required by MDi should be completed within
the specified time, whether executed locally or offloaded to the edge server. Finally, C5
shows that the offloading decision is a 0–1 indicator.

4. Problem Solving and Algorithm Designing
4.1. Problem Solving

Clearly, the formulated problem P1 is an MINLP, which could be solved by the
alternative optimization (AO) method, i.e., obtaining the optimal CPU cycle frequency f ∗i
for executing locally and transmitting the power p∗i for offloading to the edge server by
setting the offloading decision while determining the final offloading decision according
to the comparison results of the overhead consumed by different offloading decisions.
Subsequently, we will obtain the optimal solution for the objective function. Since the
computation task required by MDi can only be processed locally with the optimal CPU
cycle frequencies or offloaded to the edge server with the optimal transmission power,



Sensors 2021, 21, 3513 8 of 19

different optimization variables, such as fi and pi in objective function, are independent
from each other. Meanwhile, the offloading decision of each MD is constrained by the
number of wireless channels existing in MDs and the edge server. Therefore, the problem
P1 can be divided into two independent sub-problems to solve, i.e., the sub-problem
related to the CPU cycle frequency for executing locally PLO and the sub-problem about
the transmission power for offloading to the edge server PCO.

4.1.1. Optimal CPU Cycle Frequency

The sub-problem of the CPU cycle frequency for executing locally can be obtained by
substituting Il

i = 1 and (2) and (3) into (16), i.e.,

PLO : arg
fi

min
N

∑
i=1

sys_overheadi

s.t. C1 : 0 < RPi =
Bi

κ SmaxQ f 2
i
≤ 1 i ∈ N

C3 : 0 < fi ≤ f max
i i ∈ N

C4 : Li(Ii, fi, pi) =
SiQ

fi
≤ Di i ∈ N

(17)

where

sys_overheadi = ohdl
i = λtLl

i + λeEl
i

= λt Si Q
fi

+ λeκ SiQ f 2
i

(18)

Since the local computing CPU cycle frequencies of each MD do not interfere with
each other, the cumulative sum of this sub-problem can be decomposed into the sum of
N minimums, that is, only the optimal fi of each MD needs to be calculated ( fi is optimal
when the execution overhead of the local process is the smallest). According to these,
we express the objective function as F( fi) = sys_overheadi, which is convex because both
terms of F( fi) are convex [35]. Meanwhile, by calculating the constraints C1, C3, and C4 in
PLO, the range of fi can be obtained. Specifically, the upper bound is f max

i , while the lower
bound is represented as follows:

f min
i = max{SiQ

Di
,

√
Bi

κ SmaxQ
} (19)

Furthermore, a minimum exists when F( fi) has a local minimum in the field of fi as
it is a unimodal function. For the objective function F( fi), f 0

i = ( λt

2(1−λt)κ
)

1
3 is the critical

point, which can be obtained by solving the first derivative. Therefore, the monotonicity
of F( fi) can be analyzed according to the relationship between f 0

i and the bounds of the
domain. Firstly, the first derivative is always positive in [ f min

i , f max
i ] when f 0

i is smaller
than f min

i ; therefore, F( fi) is monotonically increasing in the domain of fi. Then, in the
same way, the objective function F( fi) is monotonically decreasing when fi ∈ f min

i , f max
i

with f 0
i is larger than f max

i . Correspondingly, as the first derivative of F( fi) is negative first
and then positive when f 0

i is between f min
i and f max

i , the objective function first decreases
and then increases.

Based on the monotonicity of the objective function F( fi) above, the optimal CPU
cycle frequency f ∗i can be obtained by the closed form if and only if f min

i ≤ f max
i :

f ∗i =


f min
i f 0

i < f min
i

f 0
i f min

i ≤ f 0
i ≤ f max

i

f max
i f 0

i > f max
i

(20)



Sensors 2021, 21, 3513 9 of 19

4.1.2. Optimal Transmission Power

In the case of processing the computation task at the edge server, by substituting the
variable of the offloading decision Ir

i = 1 into the objective function of P1, we can obtain a
new sub-problem about the optimal transmission power, i.e.,

PCO : arg
pi

min
N

∑
i=1

sys_overheadi

s.t. C1 : 0 < RPi =
Bivi

piSmax
≤ 1 i ∈ N

C2 : 0 < pi ≤ pmax
i i ∈ N

C4 : Li(Ii, fi, pi) =
Si
vi
≤ Di i ∈ N

(21)

in which, the objective function can be obtained by combing Equations (6), (7) and (13),
that is

sys_overheadi = ohdr
i = λtLr

i + λeEr
i

= λt Si
vi

+ λe piSi
vi

(22)

It can be found that the transmission powers of MDs are independent from each other,
and there is no coupling. Thus, the minimum of the cumulative sum in sub-problem PCO
can be decomposed into the sum of N minimums which will be the objective problem that
needs to be solved. For convenience, the objective function can be denoted as P(pi), which
is convex, as discriminated by [36]. However, in Equation (21), both C1 and C4 are complex
inequalities about pi. Specifically, C1 is a fractional function, where the denominator is
essentially a logarithmic function of pi. Similarly, C4 comprises a logarithmic function.
Therefore, the upper and lower bounds of pi in C1 and C4 are difficult to determine. To
address this problem, we firstly obtain the bounds of the logarithmic function with g(pi)
as the following definition.

Definition 3. Combining (4), by denoting the function of pi as

g(pi) =
pi
vi

=
pi

ω log2(1 +
hi pi

σ )
pi > 0 (23)

the value range of g(pi) is (σln2(ωhi)
−1,+∞).

Proof. Since g(pi) is monotonically increasing when pi > 0, its minimum value can be
calculated by lim

pi→0
g(pi) = σln2(ωhi)

−1. The process of calculating, in detail, is relatively

simple, and it is omitted here.

According to the analysis above, the domain of P(pi) can be determined, that is, the
transmission power is not allowed beyond the maximum pmax

i , while the lower bound can
be deduced by the initial battery capacity.

pmin
i =


max{pi,Di , pi,Bi}

σln2 · Smax

ωhi
≥ Bi

pi,Di

σln2 · Smax

ωhi
< Bi

(24)

where pi,Di = (2
Si

ωDi − 1)σ/hi, and pi,Bi is the unique solution for piSmax = Bivi.
Similar to the analysis of the optimal CPU cycle frequency in the previous section,

we can obtain the monotonicity of P(pi), which is closely related to the critical point p0
i .

Therefore, as P(pi) is a single variable function defined on [pmin
i , pmax

i ], the optimal solution
of pi is given if and only if pmin

i ≤ pmax
i .



Sensors 2021, 21, 3513 10 of 19

p∗i =


pmin

i p0
i < pmin

i

p0
i pmin

i ≤ p0
i ≤ pmax

i

pmax
i p0

i > pmax
i

(25)

where p0
i is the unique solution for dP(pi)

dpi
= 0. The specific expression of the equation is

shown in (26), and it is proved to be a transcendental equation.

dP(pi)
dpi

=
d(λt Si

vi
+λe piSi

vi
)

dpi

=
(1−λt)Si log2(1+

hi pi
σ )−[λtSi+(1−λt)piSi ]

hi
(σ+hi pi) ln 2

ω log2(1+
hi pi

σ )2

(26)

4.1.3. Optimal Offloading Decision

Since the number of wireless channels is less than the number of MDs, the edge server
does not provide a service for all computation tasks requested by MDs simultaneously.
Thus, MDs should choose the offloading scheme for computation tasks based on the
system overhead consumed by different execution modes under the reliability constraint.
Meanwhile, the offloading scheme should satisfy the constraint of wireless channels, which
would be implemented by the greedy policy. In more detail, if there exists an idle wireless
channel, the greedy strategy is used to select the computation tasks with a lower system
overhead to process at the edge server, i.e., Il

i = 1; otherwise, the computation tasks could
only be executed locally, i.e., Ir

i = 1. However, if the MD is not reliable, the computation

task is viewed as a fail, namely, I f
i = 1, and its execution overhead is the penalty of latency

and energy.

4.2. Algorithm Designing

The specific algorithm for solving the problem P1 is shown in Algorithm 1.
In this algorithm, the traversal of all MDs is executed firstly to determine the offloading

scheme for MDs whose optimal CPU cycle frequency is 0. Then, computation overheads
of all MDs executed by offloading computing are sorted in ascending order. When there
are idle channels in the M wireless channels, MDs with the smallest system overhead
in the ordered sequence and the offloading computing overhead, which is less than the
local computing overhead, are selected for offloading computation, namely, the offloading
scheme is Im

i = 1. However, when all the wireless channels are occupied, the offloading
scheme is local computation. In summary, given that in the entire algorithm, all MDs are
traversed twice, it can be gathered that the time complexity of Algorithm 1 is O(2N).



Sensors 2021, 21, 3513 11 of 19

Algorithm 1: Heuristic Algorithm based on Greedy Policy for Task Offloading
(HAGP)

Input: N, M, Ti, Si, Di, f max
i , pmax

i , Bi, and so on
Output: offloading decision Ii, the optimal CPU cycles frequency, f ∗i , the optimal

transmission power, p∗i
1 for i← 0 to N − 1 do
2 fL ← Equation (19); // Calculating the lower bound for fi;
3 fR ← f max

i ; // Assigning the upper bound for fi;
4 if fL ≤ fR then // Obtaining the optimal CPU Frequency for MDi.
5 f ∗i ← Equation (20);
6 else
7 f ∗i ← 0;
8 end
9 ohdl

i ← λtLl
i + λeEl

i ; // Calculating the local overhead by
Equation (12);

10 pL ← Equation (24) // Calculating the lower bound for pi;
11 pR ← Pmax

i // Assigning the upper bound for pi;
12 if pL ≤ pR then // Obtaining the optimal transmission power for

MDi.
13 p∗i ← Equation (25);
14 else
15 p∗i ← 0;
16 end
17 ohdr

i ← λtLr
i + λeEr

i // Calculating the edge overhead by
Equation (13);

18 end
19 for i← 0 to N − 1 do
20 Determine the offloading decision Ii according to the greedy policy with

limited wireless channels M by comparing the local overhead and edge
overhead.

21 end

5. Simulation Results
5.1. Simulation Settings

Subsequently, we will verify the performance of HAGP with various simulation ex-
periments. For convenience, some values of significant parameters are given in Table 2. As
MDs are heterogeneous, the maximum of the CPU cycle frequency and the initial battery
capacity are different and obey a uniform distribution in the value range. Furthermore,
to illustrate the impact of different system parameters on the performance of the over-
all MEC system, we will show several simulation results by comparing with baseline
offloading algorithms.

Table 2. Parameters and values.

Parameter Value Parameter Value

f max
i [0.8,1.9] (GHz) ω 1 (MHz)

Smax
i 1000 (bit) Q 737.5 (CPB)

pmax
i 1 (W) σ 10−13 (W)
Bi [5.5× 10−6, 10−5] (J) κ 10−28

Di 0.002 (ms) g0 −40 (dB)
di (0,50] (m) λt(λe) {0.2, 0.5, 0.8}
L f

i
0.002 (ms) E f

i
0.001 (mJ)

In addition, it can be found that the scenarios and objectives studied in this paper
are different from the existing representative algorithms for computation task offloading



Sensors 2021, 21, 3513 12 of 19

with reliability, which are listed in Table 3. Thus, we compare HAGP with several baseline
algorithms under the same conditions as follows:

1. Local Computing All (LCA). This means all the computation tasks generated by MDs
are processed locally, which will not cause an overhead of the communication and
computation on the edge server.

2. Randomly Offloading Computing (ROC). In this case, computation tasks requested
by MDs are considered to be processed locally or offloaded to the edge server for
completion. The offloading decision of each MD can be presented as a binary number,
which is generated randomly.

3. ALL Offloading Computing (AOC). The algorithm requires all computation tasks on
the MDs to be offloaded to the edge server for processing, which would consume the
energy of MDs to transmit the data included in the computation tasks and the time
delay during the computation tasks’ completion.

Table 3. Differences between several algorithms.

Algorithms Number of MDs Number of Edge Servers Reliability Objective Function

RLT-based [19] 1 N transmission reliability product of total latency and
the transmission reliability

DLRAP [20] N M reliability of tasks the energy consumption of
computing and transmission

EASE [21] N M reliable computing mode the energy consumption of
the system

HAGP N 1 reliability of MDs the weighted sum of time
delay and energy consumption

5.2. Analysis of Simulation Results

(1) The relationships of iterations and overall system overhead. To ensure the simula-
tion experiments are adaptable to different scenarios, some significant variables in this
paper are given to obey a certain distribution, and MDs are heterogeneous. Therefore,
to ensure the stability and accuracy, we define the overall system overhead as the
average system overhead from multiple simulation results. As shown in Figure 2a,
the overall system overhead of HAGP fluctuates with the number of iterations and
converges from the 31st iteration. Similarly, it can be drawn from Figure 2b,c that the
overall system overheads of LCA and ROC start to converge from the 43rd and 47th
iterations, respectively. However, for AOC, the system overhead fluctuates within a
very small range since the waiting time of computation tasks changes with the channel
gain between MDs and the edge server. Therefore, for convenience, all the results of
experiments in the paper adopt the average value of 50 iterations, which would satisfy
the convergence of all algorithms.



Sensors 2021, 21, 3513 13 of 19

0 10 20 30 40 50 60

Iterations of HAGP

9.2

9.3

9.4

9.5

9.6

9.7

9.8

S
y
s
te

m
 O

v
e
rh

e
a
d

10
-3

(a)

0 10 20 30 40 50 60

Iterations of LCA

0.0174

0.0176

0.0178

0.018

0.0182

0.0184

0.0186

0.0188

S
y
s
te

m
 O

v
e
rh

e
a
d

(b)

0 10 20 30 40 50 60

Iterations of ROC

0.0118

0.012

0.0122

0.0124

0.0126

0.0128

0.013

S
y
s
te

m
 O

v
e
rh

e
a
d

(c)

Figure 2. Overall system overhead vs. iterations of all three algorithms. (a) HAGP; (b) LCA; (c) ROC.

(2) Impact of the number of MDs on overall system overhead. The relationship be-
tween the overall system overhead and the number of MDs is shown in Figure 3. It
can be observed that, with the same simulation parameters given in Table 2, HAGP
achieved the smallest overall system overhead compared with three baseline algo-
rithms, including LCA, AOC, and ROC. This is because the computation task with the
largest local execution overhead is chosen to be offloaded in HAGP, while the over-
head consumed by offloading to the edge server is much smaller than that generated
locally. Furthermore, when the number of wireless channels in the system remains
unchanged, with the number of MDs increasing from 10 to 18, the overall system
overhead becomes larger and larger in all algorithms. This is because the overall
overhead of the system is closely related to the number of MDs in the system, that is,
the more MDs, the more computation tasks it handles, and accordingly, the greater
the overall system overhead.



Sensors 2021, 21, 3513 14 of 19

10 11 12 13 14 15 16 17 18

Number of MDs

0.5

1

1.5

2

2.5

3

3.5

4

S
y
s
te

m
 O

v
e

rh
e

a
d

10
-3

HAGP

LCA

AOC

ROC

Figure 3. Overall system overhead vs. the number of MDs.

(3) Impact of the number of wireless channels on overall system overhead. To illustrate
the impact of the number of wireless channels on the overall system overhead, we
set some system parameters included in the MEC system as follows: the number of
MDs is 30, the size of the computation task is 1000 bit, the distance between MDs
and the edge server is 50 m, the weighted coefficient of the time delay is 0.8, and the
number of wireless channels ranges from 14 to 30. As presented in Figure 4, the overall
system overhead in MEC decreases with the increasing number of wireless channels
in several offloading algorithms, such as HAGP, AOC, and ROC, while it does not
fluctuate too much in LCA. This is because the overall system overhead of LCA is
irrelevant as the wireless channels for the computation tasks are all processed locally
without transmitting data to the edge server. Thus, the overall system overhead is
only decided by the heterogeneous computing capacity of MDs, which has a small
value range listed in Table 2. However, the computing overhead consumed by the
offloading computing model is much smaller than local processing; therefore, the
greater the number of wireless channels, the more computation tasks will be offloaded,
and the less the overall system overhead will be. Meanwhile, it can be found that
when the number of wireless channels infinitely approaches the number of MDs, the
overall system overhead converges to a fixed value.

14 16 18 20 22 24 26 28 30

Number of Wireless Channels

4

5

6

7

8

9

10

11

12

13

S
y
s
te

m
 O

v
e
rh

e
a
d

10
-3

HAGP

LCA

AOC

ROC

Figure 4. Overall system overhead vs. the number of wireless channels.



Sensors 2021, 21, 3513 15 of 19

(4) Impact of distances and weighted coefficients on overall system overhead. Figure 5
shows the effects of two different factors of the MEC system in this paper, including
distances between MDs and the edge server and the weighted coefficient of the pro-
cessing latency. To obtain the relationship between these two different factors and the
system overhead accurately, we set other parameters to be fixed with 50 iterations.
Firstly, we can see that when the weighted coefficients remain unchanged, the overall
system overhead increases with the increasing distances for several offloading algo-
rithms, including HAGP, RCA, and ROC, while it stays the same for LCA. This is
because computation tasks are all processed locally, which is irrelevant to the location
of MDs from the edge server, while the distances affect the channel gain between MDs
and the edge server according to Equation (4), which determines the transmission
rate of offloading tasks as an important component. Secondly, for three offloading
algorithms with the same weighted coefficient, the overall system overhead of HAGP
is always lower than the other two. At the same time, as the distances increase, the
overall system overhead of AOC increases the most. By analyzing, it can be observed
that AOC is mainly affected by the waiting latency of computation tasks for limited
wireless channels, while HAGP and ROC can be chosen to execute locally. Finally, for
all algorithms, the overall system overhead with a coefficient equal to 0.8 is higher
than that with 0.2. The reason is that the weighted coefficient represents the proportion
of time latency in the overall system overhead, while the distances are closely related
to the time latency. Therefore, the weighted coefficient is larger, and the overall system
overhead is higher.

50 55 60 65 70 75 80 85 90

Distance (m)

1

2

3

4

5

6

7

S
y
s
te

m
 O

v
e

rh
e

a
d

10
-3

HAGP

LCA

AOC

ROC

Figure 5. Overall system overhead vs. distance and λt. The solid curves represent λt = 0.8, while
the dash curves represent λt = 0.2.

(5) Impact of computation task size and weighted coefficients on overall system over-
head. According to (11), it can be found that the reliability of MDs is inversely
proportional to the maximum size of the computation tasks. Therefore, we conducted
many simulation experiments with different maximum sizes of the computation task,
ranging from 600 to 1300 (bits). As described in Figure 6, the overall system overhead
increases with the increasing maximum size of the computation tasks. This is because,
as the maximum size of the computation tasks increases, the reliability of the MDs
will decrease. At this time, the probability of the task being re-requested or discarded
will increase, and accordingly, the overall system overhead will increase. In addition,



Sensors 2021, 21, 3513 16 of 19

when λe = 0.8, the energy consumption is a metric paid more attention in the system
overhead. Therefore, the size of computation tasks is considered to show a decreasing
relationship between the system overhead and the weighted coefficient of energy
consumption. In other words, when λe decreases, the system overhead increases,
which is consistent with Figure 5. In addition, it is observed that HAGP will obtain
the minimal overall system overhead compared with the other classical algorithms
under the same maximum size of computation tasks.

600 700 800 900 1000 1100 1200 1300

Size of Computation Tasks(bit)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

S
y
s
te

m
 O

v
e

rh
e

a
d

10
-3

HAGP

LCA

AOC

ROC

Figure 6. Overall system overhead vs. the size of computation tasks and λe. The solid curves
represent λe = 0.8, while the dash curves represent λe = 0.2.

(6) Comparison of HAGP and HAGP without considering the reliability of MDs. In
this paper, the authors studied task offloading with the reliability of MDs for MEC
in the Industrial Internet. Therefore, the impact of the reliability of MDs on the
system overhead is an important metric to certify the performance of HAGP. As
shown in Figure 7, the comparisons of HAGP and HAGP without considering the
reliability of MDs (termed as HAGP-NR) with different weighted coefficients are
listed. Obviously, the overall system overhead of HAGP is lower than HAGP-NR in
all figures, including Figure 7a–c, where the weighted coefficient is 0.8, 0.5, and 0.2,
respectively. This is because for HAGP, it can determine whether the MD is reliable
before the task is executed, i.e., when the MD is reliable, it is performed and causes
the system overhead; otherwise, it is not performed. However, for HAGP-NR, the
computation tasks are processed regardless of whether the MD is reliable. At this
time, once the MD is unreliable, the task being executed will not only be disrupted
and discarded but will also consume a little more system overhead than HAGP, that
is, no matter whether the MD is reliable to process the computation task, the system
overhead will be incurred. In a nutshell, compared with HAGP-NR, HAGP can save
the corresponding system overhead by judging the reliability of the MD. In addition,
since λe is the weighted coefficient of energy consumption in the system overhead,
only the total value of the system overhead in all three figures changes, and the
comparison trend of HAGP and HAGP-NR does not change.



Sensors 2021, 21, 3513 17 of 19

10 15 20 25 30

Number of MDs

0

1

2

3

4

5

6

sy
st

em
 o

ve
rh

ea
d

10-3

HAGP
HAGP-NR

(a)

10 15 20 25 30

Number of MDs

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

sy
st

em
 o

ve
rh

ea
d

10-3

HAGP
HAGP-NR

(b)

10 15 20 25 30

Number of MDs

0

0.5

1

1.5

2

2.5

3

3.5

sy
st

em
 o

ve
rh

ea
d

10-3

HAGP
HAGP-NR

(c)

Figure 7. Comparison of HAGP and HAGP-NR. (a) λt = 0.8; (B) λt = 0.5; (c) λt = 0.2.

6. Conclusions

To make the offloading scheme adaptive to an uncertain mobile environment, and
to minimize the system overhead of MEC, this paper considered the reliability of MDs
and proposed a heuristic algorithm based on greedy policy for task offloading in an MEC
system of the Industrial Internet, namely, HAGP. By constructing different computing
models and formulating the objective function, we obtained a mixed integer non-linear
programming problem and achieved the optimal solution by elementary mathematics
methods. Meanwhile, we determined the optimal offloading decision for each MD which
can be verified by comparing several baseline algorithms with extended simulations. In
addition, the paper explains the effect of several key factors in the MEC system on the
system overhead, such as the distance between MDs and the edge server, the weighted
coefficient of time latency and energy consumption, and the computation task size. Finally,
by comparing with HAGP-NR, it can be found that HAGP can effectively save the system
overhead by judging the reliability of MDs, which will further prolong the battery life of
MDs and support more computation tasks.

Based on the ideas in this paper, there are some limitations that need to be studied
in future works. Specifically, (1) to handle the interdependent computation tasks within
the deadline, the buffer will be considered in the model; (2) to explore the reliability of
communication, the re-transmission and cooperation will be focused on; (3) to minimize
the cost of the offloading scheme, the energy consumption of processing tasks at the edge
side should be considered.

Author Contributions: Conceptualization, M.G., Y.Y.; formal analysis, M.G., X.H., and W.W.; in-
vestigation, X.H., W.W., and B.L.; methodology, M.G., X.H., and W.W.; software, M.G., and B.L.;
supervision, L.Z.; validation, M.G., and B.L.; writing—original draft, M.G., and Y.Y.; funding, L.Z, and
L.C.; writing—review and editing, Y.Y. and L.Z. All authors have read and agreed to the published
version of the manuscript.



Sensors 2021, 21, 3513 18 of 19

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 62072319, in part by the Key Research and Development Program of the Science and
Technology Department of Sichuan Province under Grant 20ZDYF1906 and 2020YFS0575, in part by
the Applied Basic Research Programs of Science and Technology Department of Sichuan Province
under Grant 2019YJ0110, in part by the Foundation of Science and Technology on Communication
Security Laboratory under Grant 6142103190415, in part by the fundamental research funds for the
central universities under Grant 31920190092 and 31920160062, and in part by the Gansu Provincial
First-Class Discipline Program of Northwest Minzu University under Grant 11080305.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: We thank the editors and reviewers of this paper who helped us improve the
quality of our work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kaur, K.; Garg, S.; Aujla, G.; Kumar, N.; Rodrigues, J.; Guizani, M. Edge computing in the industrial internet of things environment:

Software-defined-networks-based edge-cloud interplay. IEEE Commun. Mag. 2018, 56, 44–51. [CrossRef]
2. Zielonka, A.; Sikora, A.; Woźniak, M.; Wei, W.; Ke, Q.; Bai, Z. Intelligent Internet of Things System for Smart Home Optimal

Convection. IEEE Trans. Ind. Inform. 2020, 17, 4308–4317.
3. Wang, Y.; Wang, L.; Zheng, R.; Zhao, X.; Liu, M. Latency-Optimal Computational Offloading Strategy for Sensitive Tasks in Smart

Homes. Sensors 2021, 21, 2347.
4. Guo, M.; Chen, Y.; Shi, J.; Zhang, Y.; Wang, W.; Zhao, L.; Chen, L. A Perspective of Emerging Technologies for Industrial Internet.

In Proceedings of the 2019 IEEE International Conference on Industrial Internet (ICII), Orlando, FL, USA, 11–12 November 2019;
pp. 338–347. [CrossRef]

5. Zhang, J.; Qu, G. Physical Unclonable Function-Based Key Sharing via Machine Learning for IoT Security. IEEE Trans. Ind.
Electron. 2019, 67, 7025–7033. [CrossRef]

6. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646.
[CrossRef]

7. Kumar, K.; Liu, J.; Lu, Y.; Bhargava, B. A Survey of Computation Offloading for Mobile Systems. Mob. Netw. Appl. 2013, 18,
129–140. [CrossRef]

8. Wang, Y.; Min, S.; Wang, X.; Liang, W.; Li, J. Mobile-Edge Computing: Partial Computation Offloading Using Dynamic Voltage
Scaling. IEEE Trans. Commun. 2016, 64, 4268–4282.

9. Barbera, M.; Kosta, S.; Mei, A. To offload or not to offload? The bandwidth and energy costs of mobile cloud computing. In
Proceedings of the 2013 Proceedings IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 1285–1293.

10. Li, L.; Wen, X.; Lu, Z.; Jing, W. An Energy Efficient Design of Computation Offloading Enabled by UAV. Sensors 2020, 20, 3363.
[CrossRef]

11. Mao, Y.; Zhang, J.; Letaief, K. Dynamic Computation Offloading for Mobile-Edge Computing with Energy Harvesting Devices.
IEEE J. Sel. Areas Commun. 2016, 34, 3590–3605. [CrossRef]

12. Mach, P.; Becvar, Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE Commun. Surv. Tutor.
2017, 19, 1628–1656. [CrossRef]

13. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K. A Survey on Mobile Edge Computing: The Communication Perspective. IEEE
Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]

14. Dong, L.; Wu, W.; Guo, Q.; Satpute, M.; Du, D. Reliability-Aware Offloading and Allocation in Multilevel Edge Computing
System. IEEE Trans. Reliab. 2019, 70, 200–211. [CrossRef]

15. Huang, M.; Zhai, Q.; Chen, Y.; Feng, S.; Shu, F. Multi-Objective Whale Optimization Algorithm for Computation Offloading
Optimization in Mobile Edge Computing. Sensors 2021, 21, 2628. [CrossRef]

16. Lyu, X.; Hui, T.; Sengul, C.; Ping, Z. Multiuser Joint Task Offloading and Resource Optimization in Proximate Clouds. IEEE Trans.
Veh. Technol. 2017, 66, 3435–3447.

17. Eshraghi, N.; Liang, B. Joint Offloading Decision and Resource Allocation with Uncertain Task Computing Requirement. In
Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019;
pp. 1414–1422.

18. Xu, C.; Lei, J.; Li, W.; Fu, X. Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing. IEEE/Acm Trans.
Netw. 2016, 24, 2795–2808. [CrossRef]

19. Liu, J.; Zhang, Q. Offloading Schemes in Mobile Edge Computing for Ultra-Reliable Low Latency Communications. IEEE Access
2018, 6, 12825–12837.

http://doi.org/10.1109/TII.2020.3009094
http://dx.doi.org/10.1109/TIE.2019.2938462
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1007/s11036-012-0368-0
http://dx.doi.org/10.1109/TCOMM.2016.2599530
http://dx.doi.org/10.1109/JSAC.2016.2611964
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/TR.2019.2909279
http://dx.doi.org/10.3390/s21082628
http://dx.doi.org/10.1109/TVT.2016.2593486
http://dx.doi.org/10.1109/ACCESS.2018.2800032


Sensors 2021, 21, 3513 19 of 19

20. Liu, C.; Bennis, M.; Poor, H. Latency and Reliability-Aware Task Offloading and Resource Allocation for Mobile Edge Computing.
In Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, 4–8 December 2017; pp. 1–7.

21. Yan, H.; Li, Y.; Zhu, X.; Zhang, D.; Wang, J.; Chen, H.; Bao, W. EASE: Energy-efficient task scheduling for edge computing under
uncertain runtime and unstable communication conditions. Concurr. Comput. Pract. Exp. 2019, 33. [CrossRef]

22. Chen, M.; Liang, B.; Dong, M. Joint offloading and resource allocation for computation and communication in mobile cloud with
computing access point. In Proceedings of the IEEE INFOCOM 2017—IEEE Conference on Computer Communications, Atlanta,
GA, USA, 1–4 May 2017; pp. 1–9 [CrossRef]

23. Wang, C.; Liang, C.; Yu, F.; Chen, Q.; Lun, T. Computation Offloading and Resource Allocation in Wireless Cellular Networks
With Mobile Edge Computing. IEEE Trans. Wirel. Commun. 2017, 16, 4924–4938. [CrossRef]

24. Guo, H.; Zhang, J.; Liu, J.; Zhang, H. Energy-aware computation offloading and transmit power allocation in ultradense IoT
networks. IEEE Internet Things J. 2018, 6, 4317–4329.

25. Goldsmith, A. Capacity of Wireless Channels. In Wireless Communications; Cambridge University Press: Cambridge, UK, 2005;
pp. 99–125. [CrossRef]

26. Sikora, A.; Woniak, M. Impact of Current Pulsation on BLDC Motor Parameters. Sensors 2021, 21, 587. [CrossRef]
27. Li, J.; Yu, F.; Deng, G.; Luo, C.; Ming, Z.; Yan, Q. Industrial Internet: A Survey on the Enabling Technologies, Applications, and

Challenges. IEEE Commun. Surv. Tutor. 2017, 19, 1504–1526. [CrossRef]
28. Wozniak, M.; Zielonka, A.; Sikora, A.; Piran, M.J.; Alamri, A. 6G-enabled IoT Home Environment control using Fuzzy Rules.

IEEE Internet Things J. 2020, 8, 5442–5452.
29. Miettinen, A.; Nurminen, J. Energy efficiency of mobile clients in cloud computing. In Proceedings of the 2nd USENIX Conference

on Hot Topics in Cloud Computing, Usenix Association, Boston, MA, USA, 22–25 June 2010; pp. 4–13.
30. Wen, Y.; ; Zhang, W.; Luo, H. Energy-optimal mobile application execution: Taming resource-poor mobile devices with cloud

clones. In Proceedings of the 2012 Proceedings IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 2716–2720.
31. Zhao, H.; Deng, S.; Zhang, C.; Du, W.; Yin, J. A Mobility-Aware Cross-Edge Computation Offloading Framework for Partitionable

Applications. In Proceedings of the 2019 IEEE International Conference on Web Services (ICWS), Milan, Italy, 8–13 July 2019;
pp. 193–200. [CrossRef]

32. Yi, C.; Cai, J.; Su, Z. A Multi-User Mobile Computation Offloading and Transmission Scheduling Mechanism for Delay-Sensitive
Applications. IEEE Trans. Mob. Comput. 2020, 19, 29–43.

33. Songtao, G.; Jiadi, L.; Yuanyuan, Y.; Bin, X.; Zhetao, L. Energy-Efficient Dynamic Computation Offloading and Cooperative Task
Scheduling in Mobile Cloud Computing. IEEE Trans. Mob. Comput. 2018, 18, 319–333.

34. Su, H.; Zhang, X. Optimal transmission range for cluster-based wireless sensor networks with mixed communication modes. In
Proceedings of the 2006 International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM’06),
Buffalo-Niagara Falls, NY, USA, 26–29 June 2006; pp. 250–257

35. Chong, E.K.; Zak, S.H. An Introduction to Optimization. Antennas Propag. Mag. IEEE 2013, 38, 1–60.
36. Boyd, S.; Vandenberghe, L.; Faybusovich, L. “Convex Optimization”. IEEE Trans. Autom. Control. 2006, 51, 1859–1859.

http://dx.doi.org/10.1002/cpe.5465
http://dx.doi.org/10.1109/TWC.2017.2703901
http://dx.doi.org/10.1109/JIOT.2018.2875535
http://dx.doi.org/10.3390/s21020587
http://dx.doi.org/10.1109/COMST.2017.2691349
http://dx.doi.org/10.1109/JIOT.2020.3044940
http://dx.doi.org/10.1109/TMC.2019.2891736

	Introduction
	System Models
	Overall System Model
	Local Computing
	Remote Computing
	Communication Model
	Remote Computing

	Process Latency Model
	Energy Consumption Model
	Reliability Model

	Problem Formulation
	Problem Solving and Algorithm Designing
	Problem Solving
	Optimal CPU Cycle Frequency
	Optimal   Power
	Optimal Offloading Decision

	Algorithm Designing

	Simulation Results
	Simulation Settings
	Analysis of Simulation Results

	Conclusions
	References

