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Abstract: In this work, a novel multiband spectrum sensing technique is implemented in the context
of cognitive radios. This technique is based on multiresolution analysis (wavelets), machine learning,
and the Higuchi fractal dimension. The theoretical contribution was developed before by the authors;
however, it has never been tested in a real-time scenario. Hence, in this work, it is proposed to
link several affordable software-defined radios to sense a wide band of the radioelectric spectrum
using this technique. Furthermore, in this real-time implementation, the following are proposed:
(i) a module for the elimination of impulsive noise, with which the appearance of sudden changes
in the signal is reduced through the detail coefficients of the multiresolution analysis, and (ii) the
management of different devices through an application that updates the information of each sec-
ondary user every 100 ms. The performance of these linked devices was evaluated with encouraging
results: 95% probability of success for signal-to-noise ratio (SNR) values greater than 0 dB and just
five samples (mean) in error of the edge detection (start and end) for a primary user transmission.

Keywords: cognitive radios; multiband spectrum sensing; machine learning; wavelets; software-
defined radio

1. Introduction

The concept of cognitive radio (CR) consists of a radio with the ability to take ad-
vantage of ‘spectral gaps’ in a timely manner to continue transmitting [1]. CR has been
considered as one of the outstanding solutions for spectrum shortages. CR techniques
provide the ability to use or share a spectrum in an opportune manner, as well as operate
on the best available channel. In this way, CR technology allows secondary users (SU),
also called unlicensed users, to determine which parts of the spectrum are available and
detect the presence of licensed users or primary users (PU). When an SU operates in an
unauthorized band, the CR selects the best available channel, coordinates its access, and,
at the right moment, leaves the channel when a PU is detected to avoid interferences [2].
Accordingly, the CR paradigm involves the stages of spectrum sensing, decision, sharing,
and mobility [3]. Sensing is the ability to timely detect the start of PU transmission in
the spectrum space by the SU. The decision concerns the SU’s ability to select the best
available spectrum band. Sharing refers to the coordinated access to the channel selected
by the SU, and spectrum mobility is the capacity of a CR to vacate the channel when a PU
is detected [3]. The first stage of CR, i.e., spectrum sensing, is essential to determine the
presence of a PU.

Spectrum sensing in a CR is a term that implies obtaining the characteristics of
the spectrum through multiple dimensions, such as time, space, frequency, and code.
These characteristics include modulation type, waveform, bandwidth, and carrier fre-
quency. The concept of CR can be applied to other technologies such as the Internet of
things (IoT). In [4], a survey focused on the classification and merits of spectrum sensing
and spectrum sharing techniques was presented for this technology fusion. Future wireless
communication services will require high performance, which will need, among other
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things, a larger bandwidth. Nevertheless, in various scenarios, the available spectrum
spaces are at noncontiguous frequencies. Due to this, it is necessary to have a broad
overview of the PU activity. One solution is to consider multiband spectrum detection,
i.e., perform the detection of available spectral spaces considering a wide bandwidth [5].
The multiband spectrum sensing (MBSS) problem has recently seen contributions repre-
senting great promise for implementing efficient CR. Currently, there are, in the literature,
many works related to MBSS techniques. For example, in [6], they proposed an adaptive
double-threshold spectrum detection method based on the Markov model for environments
with a low SNR. This proposal significantly reduces the power/processing consumption
for spectrum detection compared to the traditional single-band scheme. In [7], a framework
for resource allocation and multiband cooperative spectrum detection was proposed for IoT
in cognitive 5G networks. Here, it was emphasized that allocating an optimal number of
channels to be sensed using multiband spectrum sensing can significantly decrease energy
consumption in comparison with existing spectrum sensing approaches. Another work
that stands out with respect to MBSS is [8]. In this article, the midrange method was used
to detect the optimal energy level in the diffuse region, which is the area between the low-
and high-energy thresholds, for a dual-threshold energy detector (ED).

The authors of the current paper presented a previous study introducing a novel MBSS
technique based on multiresolution analysis (MRA) [9,10], combined with machine learning
(ML), for edge detection and with the Higuchi fractal dimension (DFH) [11] as a binary
decision rule for distinguishing noise and a possible PU transmission. In this work [12],
one of the three ML algorithms, used for the classification of the coefficients, was the
K-means algorithm. By considering this algorithm, it was possible to obtain, on average,
98% certainty of detecting the beginning and end of a PU transmission, for an SNR greater
than 0 dB. These results were obtained in a simulated environment on the MATLAB
platform. Thus, the previously mentioned technique is now implemented in some easy-
access SDR (software-defined radio) devices deployed in a real wireless communication
environment. This paper allows appreciating the performance of theoretical contributions
in a commercial electronic device based on SDR.

According to the literature, there were some recent and high-impact works in the
field of interest related to MBSS and its implementation in a simulated or experimental
environment with SDR and USRP (universal software radio peripheral) devices. The au-
thors in [13] proposed a cooperative detection algorithm with a sub-Nyquist sampling
approach to design a system with significantly reduced cost and energy consumption.
In [14], the critical problem of the hidden terminal was considered (in this case, the hidden
PU), and a specific spatial distribution of the SUs was proposed to counteract this problem.
In [15], a compression sampling technique was proposed that can effectively reduce the
cost of signal acquisition, whose principal objective is to accurately acquire the signal for
detection. In [16], individual and cooperative broadband spectrum detection schemes were
proposed to reduce power consumption in signal acquisition, processing, and transmission.
In [17], an algorithm based on a low-speed multichannel architecture was proposed to
detect frequency edges using wavelets in a multiband context for CR networks. In [18],
the authors analyzed the detection capacity and developed a self-configured system with
dynamic intelligence networks without causing any interference to the PU. In this work,
two spectrum detection techniques were also mentioned during quantitative analysis:
energy detection and band-limited white-noise detection.

Some important contributions related to improving spectrum efficiency over TV with
spaces (TVWS) by considering low-cost devices and reduced computational complexity
have been made. A good approach to this topic appears in [19]; here, the authors used
an affordable prototype to sense TVWS. The results showed that the portable prototype
was capable of detecting unoccupied frequency bands from 500 MHz to 698 MHz in urban
areas. Moreover, in [20], a prototype able to detect up to 10 TV channels was presented.
The sensing device was examined in a real environment, and a spectrum occupancy of
30.25% was calculated. In [21], an energy detection model was examined, combined with
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noise and primary user activity. This proposal was tested in a low-cost open-source sensing
station. The proposed model detected TVWS with 9.6% more accuracy than current models.
In [22], SDR and USRP devices were used to implement a communication system to detect
interferences performing significantly better than the ED in the detection of weak interfer-
ence, offering the capability of detecting 8 to 10 dB lower values of interference. In [23],
experimental results of the USRP hardware implementation for the detection of ‘gaps’ in the
spectrum were presented with the advantage of requiring fewer samples than the ED and
obtaining the same performance. In [24], a new SDR platform architecture was proposed
that implements different modulation techniques, and this architecture showed favorable
gains with an advantage over traditional techniques, such as spatial multiplexing multiple-
input multiple-output (MIMO) systems. In [25], a distributed CR network architecture was
presented, in which each CR knows local network state information and performs spectrum
sensing, channel estimation for joint routing, and channel access subject to realistic network
topology and physical channel effects. The authors in [26] presented a CR system in a
real environment in which nodes can either communicate with other nodes via (i) a direct
communication with the base station at the macrocell, which helps to enhance network
performance, or (ii) device to device that improves spectrum efficiency, whereby traffic
is offloaded from macrocell to small cells, using two USRP platforms combined with the
GNU radio software toolkit. In [27], the authors used USRP with Raspberry to develop
a distributed wireless network in which nodes can communicate with other nodes inde-
pendently and these can take decisions autonomously. In [28], a small-scale testbed was
proposed for dynamic spectrum access in a CR network to find a common channel for
communication between two devices (peer to peer, using USRP). A technique for dynamic
spectrum access was also presented. In [29], a didactic spectrum analyzer application with
multiple functions was presented that uses an SDR device at a very low cost.

Many important contributions related to CR have been implemented considering
USRP devices. Nevertheless, in this work, the main motivation consists of showing that
SDR devices can be useful for providing information about how a theoretical contribution
could behave implemented in real time without a considerable investment compared to
the high economic cost that could represent USRP devices [30,31].

This work is organized as follows: in Section 2 a brief description of the considered
SDR devices is presented. In Section 3, the implementation of the MBSS technique using
SDR technology is explained. Section 4 presents the implemented scenario and results.
Section 5 provides the conclusion and a brief discussion.

2. Software-Defined Radios

During the last few decades, telecommunications have been in constant evolution.
Among the most relevant technological contributions is the digital processor. This item
offers to radio equipment the flexibility of a programmable system. In other words,
the behavior of a communication system can be modified simply by changing its software.
This benefit introduced a new radio paradigm called software-defined radio. Under this
paradigm, the task of configuring the behavior of the radio is transferred to the software,
leaving the hardware only to implement the radiofrequency front end. With this, the radio
is no longer static, it is defined by its circuits and becomes a dynamic element, which can
change its operational characteristics, such as bandwidth, modulation, and coding rate,
even modified during the execution time according to the software configuration [32].

SDR is defined as “radio in which some or all physical layer functions are defined by
software” [32]. In SDR devices, the software modules are executed in real time on micropro-
cessor platforms or digital signal processors. Moreover, most of the devices consider FPGA
for transmitting or receiving radio signals. The main operational characteristics of SDRs
can be modified at runtime; the system can be easily reconfigured to perform different
functions as needed. Due to this, transmitters (Tx) or receivers (Rx) can be created for any
type of signal through software or firmware functions [26,27].
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SDRs can be used in various radiofrequency technologies, such as Bluetooth, WLAN,
GPS, Radar, WiMAX, or LTE. The rapid evolution of wireless communication systems and
their standards has made base station software updates a more attractive solution than
costly base station replacement, both for the military sector and for the commercial sector.
For example, updating the software of the satellite communication equipment deployed
will allow changes in communication functionality and multiple uses during the life of
the satellite [33]. SDR opens a range of possibilities by making existing types of radio
applications easier to implement and by enabling new types of applications. In particular,
the computing power and flexibility of the SDR can be leveraged to develop CR [34].

The emergence of relatively affordable devices that receive and digitize radiofrequency
signals has brought SDR to the desks of many communications engineers. Nevertheless,
the latest availability of very-low-cost SDR devices, such as RTL-SDR, has brought SDR to
the home desks of undergraduate and graduate students, as well as professional engineers
and creator communities [35]. In this work, the implementation of an MBSS technique is
proposed with the use of general-purpose communication devices such as SDR-RTL [36],
HackRF One [37], and LimeSDR Mini [38]. Table 1 shows the main characteristics of
these devices.

Table 1. SDR device characteristics [31], (MSPS, mega samples per second).

Device HackRF One RTL-SDR LimeSDR Mini

Frequency range 1 MHz–6 GHz 22 MHz–2.2 GHz 10 MHz–3.5 GHz
RF bandwidth 20 MHz 3.2 MHz 30.72 MHz
Sample depth 8 bit 8 bit 12 bit
Sample rate 20 MSPS 3.2 MSPS 30.72 MSPS
Tx channels 1 0 1
Rx channels 1 1 1

Duplex Half - Full
Transmit power −10 dBm + (15 dBm @ 2.4 GHz) - Max 10 dBm (depending on frequency)

3. Implementation of MBSS Technique Using SDR Technology

One of the main motivations of the work, previously developed by the authors [12],
is to propose a MBSS technique that is both (i) adequate for correctly detecting a primary
user and (ii) having a computational complexity allowing real-time implementation in
a wireless communications environment. Low-cost devices easy to install and program,
such as the SDR devices explained above, are considered. Hence, Figure 1 shows the
general scenario for the MBSS using low-cost SDR devices to know the occupation of a
wide spectrum interval.

Figure 1. General description of implemented MBSS scenario.
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In general, the implemented scenario consists of four big blocks: a sliding time window,
an estimator of the power spectrum density, a block for reduction in impulsive noise, and a
block to determine frequency edges and detection of PUs. Basically, each device collects
information from the environment (i.e., each one working as an SU), and this information
is processed by the estimator of the power spectral density (PSD) to get the spectrum in
different bands. Thereafter, this PSD is modified to eliminate noise, especially impulsive
noise, through an MRA (discrete wavelets). Lastly, the last block allows deciding if a
PU is present or not using discrete wavelets, machine learning, and the Higuchi fractal
dimension. Next, each block is described in detail.

3.1. Sliding Time Window

The block corresponding to the sliding time window is detailed in Figure 2. In this
block, the signals received by the SDR devices are conditioned, updating the perception
every 100 ms. Each SDR device delivers a complex signal ri(n) = xIi(n) + jxQi(n) for
i = 1, 2, . . . , N for the N devices sequentially connected.

Figure 2. Sensing stage: received signals for the SDR devices, updated every 100 ms.

Basically, for each considered SDR device, three parameters are set: the sampling rate
fsi, the center frequency (of reception), and the gain. For the devices used in the proposed
scenario, we have a sampling rate of 20 MHz for the HackRF One, 3.2 MHz for the RTL-
SDR, and 30.72 MHz for the LimeSDR. The initial gain of each device is 0 dB, which means
that the power of the signal perceived by each device is not increased. Nevertheless,
this parameter can be modified if the PU transmission power is imperceptible by the SDR
device (this value is chosen by the user).

The central frequency FCT of desired spectrum (multiband spectrum bandwidth) is
chosen by the user according to the following steps (Figure 3):

• The bandwidth of each connected SDR device is added to conform the complete
bandwidth BwT to be observed.

• The total bandwidth BwT is centered in FCT .
• Lastly, the center frequency fCi of each connected device is assigned.
• Steps are repeated every time the value of FCT is changed.
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Figure 3. Carrier frequency assignment of each connected device to conform the observed multi-
band spectrum.

3.2. Power Spectrum Density Estimation

From the received signal ri(n) = xIi(n) + jxQi(n), which is a complex signal that
belongs to the time domain, the PSD is obtained on a discrete linear scale of the frequency
Ri(k) through the Welch estimator [39] for each connected device every 100 ms (frame time).

Welch’s method [40] (also called the periodogram method) for estimating power
spectra is carried out by dividing every signal frame of 100 ms into successive blocks or
windows, estimating the periodogram (i.e., the squared magnitude of the fast Fourier
transform (FFT)) for each block, and averaging over the total number of windows forming
each frame. The m-th windowed, zero-padded block is considered from the signal ri(n)
denoted by

ri,m(n) = ω(n) ri(n + mh), n = 0, 1, . . . , M− 1, m = 0, 1, . . . , K− 1, (1)

where h is defined as the window hop size and K denotes the number of available windows.
Then, the periodogram of the m-th window is given by

Pri,m(k) =
1
M
|FFT(ri,m)|2 =

1
M

∣∣∣∣∣M−1

∑
n=0

ri,m(n)e−j2πnk/M

∣∣∣∣∣
2

k = 0, 1, . . . , M− 1, (2)

and the Welch estimate of the power spectral density is given by

Ri(k) =
1
K

K−1

∑
m=0

Pri,m(k) k = 0, 1, . . . , M− 1. (3)

In other words, it is just an average of periodograms across time over each frame of P
points in 100 ms. When ω(n) is the rectangular window, the periodograms are formed from
nonoverlapping successive blocks of data. For other window types, the analysis frames
typically overlap. In this implementation, a 50% overlapped Hamming window is used
and the number of M samples contained in Ri(k) is chosen according to the device: 512,
1024, 2048, or 4096 samples for the RTL-SDR. For the cases of HackRf One and the LimeSDR
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Mini, the number of samples can be 1024, 2048, 4096, or 8192. These essential data represent
a compromise in the real-time implementation between having many samples to locate
the PU with great precision or choosing few samples sacrificing the precision to locate the
transmission of the PU to reduce the execution time and the assignment of computational
resources. The structure and operation of this block are shown in Figure 4.

Figure 4. PSD estimation via the Welch method.

3.3. Impulsive Noise Reduction

Due to the nature of the devices used in this work, the addition of a classical noise (flat
spectrum) is disturbed by the apparition of spikes in the PSD estimation. These spikes are
called impulsive noise and, in general, are more significant with the SDR devices than those
observed by a commercial spectrum analyzer. Eliminating this type of noise is necessary to
improve the results obtained by the proposed MBSS technique. Many methods have been
proposed to mitigate this noise, even novel techniques such as compressed sensing [41] or
a recursive least square method based on the state space variant [42].

In this research work, an impulsive noise elimination module is proposed, which is
undoubtedly a novel proposal to mitigate abrupt noise changes in the PSD signal that
is processed by the MBSS technique. The operation of this module is shown in Figure 5.
The elimination of impulsive noise along every frame is done through the approximation
and detail coefficients issued from an MRA [9] acting over the PSD estimate.

Figure 5. Operation of the impulse noise reduction module.

In the next sections, the operation of each submodule that shapes the impulsive noise
elimination module is described in detail.

3.3.1. Multiresolution Analysis: PSD Decomposition

First, to the Ri(k) signal (PSD in a linear scale, the result of applying the Welch
estimator), the MRA is sequentially applied to i-th device, resulting in the approximation
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coefficients aLi at decomposition level L and the detail coefficients dji at levels going from
j = 1, 2, . . . , L, as given by Equation (4) [9].

Ri(k) = aLi +
L

∑
j=1

dji. (4)

The detail coefficients correspond to the discrete wavelet transform of Ri(k) in a
dyadic scale. It is well known that the detail coefficients of a signal decomposition, via the
MRA, keep the information about singularities (abrupt changes in the signal), which is the
case concerning impulsive noise. Because of that, the proposal is based on modifying these
detail coefficients to alleviate this problem generated by the impulsive noise. For this, the
proposal is only considered at level L = 1, i.e., the approximation coefficients aLi and the
detail coefficients dji. The constructed wavelet space from the MRA is the wavelet ‘Haar’.
This is shown in Figure 6.

Figure 6. PSD decomposition through the MRA.

3.3.2. Coefficient Scaling

Subsequently, a scaling is made to the detail coefficients dji of each device i. In this
process, 0 is assigned to the coefficient with the smallest value, 1 is assigned to the coefficient
with the largest value, and a value between 0 and 1 is assigned to the remaining coefficients
dji as a function of its original value, resulting in the ddji signal, as it is shown in Figure 7.

Figure 7. Detail coefficient scaling submodule.

3.3.3. Noise Inhibition through Coefficients

To reduce high-frequency noise, principally abrupt changes (impulsive noise), in the
PSD, the values of the detail and approximation coefficients are reassigned. This task is
the most important of this block of noise reduction. The flow chart that describes this
submodule is shown in Figure 8.

Figure 8. Operation of the noise inhibition submodule.

Once the detail coefficients ddji have been scaled for each device i, a double-threshold
condition, L1 < ddji < L2

∣∣L1 = 0.01, L2 = 0.4 , is applied to the scaled coefficients ddji,
and these indices must not be consecutive. The indices that satisfy both conditions are
stored in the variable ind.
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The detail coefficients ddji of the ind localities and those that are around, previous,
and next, are assigned the value of 1 × 10−15. Practically, the detail coefficients are turning
off, such that these components do not affect the next signal to be reconstructed, which is
where high-frequency noise exists. In the remaining localities of d′ji, the original value of
dji is assigned.

With the previous processing, the ind indices of the detail coefficients coincide with
the indices of the approximation coefficients, which also have to be modified to remove
some abrupt changes when reconstructing the signal; this coincidence is due to the fact
that the level of decomposition is L = 1. To modify the approximation coefficients a′Li,
a close colony of three samples of approximation coefficients is replicated in the ind indices
mentioned. In the remaining localities of a′Li the original value of aLi is assigned.

The result of this block corresponds to the approximation coefficients a′Li and the
detail coefficients d′ji with the corresponding attenuations to eliminate the different noise
variants mentioned above. Figure 9 shows an example of the difference between the
original coefficients and those modified by this block.

Figure 9. Original and modified coefficients: (a) approximation; (b) detailed view.

3.3.4. PSD Signal Reconstruction

In this block, the new coefficients are used as an input parameter. With them, a wavelet
reconstruction is done (again using ‘Haar’). The result of the reconstruction is the signal
R′i(k), which is the PSD with the attenuation of the different noise variants on a linear scale.
This processing can be seen in Figure 10.

Figure 10. PSD reconstruction after impulsive denoising.

Taking the previous example, the result of applying the wavelet reconstruction sub-
module is shown in Figure 11 on a logarithmic scale. In this figure, it is possible to
distinguish the changes between the original PSD and the PSD modified by the noise
inhibition module.

Another example is shown in Figure 12. This same difference is observed here using
two RTL-SDR devices with FCT = 90.8 MHz, a band exclusively used for broadcast
radio [43]. Furthermore, it is possible to analyze a larger frequency range based on the
number of connected SDR devices.
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Figure 11. Difference between original PSD and modified PSD.

Figure 12. Difference between original PSD and modified PSD using multiple SDR devices.

In the examples shown in Figures 11 and 12, there are different PSDs that show two
challenges. In Figure 11, an abundance of high-frequency noise with very sudden changes
is shown, and Figure 12 exhibits an abundance of impulsive noise; in both cases, the noise
inhibitor works correctly.

3.3.5. Impulsive Noise Reduction Algorithm

This section presents the pseudocode used for the impulsive noise reduction block.

1. Function noise_reduction (Ri(k)):
2. L1 = 0.01
3. L2 = 0.4
4. aLi; dji = pywt.wavedec (Ri(k), ‘db1’, L = 1)
5. a′Li ← aLi
6. d′ji ←dji

7. ddji = reescale (dji)
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8. ind = find (dji > L1 & dji > L2)
9. for p in range (len(ind)-1,2,−1):
10. aux =ind[p−1]
11. if ind[p] == aux + 1
12. ind = delete (ind,[p−1])
13. d′ji(ind− 1) = 1× 10−15

14. d′ji(ind) = 1× 10−15

15. d′ji(ind + 1) = 1× 10−15

16. a′Li(ind− 1) = aL(ind + 1)
17. a′Li(ind) = aL(ind + 2)
18. a′Li(ind + 1) = aL(ind + 3)
19. R′i(k)= pywt.waverec (a′Li; d′ji, ‘db1’,‘symmetric’)
20. return ( R′ i(k) )

3.4. Detection of Primary Users

This section presents the last block of this implementation: the detection of PUs in the
spectrum. This procedure receives the PSD on a linear scale R′i(k) as an input parameter
and delivering two outputs: (i) the signal R′i−dBm(k), which is the PSD on the logarithmic
scale, and its occupation (i.e., starts and ends of frequency edges of detected bands); (ii) the
binary decision, i.e., whether each of these detected bands corresponds to noise or a possible
PU transmission. This structure is shown in Figure 13.

Figure 13. Detection of PU module.

This block consists of different submodules, as shown in Figure 14: (i) detection of
frequency bands via the MRA and ML (in this submodule, the MRA is used to obtain the
approximation coefficients, which are classified with the K-means algorithm and obtain the
possible spectral windows; (ii) detection of PUs via the HFD (in this submodule, the auto-
correlation of each window is calculated through the fractal dimension of Higuchi. At the
end of this block, each spectral window is obtained on a logarithmic scale, as well as the oc-
cupation of each window. This MBSS technique was completely detailed in the previously
published work by the authors in [12]. In this new proposal, the novelty is the developed
platform to implement this technique using general-purpose communication devices.

In Figure 14, we can observe the result of applying this detection block. Here, the occu-
pancy signal, indicating a PU transmission or noise, is displayed as a binary representation
updated every 100 ms.
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Figure 14. Delivered signals from the “detection of primary users” block.

4. Real-Time Experiments and Results

This section presents the development environment, the parameters considered, and the
results to validate the real-time MBSS using SDR devices through a controlled scenario.

4.1. Implemented Scenario

The implemented environment is presented in Figure 15. Here, four SDR devices
were employed. Three of these four SDR devices were established as SUs and one was
established as a PU. Additionally, a cellphone was used as a PU. Characteristics of each
device used, as well as the parameters associated with the experimentation, are described in
Table 2. In this real-time implementation, all these devices were controlled by an application
developed by the authors that is briefly explained later.

Figure 15. Implemented scenario.

The order in which the SDR devices were located was dictated by the next priority:
LimeSDR mini, followed by HackRF One and, finally, RTL-SDR. This priority was given by
the bandwidth that each device can handle. Accordingly, the display and alignment of the
signals in the application were carried out: (i) the display of the signals was based on the
bandwidth of each connected device; (ii) the alignment of the signals was made according
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to the device that can perceive the widest bandwidth. That is, all the signals would be at the
same power level as the device with the highest bandwidth; nevertheless, this processing
does not change the shape of the PSD or the occupation of the signal in any way. This align-
ment only allows for better aesthetics in the application. In addition to the signal perceived
by the (RTL-SDR), 1/8 of the beginning and 1/8 of the end of the frame were omitted,
which means that 1/4 of the original frame was omitted (see Figures 14 and 16). With this
processing, distortion in the signal was avoided at the beginning and at the end. This distor-
tion was due to the quality of the RTL hardware. Due to this phenomenon, the RTL-SDRs
only perceived 2.4 MHz of bandwidth (see Table 2). Moreover, the sliding time window
module had a delay (average) of 0.0065 s between the SDR devices and the PC (this value
did not depend on the number of samples contained in the PSD). The PSD estimation
module showed an execution time (mean) of 0.017 s in a frame with 512 samples, 0.018 s in
a frame with 1024 samples, 0.02 s in a frame with 2048 samples, and 0.026 s in a frame with
4096 samples. The module for impulsive noise removal showed an execution time (average)
of 0.00047 s in a frame with 512 samples, 0.00051 s in a frame with 1024 samples, 0.00071 s
in a frame with 2048 samples, and 0.0011 s in a frame with 4096 samples. The estimation of
frequency bands and detection of primary user module showed an execution time (mean)
of 0.0339 s in a frame with 512 samples, 0.0468 s in a frame with samples, 0.0775 s in a
frame with 2048 samples, and 0.1264 s in a frame with 4096 samples. This means that,
on average, this implementation took 0.0621 s in a frame with 512 samples, 0.07181 s in a
frame with 1024 samples, 0.10471 s in a frame with 2048 samples, and 0.156 s in a frame
with 4096 samples. These values were measured using a laptop computer with 12 GB of
RAM and an Intel i5 processor, and 10,000 frames were analyzed for each value.

Table 2. Parameters of the considered devices.

Tx/Rx SU1 SU2 SU3 PU1 PU2

Device HackRF One RTL-SDR 0005 RTL-SDR 0002 LimeSDR Mini Cell phone call
Tx Frequency (MHz) - - - 847.8 842.5
Type of transmission - - - OFDM CDMA [43]
Tx Bandwidth (MHz) - - - 1 5
Rx Frequency (MHz) 835 846.2 848.6 - -
Rx Bandwidth (MHz) 20 2.4 2.4 - -

Figure 16. Frequency range perceived by SUs.

According to the parameters and configurations mentioned in Table 2, the SUs were
observed as contiguous bands, as shown in Figure 16, which means that a total of 24.8 MHz
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of bandwidth was perceived. In this figure, it is shown that HackRF One observed the
transmission made by PU2, and the RTL-SDRs, SU2, and SU3 observed the transmission
made by PU1.

4.2. Signal Processing in the Controlled Implementation

This section describes in detail the processing and parameters used in the controlled
implementation processing. Figure 17 shows two added modules (marked in pink color):
(i) the first to add a complex Gaussian noise (AWGN, additive white Gaussian noise)
noise in the time domain. This module permits modifying the SNR in the controlled
implementation to have an environment to close to reality as much as possible. Noise is
added to the signal perceived by the SUs before processing it; (ii) the second is the block
that stores the data and does the statistics to know the efficiency of this work in a real
wireless communication environment.

Figure 17. Controlled implementation steps.

Figure 18 shows the structure of the artificial noise addition block, where there are
three input parameters: (i) the PSUi signal, which is the power with each device i transmits,
(ii) the SNR value that the controlled experiment will have (this value is the same for each
SDR device; see Table 3), and (iii) the complex signal ri(n) = xIi(n) + jxQi(n) perceived
by each SUi. The experimentation values for the controlled implementation are shown in
Table 3. Each SU was sensed for 16.66 h at each SNR value, perceiving 2048 samples per
frame for the HackRF One and 1024 samples per frame for the RTL-SDRs.

Table 3. Controlled implementation parameters.

SU1 SU2 SU3

Device HackRF One RTL-SDR 0005 RTL-SDR 0002

SNR values −5, −4, −2, −1, 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, and 20 dB

Rx frames per SNR value 10,000 10,000 10,000

Samples per frame 2048 1024 1024
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Figure 18. Block Adding a complex Gaussian noise.

The artificial noise addition block uses the following pseudocode to calculate the noise
that will be added to the ri(n) = xIi(n) + jxQi(n) signal:

• Function Artificial_Noise_Addition (ri(n), PSUi, SNR_value)
• Sigma = float (PSUi/(10**(SNR_value/10)))
• mu = 0
• real = np.random.randn ((len(pxx)))*(sigma**0.5) + mu
• imag = np.random.randn ((len(pxx)))*(sigma**0.5) + mu
• AWGNi(n) = real + j*imag
• ri(n) = ri(n) + AWGNi(n)
• return(ri(n))

Lastly, the Computing statistics and performance block stores the Occupation(R′i−dBm(k))
signal that indirectly contains (i) the start and end edges of a transmission, which form
the frequency windows, and (ii) whether these windows correspond to noise or a PU
transmission. Subsequently, the signal transmitted by each PUi is compared to the signal
received by each SUi.

4.3. Results

This section presents the results obtained for the MBSS technique. The two parameters
evaluated in this implementation were, firstly, the probability of success (PS) which was
the result of counting the total of correctly located frequency windows with respect to the
total number of frequency windows. To determine this value, four possible cases were
considered (Figure 19):

1. The window that corresponds to a PU transmission which SU classifies as PU trans-
mission is considered a true positive (TP) value.

2. The frequency window that corresponds to a PU transmission which SU classifies as
noise is considered a false negative (FN) value.

3. The window that corresponds to noise which SU classifies as a PU transmission is
considered a false positive (FP) value.

4. The frequency window that corresponds to noise which SU classifies as noise is
considered a true negative (TN) value.

As a function of these values, the PS is given by

PS =
TP + TN

TP + FP + FN + TN
. (5)
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Figure 19. Classification of windows detected by the MBSS technique.

The second parameter is the number of samples in error, which is the number of samples
between the edge of the PU transmission and the edge detected by the MBSS technique.

Each SDR device used in this implementation had its own PS graph for each SNR
value, as shown in Figure 20. The RTL-SDRs presented a better result to detect the frequency
windows, which can be a PU transmission or noise, compared to the HackRF One. The PS
for the RTL-SDRs was greater than 0.98 for values of SNR≥ 0 dB and the PS for the HackRF
One was greater than 0.94 for values of SNR > 0 dB. These values are very similar to those
obtained in the simulated work [12] (i.e., PS greater than 0.98 for values of SNR > 0 dB).

Figure 20. Probability of success of each SU in the controlled implementation.

Furthermore, the implementation of an energy detector (ED) [44] was carried out
with an RTL-SDR (denoted SU4) at fC4 = 846.2 MHz with a bandwidth of 2.4 MHz,
which means that SU4 was perceived in the same radiofrequency space as SU2. For this
technique, the threshold of SU4 was placed at −80 dBm, which is the same value that
was chosen for the cluster selection stage in the algorithm to classify the approximation
coefficients in [12] through the K-means technique. Figure 21 shows the result of applying
this conventional ED. In this case, the average estimated PS was 0.64 for values of SNR
≥ 5 dB. This poor result is not surprising, due to the nature of the proposed methodology.
Indeed, even if the considered band is a single one, the PS is calculated as an average of
detected occupation windows inside the band (i.e., an MBSS is created for each considered
SDR, thereby randomly varying the transmission location) to further decide if each detected
window is free or not, via the HFD. In the case of the ED, many more windows are detected
in error, inducing a lower PS estimate. This is due to the misclassification of the PSD
signal by the ED in a short frequency range. This phenomenon greatly reduces the PS even
though it correctly locates the PU transmission.
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Figure 21. Probability of success of the energy detector.

We also estimated the samples in error, defined as the samples that detected the start or
end edge of a PU transmission. Figure 22 shows that, for values of SNR≥ 0 dB, the samples
in error were stable for each SU; however, the RTL-SDRs presented a better result for
detecting PU with greater precision, with between three and five samples on average for
samples in error, whereas the HackRF One had between eight and nine samples, which is
a good performance. The samples in error presented in [12] were between two and three
samples on average.

Figure 22. Samples in error for each SU in the implementation.

The number of samples in error for SU4 (conventional ED) was 36 on average (see
Figure 23). Due to the nature of this methodology, events such as high-frequency noise,
impulsive noise, or abrupt changes in the PSD generate more frequency windows due to
the misclassification of the PSD signal by the ED in a short frequency range. ED stands
out as a simple technique to implement with low processing resources. Nevertheless, it is
a technique that tends to fail very quickly, especially when the environment has a lot of
high-frequency noise or impulsive noise.
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Figure 23. Samples in error for the energy detector.

4.4. SDR–UAMI–MBSS Application

Lastly, the proposed methodology for the implementation of the MBSS technique
using low-cost communication devices was consolidated in the development of an ap-
plication named SDR–UAMI–MBSS. This interface shows the PSD and the occupation
of a spectrum interval (see Figure 24), specifically, the radioelectric space that the SUs
(connected SDR devices) can visualize as a whole; it consists of advanced digital signal
processing techniques and was developed in Python language. This application is easy
to use, intuitive, and quite descriptive. This allows the user to have an easy interaction.
Furthermore, it is an open-source application; it also allows knowing precisely what each
module does, and whether it is possible to improve it. The SDR–UAMI–MBSS interface is a
branch of the SDR–UAMI application [29].

Figure 24. SDR–UAMI–MBSS application.

5. Conclusions

In this work, an implementation for MBSS using SDR communication devices was
presented. This development was done in Python language, and the algorithm works
sequentially updating the information every 100 ms. The HackRF One device showed good



Sensors 2021, 21, 3506 19 of 21

performance in (i) correctly detecting noise or a possible PU transmission, and (ii) locating
the start and end of a possible PU transmission. However, this performance cannot be
significantly improved due to the noise cancellation module. Modifying the approxima-
tion coefficients for a neighboring colony indirectly affects the precision in detecting PU
transmission. Practically, using this methodology, the precision for detection is sacrificed
to improve the probability of success.

The impulse noise elimination module presented in this work showed good per-
formance in eliminating high-frequency noise and abrupt changes in the signal. It was
concluded that the implemented MBSS technique performed well, with similar results
to the simulated results (0.98 of PS and two (mean) samples in error when locating the
PU transmission) [12]. Nevertheless, this performance may be improved if this device
uses a higher-gain antenna and if the SDR deployment is done in parallel, permitting the
execution time to be reduced, as well as computing resources to be used more efficiently.

This MBSS technique also presented better performance than a conventional ED,
in accurately detecting the transmission of the PU and in detecting its location. Moreover,
with this algorithm, it is possible to use seven SDR devices seen as SUs. As future work,
it is possible to develop a network for the MBSS using the same principles outlined in
this work.
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Abbreviations

CR Cognitive radio
SU Secondary users
PU Primary users
MBSS Multiband spectrum sensing
SNR Signal-to-noise ratio
IoT Internet of things
ED Energy detector
MRA Multiresolution analysis
ML Machine learning
HFD Higuchi fractal dimension
SDR Software-defined radio
USRP Universal software radio peripheral
MIMO Multiple-input multiple-output
Tx Transmitters
Rx Receivers
PSD Power spectral density
MSPS Mega samples per second
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AWGN Additive white Gaussian noise
PS Probability of success
TP True positive
FN False negative
FP False positive
TN True negative
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