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Matić, F. Can Local Geographically

Restricted Measurements Be Used to

Recover Missing Geo-Spatial

Data? Sensors 2021, 21, 3507.

https://doi.org/10.3390/s21103507

Academic Editor: Andrzej Stateczny

Received: 22 April 2021

Accepted: 11 May 2021

Published: 18 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Informatics, Faculty of Science, University of Split, 21000 Split, Croatia;
zvonimir.bilokapic@ericsson.com

2 Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia; fmatic@izor.hr
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Abstract: The experiments conducted on the wind data provided by the European Centre for
Medium-range Weather Forecasts show that 1% of the data is sufficient to reconstruct the other
99% with an average amplitude error of less than 0.5 m/s and an average angular error of less than
5 degrees. In a nutshell, our method provides an approach where a portion of the data is used as
a proxy to estimate the measurements over the entire domain based only on a few measurements.
In our study, we compare several machine learning techniques, namely: linear regression, K-nearest
neighbours, decision trees and a neural network, and investigate the impact of sensor placement on
the quality of the reconstruction. While methods provide comparable results the results show that
sensor placement plays an important role. Thus, we propose that intelligent location selection for
sensor placement can be done using k-means, and show that this indeed leads to increase in accuracy
as compared to random sensor placement.

Keywords: data reconstruction; machine learning; neural networks; missing data; spatio/temporal
resolution; interpolation; reanalisys

1. Introduction

Some measuring endeavors have a long history and provide valuable information [1–4].
Others include just scarce information that provides important glimpses into a history
that would otherwise be undocumented [5,6]. In either case, they reflect the general fact
that there is usually a lot of missing or unavailable data. Usually this happens due to
unavailable resources [1,7,8]. However, even today, when there are many more resources
available for data acquisition and data storage, and everything is happening at a faster
pace, it is difficult to avoid data gaps. Sometimes the intrinsic physical limitations of the
measurement endeavor do not allow data to be acquired with better spatial or temporal
resolution [7,9] but often there is a trade-off between the resources spent on a measuring
endeavor and the value derived from it. Thus, we often pursue a way to optimize the mea-
suring endeavor in the sense of trying to maximize the value extracted from the measuring
instruments while minimizing the resources spent on the measuring endeavor. It is often
this mismatch that ensures the sustainability of an endeavor. Thus, if advanced machine
learning can be employed to accurately estimate the data at certain locations, it would
reduce the overall cost and encourage further measurement. Since we are interested in
using certain measurements as proxies to estimate the data at locations where there are no
measurements, a particularly interesting question is whether the location for such proxies
can be intelligently estimated.

The geosciences are particularly well suited to the study of these questions because
these problems arise naturally. Historically, many of these problems were due to hardware
limitations or unavailable resources. Therefore, some of these problems have already been
addressed in the literature. For example, meteorological time series are often incomplete at
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certain locations and times. It is not uncommon for time series to be created by merging data
from multiple sources. A number of data imputation and interpolation techniques have also
been developed, such as regression-based methods, kriging, and inverse distance weighting
(e.g., refs. [10–14]). In oceanography, measurement stations, such as oceanographic buoys
or radar measurements of sea surface temperature and surface current HF, are sparsely
scattered in space and time. Self-organizing maps have been used to overcome the poor
temporal resolution and fill in the missing data, validate the data, find the outliers and
identify different climate regimes [8,15–18]. In satellite data, it is not uncommon to find
situations where the spatial resolution of the acquired data is limited because often a large
number of values are missing due to clouds, shadows and other atmospheric conditions.
To address this problem, some studies have used a neural network model [19–21] or
inpainting [22,23].

However, even today it is not too difficult to find situations where the spatial reso-
lution of the acquired data is limited or where the data have poor temporal resolution.
And this will continue to be the case regardless of how reliable the hardware we get will be.
An interesting example of the first case is oceanographic monitoring stations that are fixed
and scattered sparsely in space. While such stations (at least those on the coast) usually
do have good temporal resolution, the spatial resolution of the data they collect is poor.
An exemplar of the second case in the geosciences is satellite data. Data originating from
earth observation satellites may have good spatial resolution and no occlusions (under
perfect conditions), but their temporal resolution is limited by the time it takes them to
orbit the Earth and observe the same geographic location [7,24,25]. Thus, while the use of
satellites for data collection results in greater spatial coverage, the temporal resolution of
such data may be inadequate. Therefore, one might still prefer to use the local data (with
good temporal resolution) to qualitatively recover measurements from a larger geographic
area. Ideally, this would cover the same area as covered by satellites, but also for a period
when satellite data were not available. Of course, the quality of the reconstruction will de-
pend on the quality of the data collected. The theoretical foundations for reconstruction of
a signal from sparse data can be found in compressed sensing theory [26–29]. Furthermore,
there is the question of whether there are particular locations from which are more suitable
to acquire data from in order to obtain a better reconstruction. This problem appeared in
several occasions and can usually be formulated as a selection problem or an optimization
problem. Whether we pose the problem in terms of sensor (site) selection or optimal sensor
placement, we can find a number of proposed solutions [30–34].

In order to find the answers to these kinds of questions, we set up the following
experiment. First, we select a set of machine learning models to be used in a supervised
learning setup. Specifically, these are: linear regression, k-nearest neighbors, decision trees,
and a neural network. We then use available data to learn each of the selected models. We
conducted several experiment by using different portion of data—ranging from 50% to 1%—to
investigate how much data is needed for a good reconstruction. We also investigated how
different instrument placement strategies would affect reconstruction accuracy. In each
experiment, we compared multiple machine learning models.

In the following section, we (a) explain the data we use and how we define and
measure the quality of the reconstruction; (b) describe four supervised learning techniques
used as reconstruction methods; and (c) describe an unsupervised learning technique that
can be utilized as an unbiased strategy for optimal site selection for the measurement
stations. We then describe the experiment and present the results, which show how good
reconstruction is possible even when only a small number of physical measurements are
available. Furthermore, the results highlight the importance of the optimal sensor site
selection strategy to achieve better reconstruction accuracy. We discuss this in more detail
in the last section of the paper.
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2. Materials and Methods

In this section we describe the data and the four supervised methods that are utilized
for a data reconstruction problem at hand, as well as an unsupervised method, which is
proposed to be used to identify optimal sites for sensor placement. Supervised methods
implemented in our experiments appear in the following order: (a) linear regression, (b) K-
nearest neighbors, (c) extra trees and (d) neural network. As an unsupervised method for
an intelligent site selection the K-means clustering is used.

2.1. Data

Data used in the study are from the European Center for Medium-range Weather
Forecasts (ECMWF). ECMWF uses the ERA Interim reanalysis model and the data are
available as part of the Copernicus Climate Change Service information [35]. The larger
geographic area of this study is depicted in Figure 1. The color information in Figure 1
indicates whether the particular point in the reanalysis model is associated with land (dry
point) or sea (wet point). In our study, we opted to define wet points as those below the
threshold of 0.5, thus defining the land-sea mask. We used this information to extract
the wind data at 10 m height over the Adriatic Sea and Northern Ionian Sea. The spatial
distribution of the data, together with the data variability, is shown in Figure 2

Figure 1. Adriatic sea—the geographic area covered in the study with marked selected zones:
(A) North Adriatic, (B) Middle Adriatic and (C) Ionian Sea. Color bar shows wet point index defined
by the ERAInterim land-sea mask.

The horizontal resolution of the wind data vector is 0.125◦ latitude and 0.125◦ longi-
tude with a time step of 6 h. The data set is organized as a 2210-by-54056 matrix. Each row
contains spatial data for a particular time step. It is a vector constructed by concatenating
information from two independent information (channels) from the sensor. Technically,
these are two orthogonal components of the wind—the west-east and the south-north wind
components—usually denoted by u and v, respectively. In our study, u and v are taken at
10 m height and are expressed in meters per second. Each column is a realization in time
from 1981 to 2017 in chronological order, sampled with a time step of 6 h.
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The Adriatic Sea was chosen as the test area because it has a diverse coastline with
many islands and high variability of the wind vector in both space and time domain [36].
Three zones are marked in Figure 1. The first zone—labelled A—is Northern Adriatic,
where the definition of wet points does not always follow the coastline. At the same
time, this is the zone with the lowest angular variance and a specific wind type that
often differs from the rest of Adriatic Sea [37,38]. The second zone—labelled B—is part
of Middle Adriatic Sea. This zone is known to have the highest angular variability and
it can be observed that the wet points are well defined (only a few of them are partially
wet). The third zone—labelled C—includes a part of Ionian Sea, known to have a relatively
different wind regime, that is, a weak correlation with the wind in the rest of the studied
area. Moreover, this area contains some partially wet points declared as “wet” by the
land-sea mask.

The locations from which the data were acquired are depicted in Figure 2. Different
panels show either average values or standard deviation. The points in panels (A) and (B)
of Figure 2 colour-code the average amplitude at that particular location and the average
angle. Similarly, panels (C) and (D) depicts the variability of the data by colour-coding the
variances of amplitude and angle at each point in the geographic area covered in the study.
In Figure 2B, a characteristic wind pattern can be observed over the Adriatic Sea—wind from
SE in the southern part and from NE in the northern part of Adriatic Sea [36]. All points
shown in the figure are wet points and the discrepancy between the coastline and the wet
point definition is due to the land-sea mask definition and the reanalysis model resolution.
A portion of the data would be sampled from these points to simulate sensor placement,
as explained in the Experimental Setup subsection and depicted in Figure 3.

Figure 2. Adriatic sea—Panels show: (A) Amplitude average. (B) Angle average. (C) Amplitude
variance. (D) Angle variance.

2.2. Linear Regression

Linear regression (LR) is an old and simple supervised learning method usually used
for predicting data. It assumes a relationship between the observed variable (y) and a set
of n independent variables (x):

ŷi = β0 + β1xi,1 + ... + βnxi,n, (1)

The training data are used to estimate the coefficients β, and the resulting regression
model is used to predict the future value of y based on x.
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Figure 3. Sampling scenarios used in experiments (a–g): (a) 50% samples selected in successive order.
(b) 50% samples selected randomly. (c) 10% samples selected randomly. (d) 5% samples selected
randomly. (e) 1% samples selected randomly. (f) 10 samples selected by the k-means algorithm.
(g) 5 samples selected by the k-means algorithm.

In general, a regression problem can be viewed as a problem of fitting data to a
model. The least squares criterion for goodness of fit is by far the most common approach.
Accordingly, for a regression model to be a good fit, the cumulative error across all sample
data points and a model must be minimal:

errreg = ∑
i

yi − ŷi. (2)
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This can be formulated as an optimization problem (see Neural Networks subsection),
but there is an analytical solution that is usually used. Moreover, linear regression is not
to be confused with a PCA approach (Principle Component Analysis), which minimizes
the orthogonal projection error on a subspace plane. It can be shown that minimizing
the orthogonal projection error and maximizing the variance are equivalent optimization
problems, so the optimization problem is usually formulated in the form:

arg max
||b||=1

{
bT

k

∑
i=1

xixT
i b

}
= arg max

||b||=1

{
bTXTXb

}
, (3)

where b contains the coefficients (or mappings) of the vector xi onto the new orthogonal
space and X is just a matrix notation. Since PCA does not distinguish between observed
and independent variables and treats all data the same, PCA falls into the category of
unsupervised learning. In addition, linear regression is not to be confused with linear
interpolation which requires the interpolation to pass through all the data points. Linear
regression does not have this requirement, although it can be used to interpolate the data
just as it can be used to predict future values.

2.3. K-Nearest Neighbors

K-nearest neighbors (KNN) is a technique commonly used in a classification problem
where one tries to estimate the class (let us denote it by y) of an unknown vector x based on
its neighborhood. In general, the neighborhood can be specified as a parameter ε—defining
the distance from x—or as an integer N—defining the number of neighbors around x [39].
In either case, the neighbors are used to estimate the value of y, and usually the neighbors
are defined using Euclidean distance as a metric. As the name implies, if a KNN model is
used, N is the only parameter other than x that is passed to a model to estimate y. This also
means that ε varies for different xs, depending on the distribution of data points.

In a classification scenario, KNN estimates the label y based on x like a voting
machine—i.e., the majority class wins. Note that the label is a discrete value. If instead of a
discrete value of y, the continuous values of y are preferred, KNN regression can be per-
formed. When KNN is used as a regression, the default case is that all neighbors contribute
equally. This can give unfair weight to points further away from x, but is considered more
robust as it is less affected by outliers. Alternatively, not all neighbors need to contribute
equally, but their contribution can be weighted according to their distance from x. In such a
scenario, KNN can force an adjustment by the points from the training samples, resulting in
a lower error on the training set, but not necessarily a lower error on the test set.

In a regression setting, KNN can be observed as a variable bandwidth kernel-based
estimator. The estimated value v is then calculated as:

v =
n

∑
i=1

wi · ci, (4)

where wi is the weighting factor and ci is the contribution of this neighbor xi to the value
at position x. As mentioned earlier, wi can be proportional to the distance from xi to x,
or otherwise be constant for all xi, in which case it is inversely proportional to k and the
size/radius of the neighborhood (i.e., 1/ f (k, r)). The contribution from each xi is computed
as a kernel function:

ci = K
(

x− xi

r

)
, (5)

where r denotes the width of a kernel, and K is a kernel function, which can be any
precomputed metric function, or in a simplistic case an Euclidean distance.



Sensors 2021, 21, 3507 7 of 16

2.4. Extra Trees

Extra trees (ET) is a shorthand for extremely randomized trees [40], which is a meta-
algorithm that utilizes multiple decision trees and an ensemble method to estimate a value.
A decision tree is an algorithm usually used for a classification for which we may say it
is non-parametric and easily interpreted. The algorithm uses no parameters (apart from
data samples) and produces a result that can be easily interpreted as a set of if-then-else
statements. We may see that the partition of the output space in this way may lead to a
result with high quantization error. As a workaround for this problem one might propose
to grow multiple trees and ensemble the results by averaging the values. This would
increase the accuracy and as a side-effect introduce a regularization in the algorithm that
controls the overfitting. On the other hand, this would make the model harder to interpret.
This approach is the essence of the algorithm dubbed Extra Trees. One last part that is
necessary to accomplish is to assure that the multiple trees that are randomly grown from
the same sample points do not produce the same decision tree. In order for algorithm not
to grow the same tree for the same data, a randomization may be induced by restricting
the number of features used in a tree to a subset of the features, or by using the subsamples
of data.

2.5. Neural Networks

Neural networks (NN) are powerful nonlinear methods whose power lies in the vast
number of neurons organized in layers in which the information is processed in parallel.
One neuron of the network may be observed as a weighted integrator of the form

y = ∑
i

wi · xi, (6)

followed by nonlinear transformation of the data, that may be denoted as ϕ(.). So, in a
vector notation this may be written as:

y = ϕ(wT · x) (7)

Compared to linear regression, the nonlinearity of a single neuron stems out. Note,
however, that the neural network model has multiple occurrences of a neuron in a layer,
and stacking multiple layers further contributes to the complexity (nonlinearity) of the
model. If we want to pursue the similarity between regression and a neural network model
further, we could say that the linear regression model fits the linear subspace hyperplane to
the data by using the least squares criterion. Similarly, we could say that the neural network
model fits the manifold (which could be viewed as the nonlinear equivalent of a subspace
hyperplane) to the data. While an analytical solution exists for a regression problem, this is
not the case when using neural networks. For this reason, to fit the neural network model
to the data, one must define the loss function and an optimizer. The loss function is the
objective that the model is trying to achieve. This can be, for example, the least squares
criterion. The optimizer is a learning part of a neural network—an iterative process that
ensures convergence. This can be, for example, the gradient descent algorithm.

2.6. K-Means

Unlike the previous methods, K-means is an unsupervised learning method. This means
that it does not require any information from the supervisor. Compared to a classification
problem that requires the data and labels (provided by the supervisor), K-means partitions
the data based solely on the information provided from the data.

In our particular case, we are interested in such a method because we want to find
an intelligent way to select the optimal location for data collection. We assume that data
would naturally agglomerate in space, since spatial proximity is associated with correlation
in virtually all natural processes. To identify these locations in space, we opt for a clustering
approach that partitions the available data into non-overlapping clusters that arise naturally
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from the data. Then, the centers of these clusters can be selected as the optimal location to
gather the data from.

A particular method that we utilize for this is a K-means. This method takes only
one parameter, namely K—the number of clusters—and minimizes the within cluster
variation (W()) for each cluster Ck, that is, ∑K

k=1 W(Ck). The most straightforward approach
to measure within cluster variation is to measure the Euclidean distance between all
elements in a cluster (and normalize it to the number of elements in the cluster). However,
this approach makes the optimization algorithm too complex since there are Kn ways to
partition a set of n elements to K clusters. Thus, the algorithm calculates centers of each
cluster and measure how far apart the data is from the center. This approach is known to
converge to local optimum, but in general provides good results. By utilizing this approach,
the algorithm provides us with the Ks centers—one for each of the clusters. This is precisely
what we wanted in order to identify an optimal location for data acquisition. If required,
a Voronoi tessellation may be utilized to identify the borders between clusters.

In a certain sense we may say that this is an intelligent approach that is less biased, as
it requires and uses no additional external information—there are no labels, no supervisor,
and only the information condensed in the data is used.

2.7. Definition of Error and Gold Standard

In order to measure the performance of each algorithm and compare the reconstruction
accuracy as a function of the number of sensors used, we ought to specify how the error
is calculated. At each site, two parameters are measured, namely u and v. One option
would be to express the error as a term of each parameter (or channel), but since both
channels measure wind, we chose to measure the error as the Euclidean distance between
gold standard X = (x1, x2, ..., xn) and the reconstructed data Y = (y1, y2, ..., yn), i.e.:

errX,Y =
√
(x1 − y1)2 + (x2 − y2)2 + ...(xn − yn)2. (8)

Both xi and yi consist of two components—u and v. In the sequel, we will use
the notation (ui, vi) to denote the gold standard and (ûi, v̂i) to denote the reconstructed
data. This can be referred to as amplitude error and can be expressed using hat notation
as follows:

Aerr =

√
n

∑
i
(ui − ûi)2 + (vi − v̂i)2. (9)

Please note that we have access to all data points at Adriatic Sea from the beginning
and that the missing values are simulated by omitting the available data. Therefore,
the actual values can be used as a gold standard.

If we are interested in the angle between two vectors, we can use the cosine theorem:

φerr = arccos
u · û + v · v̂√

u2 + v2 ·
√

û2 + v̂2
. (10)

From these we calculate the average amplitude and phase error and the standard
deviations of both amplitude and phase. The average amplitude error is then calculated
across all locations in space (S) and all points in time (T)—and can be expressed as:

avg(Aerr) =
1

NS

1
NT

∑
i∈S

∑
i∈T

A(err), (11)

and the standard deviation as:

std(Aerr) =

√
1

NS

1
NT

A(err)2. (12)

The average angular error and standard deviation is calculated in a similar way.
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3. Results
3.1. Experimental Setup

The data matrix contains u and v wind components of the data from across the
Adriatic, and is organized as explained in previous section. Since we utilize learning
models it is necessary to split the dataset to train and test set. This was done in the ratio
75:25, whereas the random 75% of realizations in time were used to train the models and
the rest left for validation.

In order to utilize the supervised method, part of the training data is to be identified as
an input data, while the other part is to be identified as a target data. In a supervised setting
the target data is going to be used as if is provided from the supervisor, while the input
data is used as if is provided from the on-site measuring instrument (sensor). The number
and the location of the data points that act as an on-site measurements will vary across the
different experiments (see Figure 3).

The goal of these experiments is to reconstruct the missing data. We learn to recon-
struct the missing data from the input data (sensor) by providing the target data from the
supervisor. To evaluate the quality of the reconstruction, we defined a measure of good
reconstruction as a distance between the reconstructed data and the target data, which we
used as a gold standard. To investigate the impact of the measuring instrument placement
on the reconstruction error, we performed seven different experiments (denoted by (a)–(g))
in which we reduced the number of sensors or changed the strategy for their placement.
First, we simulated a dense placement of instruments over the northern half of the Adriatic,
that is, 50% of the data points were used as input data from sensors, all covering only the
northern Adriatic. In the following experiments, we drew a random sample of data points
over the entire Adriatic Sea to serve as data from field measurements. In this selection,
50%, 10%, 5% and 1% of the points were chosen as input data. Finally, in the last two exper-
iments, 10 sensors (representing less than 1% of the data) and 5 sensors were selected using
K-means clustering. The sampling scenarios for each experiment (a)–(g) are summarized
in Table 1, and correspond to panels (a)–(g) of Figure 3.

Table 1. Sampling scenarios used in experiments (a) to (g).

Experiment Sampling Model # of Sensors

(a) pre order 50% (1105 sensors)

(b) random 50% (1105 sensors)
(c) random 10% (110 sensors)
(d) random 5% (55 sensors)
(e) random 1% (10 sensors)

(f) k-means - 10 sensors
(g) k-means - 5 sensors

In each experiment, reconstruction was performed using all the aforementioned ma-
chine learning models. Linear regression was used to estimate the coefficient based on the
training data, which was then used to predict the missing data. K-nearest neighbors were
used in a regression setting where each point in the neighborhood contributes equally to the
missing value estimate. Additional trees were implemented by selecting random subsam-
ples of data and then averaging the results obtained from multiple trees. Ten decision trees
were grown prior to averaging. As a final method for reconstruction, a‘neural network with
two hidden layers of size 500 and 250 was constructed. In the learning process, Root Mean
Square Propagation (RMSprop) was used as the optimizer and mean square error as the
loss function. In each experiment, the reconstruction error and its variance were measured
for each of the machine learning algorithms used on the dataset.
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3.2. Experimenal Results

The mean reconstruction error (ε) and its variance (σ) for each experiment are pre-
sented in Table 2. The letter denoting the experiment in the Table 2 corresponds to the
equivalent sampling depicted in the panels of Figure 3.

Table 2. Table containing mean reconstruction error (ε) and its variance (σ) for each of the
machine learning model used in each experiment. The error is divided in amplitude and vari-
ance error.

Experiment Linear KNN Extra Neural
Regression Trees Network

ε σ ε σ ε σ ε σ

(a) Amplitude 0.52 1.00 0.91 1.42 0.76 1.23 0.73 1.17
Angle 6.28 17.03 11.43 24.40 9.49 21.34 8.79 19.88

(b) Amplitude 0.00 0.00 0.40 0.58 0.48 0.71 0.17 0.25
Angle 0.00 0.00 5.16 12.33 6.24 14.63 2.00 5.12

(c) Amplitude 0.00 0.03 0.74 0.64 0.87 0.77 0.20 0.16
Angle 0.09 0.89 9.50 15.80 11.34 18.29 2.63 5.08

(d) Amplitude 0.03 0.14 0.79 0.66 0.92 0.76 0.27 0.24
Angle 0.40 2.72 10.20 16.47 11.89 18.55 3.17 6.32

(e) Amplitude 0.52 0.68 0.94 0.81 1.02 0.84 0.55 0.59
Angle 6.61 13.86 12.08 18.93 13.47 20.25 6.88 13.07

(f) Amplitude 0.30 0.30 0.80 0.59 0.94 0.73 0.32 0.28
Angle 4.20 9.30 10.44 16.29 12.37 18.76 4.31 8.95

(g) Amplitude 0.72 0.60 0.88 0.66 0.97 0.73 0.61 0.52
Angle 10.42 17.44 11.89 18.61 13.07 19.74 8.75 15.65

When comparing experiments (a) and (b) from the Table 2, the importance of the
sampling strategy stands out. Moreover, the error of the linear regression model from
experiment (b) is virtually zero. This might be attributed to the true resolution of the
ERA Interim model. A closer look at Figure 1 reveals this fact, as the transition between
values is much coarser (this is perhaps most easily observed in region B) than the spatial
distribution of the data would suggest. However, it is interesting to note two things:
(i) linear regression performs well across all subsequent experiments and (ii) although the
differences between the machine learning algorithms are not that large, it turns out that
KNN and Extra Trees have the largest error across all experiments. Experiments (e) and (f)
again fortify the conclusion that the selection of the optimal location for sensor placement
significantly reduces the error and perhaps plays a more important role than the actual
machine learning method used for reconstruction. A similar observation can be made
when comparing experiments (e) and (g), as (e) uses twice as many sensors as (g). In the
latter experiments, where a smaller number of sensors is available—that is, more data are
reconstructed—neural networks outperform all other models.

The excellent performance of the linear regression model in the experiments where
the sensors densely cover the region of interest can be attributed in part to the data source.
As can be seen in Figure 1 (region B), the intrinsic spatial resolution of the data can be coarser
than the actual resolution available. Therefore, we are particularly interested in cases where
a small number of sensors were used to reconstruct the missing information. Previous
experiments indicated that when the number of sensors is small, sensor placement plays a
more important role than the actual data reconstruction method. We used the intelligent
sensor location selection method based on the k-means algorithm to select locations for
different numbers of sensors ranging from 2 to 25. The results are shown in Figure 4.
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Figure 4. The average amplitude and angular error (subfigures a,c) and their variances
(subfigures b,d) for different number of sensors. The gray line indicates experiments (f) and (g).

Figure 4 shows the expected behavior. For all reconstruction methods, the error
and variance decreases with a larger number of sensors, and this is consistent with the
previous results—the gray line denotes the results of experiments (f) and (g) from the
Table 2. However, it is interesting to note that KNN and Extra Trees have virtually no
further gain when more than 10 sensors are used in the given domain. In fact, the results
from Table 2 suggest that the gain in accuracy is possible but not very large for a much
larger number of sensors used.

In all previous experiments, only the total error was observed. If we want to study
the spatial distribution of the error, we should plot the amplitude and angular error for
each experiment. The spatial distribution of amplitude and angular error is visualized in
Figures 5 and 6, respectively. The figures show the error for each of the ML models for
experiments C and F, whose total error is given in Table 2.

From the figures, we can observe the spatial distribution of the error and discuss
the peculiarities. It is to be expected that the error is more or less uniformly distributed,
and that the closer one gets to the sensor, the smaller the error. This is especially noticeable
at first glance. However, it can be seen that the error increases as one approaches the edges
of the region of interest. Regardless of the density of the sensors, the northern and southern
parts of the Adriatic have large reconstruction errors when KNN and Extra Trees are used
for reconstruction. The variance follows this behavior. In experiment (f), this spatial pattern
of error and variance can be observed for all ML models. This corresponds to regions A
and C as indicated in Figure 1, and as mentioned earlier, these regions are known to have
specific wind types and different wind regimes. As can be seen from the figures, the choice
of model for data reconstruction or an increase in the number of sensors can further reduce
the error in these regions. If we reduce (or neglect) this type of error, we can see that
there is another type of error, namely the reconstruction error that occurs in the coastal
zone. The points at the coastal zone are shown as “partially” wet in the land-sea mask.
In this zone, the wind vector changes from continental to open sea regime, it changes from
local (coastal) to global (open sea) meteorological processes. As a result, the process at
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this particular point is less correlated with processes at neighbouring points. This could
be particularly important for future work, as most sensors in real scenarios are located
in the coastal zone and could be a poor choice for optimal sensor locations when sensor
information is used to reconstruct wind data.

Looking at the spatial distribution of error and variance shown in Figures 5 and 6 for
the experiment with the lower number of sensors (f), we can see that the reconstruction
error of the neural network and linear regression model is less than 0.1–0.2 m/s for most of
the observed region.

Figure 5. Spatial distribution of amplitude error for randomly distributed 110 sensors—
experiment (c)—and for intelligent selection of the 10 sensors-experiment (f).
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Figure 6. Spatial distribution of amplitude variance for randomly distributed 110 sensors—
experiment (c)—and for intelligent selection of the 10 sensors experiment (f).

4. Discussion and Conclusions

The aim of this study was to investigate the possibility of using part of the synoptic
data to reconstruct the overall picture of a synoptic situation. Wind data from a broader
Adriatic region were used as a case study, and several machine learning techniques were
applied to the data. The overall results show that the average amplitude error is an order of
magnitude smaller than the mean and is comparable to the uncertainty of a hardware sensor
measurement. Furthermore, a relatively small amount of data is required to achieve good
amplitude reconstruction, that is, only a few percent of the data is sufficient to ensure that
the average amplitude error is an order of magnitude smaller than the average amplitude.
This is true for all machine learning methods used here. In fact, it can be seen from the
results that the different implementations of machine learning perform comparably in the
task of data reconstruction from this dataset. The results suggest that the data sampling—
that is, the selection of the location from which the input data comes— plays a more
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important role than the particular machine learning algorithm. The different proportion
of data—from 50% to 1%—is used as input data to investigate how much data is needed
for a good reconstruction. In addition, different input data selection strategies are used to
investigate how different instrument placement strategies would affect the reconstruction
accuracy. Based on the fact that changing the input data selection strategy leads to a
significant change in the overall reconstruction performance, we conclude that it is more
important for an on-site implementation to have an intelligent way to select the locations
where measurements are collected than an intelligent algorithm for data reconstruction.
Based on the results of this study, which was conducted using only wind data, we can
conclude that local, geographically restricted wind measurements can be used to recover
missing wind data, and that this is a good indication that, in general, local, geographically
restricted measurements can be used to recover missing geospatial data from a larger
geographic area.
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