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Abstract: The synthesis of four-bar linkage has been extensively researched, but for a long time,
the problem of motion generation, path generation, and function generation have been studied
separately, and their integration has not drawn much attention. This paper presents a numerical
synthesis procedure for four-bar linkage that combines motion generation and function generation.
The procedure is divided into two categories which are named as dependent combination and
independent combination. Five feasible cases for dependent combination and two feasible cases
for independent combination are analyzed. For each of feasible combinations, fully constrained
vector loop equations of four-bar linkage are formulated in a complex plane. We present numerical
examples to illustrate the synthesis procedure and determine the defect-free four-bar linkages.

Keywords: robotic mechanism design; linkage synthesis; motion generation; function generation

1. Introduction

Linkage synthesis is to determine link dimensions of the linkage that achieves pre-
scribed task positions [1–4]. Traditionally, linkage synthesis is divided into three types [5,6],
motion generation, function generation, and path generation. Each of the synthesis types
has been extensively researched and has many applications in various engineering fields,
but, in some situations, a hybrid task needs to be performed. A hybrid task synthesis is to
design the mechanisms that accomplish two or three of linkage synthesis types simultane-
ously, during a single movement. Many problems in engineering practice require some
combination of these problem types. For example, the pick-and-place system requires a
part not only to accomplish the picking task but also to avoid obstructions during a single
movement [7], which is the problem of combination of motion and path generation for
four-bar linkage. In automotive fields, stowing automotive seats frequently requires a
combination of motion and function generation. The hybrid task synthesis can also be
applied to aeronautic and astronautic fields and so on. In this paper, we present a numerical
synthesis procedure for four-bar linkage that combines motion and function generation;
this method can be extended and applied to six-bar and eight-bar linkages.

To the best of the author’s knowledge, the idea of hybrid task synthesis was proposed
by Smaili and Diab [8] in 2006; they divided a crank cycle into several segments, each of the
segments performed one of the synthesis types. In 2013, Tong and Murray [9] presented
the synthesis for combination of motion generation and path generation, which differs
from Ref. [8], the combination are satisfied in one segment. Based on the foundation, Brake
et al. [10] studied the Alt–Burmester problems with all possible combinations, the Alt–
Burmester problem is the combination of motion generation and path generation. In 2018,
Zimmerman [11] presented a graphical method that tried to synthesize four-bar linkage to
satisfy any combination of these three synthesis types. However, in the above literature,
the combination of motion generation and function generation for four-bar linkage was
not studied completely.
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Generally, there are three linkage synthesis methods which are graphical method,
optimization method and numerical analytical method. The graphical method is to draw
the linkage step by step under geometric constraints by the target positions on the linkage
through the poles and rotation angles. Beyer [12] shows a graphical method for two coupler
points and specified input and output angle changes corresponding to those two points.
Zimmerman [11] used Pole and rotation angle constraints to draw the four-bar linkage in a
CAD software. The graphical method is intuitive, but the steps become extremely complex
when the number of task positions increases. The optimization method is to obtain an
optimum linkage by building an optimization model [8,13–15]. For linkage synthesis, only
one linkage solution is obtained usually by an optimization method.

The numerical analytical method is to formulate the kinematic constraint loop equa-
tions and solve for the appropriate link lengths and pivot locations. The research for
numerical analytical method of linkage belongs to the area, numerical algebraic geometry,
which was proposed by Sommese and Wampler [16] in 1996. The foundation of numerical
algebraic geometry is the solving of systems of polynomial equations based on the homo-
topy continuation method and to obtain all isolated solutions of the polynomial systems.
Liu and McCarthy [4,17] applied a numerical analytical method to solve the problem of
motion generation, and the number of task positions ranges from 2 to 5. Wampler et al. [18]
used an analytical method to construct the constraint equation and solved it by a homotopy
method for the nine point path synthesis problem for four-bar linkages, and they proved
that the complete solution of the system are obtained. Plecnik and McCarthy [19,20] pre-
sented a numerical analytical method to synthesize function generation for six-bar linkages
and solved it by the polynomial homotopy solver Bertini [21].

In this paper, we present a numerical synthesis procedure for four-bar linkage that
combines motion generation and function generation, which was not addressed before.
The procedure is divided into two categories which are named as dependent combination
and independent combination. Five feasible cases for dependent combination and two
feasible cases for independent combination are analyzed. For each of feasible combinations,
fully constrained vector loop equations of four-bar linkage are formulated in complex
planes. In addition, we give numerical examples to illustrate the numerical procedure
and determine the defect-free linkages. In what follows, we present how to perform the
numerical procedure.

1.1. Isotropic Coordinates

It is convenient to use vectors in complex plane to formulate constraint equations
in planar kinematics [22]. Instead of denoting a vector Pj as Pj = {xj, yj} in a Cartesian
coordinates system, we represent it as Pj = xj + iyj and its conjugate Pj = xj − iyj in
complex plane, where i =

√
−1, see Figure 1. Note that the length of vector Pj can be

calculated by
√

PjPj. In addition, the unit vector eiθj is the rotation operation that defines
the rotation from the fixed frame F to the reference frame Mj. Applying the Euler identity,
we have

eiθj = cos θj + i sin θj. (1)

The conjugate of Equation (1) denotes the rotation from the reference frame Mj to the
fixed frame F, which is

e−iθj = cos θj − i sin θj. (2)
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Figure 1. Representation form of vector and rotation operation in a complex plane.

1.2. Motion Generation

The task of motion generation is to guide the coupler link of a four-bar linkage
through prescribed points and orientations. In this paper, we define the prescribed point
and orientation as motion task position (MTP) which is denoted as {Pj, θj}, where θj is
relative to the x-axis of the fixed frame F.

Figure 2 displays a four-bar linkage whose coupler link ABP1 is passing through MTP
{Pj, θj} from MTP {P1, θ1}. During the movement, input link OA rotates the angle of φj,
output link BC rotates the angle of ψj and coupler link ABP1 rotates the angle of θj − θ1,
which are relative to the position {P1, θ1}. We define Qj, Sj and Tj as rotation operations, so

Qj = eiφj , Sj = eiψj and Tj = ei(θj−θ1). (3)

The conjugates of Equation (3) denote reverse rotation with the same amount,

Qj = e−iφj , Sj = e−iψj and Tj = ei(θ1−θj). (4)

Figure 2. Vector diagram of a four-bar linkage at MTP {Pj, θj}.

At MTP {Pj, θj}, the constraint vector loop equations of the four-bar linkage can be
formulated by

O + Qj(A−O) + Tj(P1 −A)− Pj = 0,

C + Sj(B− C) + Tj(P1 − B)− Pj = 0. (5)
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The conjugate of Equation (5) are

O + Qj(A−O) + Tj(P1 −A)− Pj = 0,

C + Sj(B− C) + Tj(P1 − B)− Pj = 0. (6)

Note that Qj and Sj are unit vectors, so they have the unit magnitude,

QjQj = 1,

SjSj = 1. (7)

Qj and Sj can be expressed by solving Equation (5), and Qj and Sj by Equation (6).
Then, substituting these expressions into Equation (7) to eliminated Qj, Sj and Qj, Sj,

(Pj −O− Tj(P1 −A))(Pj −O− Tj(P1 −A))− (A−O)(A−O) = 0,

(Pj − C− Tj(P1 − B))(Pj − C− Tj(P1 − B))− (B− C)(B− C) = 0. (8)

where j = 2, . . . , m, m denotes the maximum number of MTPs that a four-bar linkage
can achieve during a movement. In Equation (8), Tj, Pj, Tj and Pj are specified by the
designer, so there are eight unknowns, O, A, B, C, O, A, B and C. Note that O and O are
two independent unknowns for solving the constraint loop equations, so are A, B, and C.
When m = 5, the number of equations is equal to the number of unknowns, which means
the loop equations are fully constrained. This indicates a four-bar linkage can achieve at
most five MTPs.

1.3. Function Generation

The task of function generation of four-bar linkage is to coordinate the rotation angles
of input link and output link. In this paper, we define the position where the four-bar
linkage is at and the linkage’s input angle is φk and output angle ψk as function task
position (FTP). FTP is denoted as {φk, ψk}, where the angles are relative to the x-axis of the
fixed frame F.

Figure 3 displays a four-bar linkage is at FTP {φk, ψk} from FTP {φ1, ψ1}. During the
movement, the input link rotates the angle of φk − φ1, the output links rotates the angle of
ψk − ψ1, and the coupler link rotates the angle of θk, which are relative to the FTP {φ1, ψ1}.
Thus, the corresponding rotations can be denoted as

Qk = ei(φk−φ1), Sk = ei(ψk−ψ1), Tk = eiθk ,

Qk = e−i(φk−φ1), Sk = e−i(ψk−ψ1), Tk = e−iθj . (9)

Figure 3. Vector diagram of a four-bar linkage at FTP {φk, ψk}.
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The constraint loop equation for function generation can be formulated by

O− C + Qk(A−O) + Tk(B−A)− Sk(B− C) = 0. (10)

The conjugate of Equation (10) is

O− C + Qk(A−O) + Tk(B−A)− Sk(B− C) = 0. (11)

The unit vector Tj has the unit magnitude,

TkTk = 1. (12)

T and Tk can be expressed by respective solving Equations (10) and (11), then substi-
tuting the expressions into Equation (12) to eliminate T and Tk,

(Sk(B− C)−O + C−Qk(A−O))(Sk(B− C)−O + C−Qk(A−O))

−(B−A)(B−A) = 0. (13)

where k = 2, . . . , n, n represents the maximum number of FTPs that a four-bar linkage can
achieve. Note that the fixed pivots of the four-bar linkage must be specified in advance to
measure the angles of input and output for function generation. Thus, in Equation (13), O,
C, O, C, Qk, Sk, Qk and Sk are specified by the designer. The unknowns are A, B, A and
B. When n = 5, the loop equations are fully constrained; therefore, a four-bar linkage can
achieve at most five FTPs.

2. The Synthesis of Mixed Generation

In Section 2, motion generation and function generation are synthesized separately,
and a four-bar linkage can achieve at most five MTPs or five FTPs. In this section, we
explore the relationship of combination between the number of MTPs and FTPs. Here,
the mixed synthesis process is divided into two categories, dependent combination and
independent combination. In what follows, we show how to synthesize and analyze these
two types of mixed generation.

2.1. Dependent Combination

The task of mixed generation is also to determine the link dimensions of the four-bar
linkage that achieves m MTPs and n FTPs during a period of movement. The dependent
combination means that there is at least a common task position (CTP) that the linkage
moves through a MTP and a FTP simultaneously. On the contrary, there is no CTP during
the movement, which is called independent combination.

Let t denote the number of CTPs, and select one of CTPs as the first task position. For
the rest of t− 1 CTPs relative to the first task position, we have the constraints,

O + Ql(A−O) + Tl(P1 −A)− Pl = 0,

C + Sl(B− C) + Tl(P1 − B)− Pl = 0,

O + Ql(A−O) + Tl(P1 −A)− Pl = 0,

C + Sl(B− C) + Tl(P1 − B)− Pl = 0, l = 1, . . . , t. (14)

where the unknowns O, A, B, C, O, A, B and C denote the vectors and their conjugates
of the four-bar linkage at the selected CTP. Here, Ql = ei(φl−φ1), Sl = ei(ψl−ψ1) and Tl =
ei(θl−θ1). If t = 1, the Equation (14) always holds because Q1 = e0 = 1, S1 = e0 = 1 and
T1 = e0 = 1.
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According to Equation (8), the constraint equations for the rest of m− t MTPs relative
to the first task position are

(Pj+t −O− TM
j (P1 −A))(Pj+t −O− TM

j (P1 −A))− (A−O)(A−O) = 0,

(Pj+t − C− TM
j (P1 − B))(Pj+t − C− TM

j (P1 − B))− (B− C)(B− C) = 0,

j = 1, . . . , m− t. (15)

where TM
j denote the coupler link rotations of the rest of MTPs relative to the selected CTP.

According to Equation (13), the constraint equations for the rest of n− t FTPs relative
to the first task position are

(SF
k (B− C)−O + C−QF

k (A−O))(SF
k (B− C)−O + C−QF

k (A−O))

−(B−A)(B−A) = 0, k = 1, . . . , n− t. (16)

where QF
k and SF

k denote the input rotations and output rotations of the rest of FTPs relative
to the selected CTP, respectively.

Combining Equations (14)–(16), there are eight unknowns, namely O, A, B, C, O, A,
B and C. To satisfy that the mixed equations are fully constrained, the relationship between
the number of unknowns and number of equations is

8 = 4(t− 1) + 2(m− t) + (n− t). (17)

There are three cases for the value of t, which are t = 1, t = 2 and t = 3. For case of
t = 1, the combination of {t = 1, m = 5, n = 1} is equivalent to motion generation. The
combinations {t = 1, m = 4, n = 3} and {t = 1, m = 3, n = 5} are feasible. Note that the
combinations of {t = 1, m = 2, n = 7} and {t = 1, m = 1, n = 9} are infeasible because
a four-bar linkage achieve at most FTPs, namely n ≤ 5. For case of t = 2, there are two
feasible combinations which are {t = 2, m = 4, n = 2} and {t = 2, m = 3, n = 4}. For
case of t = 3, there is only a combination {t = 3, m = 3, n = 3}. The feasible dependent
combinations of MTPs and FTPs are listed in Table 1.

Table 1. Feasible dependent combinations of MTPs and FTPs.

t = 1 m = 4 n = 3

m = 3 n = 5

t = 2 m = 4 n = 2

m = 3 n = 4

t = 3 m = 3 n = 3

2.1.1. The Case of t = 1

When t = 1, Equation (14) can be discarded. The mixed constraint equations are
the combination of Equations (15) and (16) with the index {t = 1, m = 4, n = 3} or
{t = 1, m = 3, n = 5}. Here, the mixed constraint equations are a polynomial equations
system which includes eight equations and eight unknowns, and the degree of each
equation is 2. According to Bezout theory [23], the upper limit of the number of the
solution sets is 28 = 256. In kinematic synthesis, all isolated solution sets for the constraint
equations should be obtained. In addition, the solutions should be checked to find those
which can be formed as a four-bar linkage to achieve prescribed MTPs and FTPs in sequence
and smoothly [24,25]. The constraint equations for the cases of t = 1 can be solved by
polynomial homotopy method to obtain all isolated solution sets.
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2.1.2. The Case of t = 2

When t = 2, Equation (14) are linear equations, and O, O, C, C can be expressed by
using A, B, A, B, which are

O =
P2 −Q2A− T2(P1 −A)

1−Q2
,

O =
P2 −Q2A− T2(P1 −A)

1−Q2
,

C =
P2 − S2B− T2(P1 − B)

1− S2
,

C =
P2 − S2B− T2(P1 − B)

1− S2
. (18)

Substituting Equation (18) into Equations (15) and (16) can eliminate O, O, C and C,
which decreases the number of unknowns to four. Now, A, A, B, B can be obtained by
solving Equations (15) and (16). As there are only four unknowns, the equations system can
be solved using a homotopy method or directly by the command Nsolve in Mathematica
software. After the results of A, A, B, B are obtained, O, O, C, and C can be obtained easily
by solving Equation (18).

2.1.3. The Case of t = 3

For case {t = 3, m = 3, n = 3}, only Equation (14) are applied. As all equations are
linear, the conjugate equations can be omitted. Thus, the constraint equations are

O + Q2(A−O) + T2(P1 −A)− P2 = 0,

C + S2(B− C) + T2(P1 − B)− P2 = 0,

O + Q3(A−O) + T3(P1 −A)− P3 = 0,

C + S3(B− C) + T3(P1 − B)− P3 = 0. (19)

It is easy to solve the equations to obtain the results of O, A, B, C because of the
linear equations.

2.2. Independent Combination

The independence of mixed generation is a task to determine four-bar linkages that
achieve m MTPs and n FTPs without any CTP during the movement, namely t = 0. Here,
we select one of MTPs as the first MTP {P1, θ1}, and one of FTPs as the first FTP {φ1, ψ1}.
In the four-bar linkage, O, C are fixed pivots, and A, B are moving pivots. Thus, we define
the moving pivots at the first MTP as AM, BM, and at the first FTP as AF, BF.

For m MTPs, we have

(Pj −O− Tj(P1 −AM))(Pj −O− Tj(P1 −AM))− (AM −O)(AM −O) = 0,

(Pj − C− Tj(P1 − BM))(Pj − C− Tj(P1 − BM))− (BM − C)(BM − C) = 0,

j = 2, . . . , m. (20)

For n FTPs, we have

(Sk(BF − C)−O + C−Qk(AF −O))(Sk(BF − C)−O + C−Qk(AF −O))

−(BF −AF)(BF −AF) = 0. k = 2, . . . , n. (21)

To decrease the number of unknowns, we establish the relationship between AM, BM
and AF, BF. In a complex plane, a unit vector can represent rotation operation; therefore,
the rotation from the x-axis of the fixed frame to vectors AM − O and BM − C can be
denoted, respectively, as
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QM =
AM −O√

(AM −O)(AM −O)
, SM =

BM − C√
(BM − C)(BM − C)

. (22)

The rotation operations of input link OA and output link BC from the first MTP to
first FTP can be denoted, respectively, as

QMF = QMe−iφ1 , SMF = SMe−iψ1 . (23)

Now, the relationship between AM, BM and AF, BF, and its conjugates are obtained,

AF = QMF(AM −O) + O, BF = SMF(BM − C) + C,

AF = QMF(AM −O) + O, BF = SMF(BM − C) + C. (24)

Substituting Equation (24) into Equation (21) to eliminate AF, BF and AF, AF and obtain

(SkSMF(BM − C)−O + C−QkQMF(AM −O))(SkSMF(BM − C)−O + C

−QkQMF(AM −O))− (SMF(BM − C) + C−QMF(AM −O)−O)(SMF(BM

−C) + C−QMF(AM −O)−O) = 0. k = 2, . . . , n. (25)

The constraint equations for independent combination for mixed generation are
combination of Equations (20) and (25). There are eight unknowns, O, C, O, C, AM, BM,
AM and BM. The feasible independent combinations of MTPs and FTPs are {t = 0, m = 4,
n = 3} and {t = 0, m = 3, n = 5}.

3. Numerical Examples

In this section, we present numerical examples to illustrate the mixed constraint
equations and determine non-defective four-bar linkages. For lack of space, we do not
show numerical examples for all cases of mixed constraint equations. According to the
number of unknowns in the nonlinear equations, we select one for maximum number of
unknowns, the combination of {t = 1, m = 3, n = 5}, and one for minimum number of
unknowns, the combination of {t = 3, m = 3, n = 3}, respectively.

3.1. Example for {t = 1, m = 3, n = 5}
For combination of {t = 1, m = 3, n = 5}, the four-bar linkage achieves 3 MTPs and

5 FTPs with a CTP. We specified the values and order of these positions in Table 2.

Table 2. The prescribed MTPs and FTPs for {t = 1, m = 3, n = 5}.

Order MTPs FTPs

1 {φ2, ψ2} = {223.50◦, 167.73◦}
2 {P2, θ2} = {122.75 + 101.95i, 39.77◦}
3 {φ3, ψ3} = {186.57◦, 146.65◦}
4 {P1, θ1} = {135.34 + 111.79i, 30.34◦} {φ1, ψ1} = {164.20◦, 128.68◦}
5 {φ4, ψ4} = {139.87◦, 106.15◦}
6 {P3, θ3} = {155.55 + 112.96i, 21.70◦}
7 {φ5, ψ5} = {84.02◦, 35.13◦}

In this example, the CTP is the fourth task position that the four-bar linkage passes
through. substituting these values into Equations (15) and (16) to form a polynomial
system with eight equations and eight unknowns. In order to obtain all isolated solution
sets, Bertine [21,26] is applied to solve the polynomial system. To decrease the number of
tracking path, here, we give a group division {{O, C, A, B}, {O, C, A, B}}, and the multi-
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homogenious Bezout number [23,27] is 70. After 70 initial values are tracked, 60 solution
sets are obtained. After checking the conjugates of O, C, A, B and O, C, A, B, 12 solution
sets were remained. Then, filtering those which are defective linkages, a solution set is
obtained which are

O = 131.08 + 65.34i, C = 163.97 + 70.08i,

A = 118.64 + 81.17i, B = 157.88 + 90.23i. (26)

The images of the four-bar linkage moves through each of prescribed task positions of
{t = 1, m = 3, n = 5} smoothly are displayed in Figure 4:

(a) FTP {φ2, ψ2} (b) MTP {P2, θ2} (c) FTP {φ3, ψ3}

(d) CTP (e) FTP {φ4, ψ4} (f) MTP {P3, θ3}

(g) FTP {φ5, ψ5}

Figure 4. The four-bar linkage moves through each of prescribed task positions of {t = 1, m = 3,
n = 5} smoothly.
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3.2. Example for {t = 3, m = 3, n = 3}
For combination of {t = 3, m = 3, n = 3}, the four-bar linkage achieve 3 MTPs and

3 FTPs, and each of MTPs and FTPs are passed through simultaneously. We specified the
values and order of these task positions in Table 3.

Table 3. The prescribed MTPs and FTPs for {t = 3, m = 3, n = 3}.

Order MTPs FTPs

1 {P1, θ1} = {26.22 + 33.73i, 46.16◦} {φ1, ψ1} = {155.98◦, 37.54◦}
2 {P2, θ2} = {33.29 + 34.75i, 31.76◦} {φ2, ψ2} = {128.59◦, 24.00◦}
3 {P3, θ3} = {40.07 + 33.25i, 19.68◦} {φ3, ψ3} = {102.14◦, 9.84◦}

Substituting the values into Equation (19) can obtain a linear system which includes
four equations and four unknowns. The solution set is

O = 29.04 + 14.81i, C = 32.94 + 4.99i,

A = 21.65 + 22.74i, B = 45.04 + 28.41i. (27)

The images of the four-bar linkage move through each of prescribed task positions of
{t = 3, m = 3, n = 3} smoothly are displayed in Figure 5.

(a) CTP 1 (b) CTP 2 (c) CTP 3

Figure 5. The four-bar linkage moves through each of the prescribed task positions of {t = 3, m = 3,
n = 3} smoothly.

4. Conclusions

This paper presents a numerical procedure to synthesize four-bar linkage for mixed
motion generation and function generation. The synthesis procedure is divided into two
categories, dependent combination and independent combination. The feasible combina-
tions are {t = 1, m = 4, n = 3}, {t = 1, m = 3, n = 5}, {t = 2, m = 4, n = 2}, {t = 2, m = 3,
n = 4}, {t = 3, m = 3, n = 3} for dependent combination, and {t = 0, m = 4, n = 3},
{t = 0, m = 3, n = 5} for independent combination. Fully constrained vector loop equa-
tions for each of the feasible combinations are formulated and analyzed in a complex
plane based on separate synthesis of motion and function generation. Numerical examples
are presented to demonstrate the mixed synthesis procedure and determine defect-free
four-bar linkages.
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