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Abstract: Many people live under stressful conditions which has an adverse effect on their health.
Human stress, especially long-term one, can lead to a serious illness. Therefore, monitoring of
human stress influence can be very useful. We can monitor stress in strictly controlled laboratory
conditions, but it is time-consuming and does not capture reactions, on everyday stressors or in
natural environment using wearable sensors, but with limited accuracy. Therefore, we began to
analyze the current state of promising wearable stress-meters and the latest advances in the record
of related physiological variables. Based on these results, we present the concept of an accurate,
reliable and easier to use telemedicine device for long-term monitoring of people in a real life. In our
concept, we ratify with two synchronized devices, one on the finger and the second on the chest.
The results will be obtained from several physiological variables including electrodermal activity,
heart rate and respiration, body temperature, blood pressure and others. All these variables will
be measured using a coherent multi-sensors device. Our goal is to show possibilities and trends
towards the production of new telemedicine equipment and thus, opening the door to a widespread
application of human stress-meters.

Keywords: human stress; multi-sensor; telemedicine; electrodermal activity; monitoring; interdigital
array of electrodes

1. Introduction

The environment in which we live greatly affects how we feel and how our organism
works. Everything around us affects the quality of our lives and health. Nowadays, people
rush and forget about their health, they live unhealthily, they eat poorly and they are
exposed to unnecessary stress [1,2]. In addition, the COVID-19 infection is currently greatly
affecting our health. Many individuals are isolated in a monotonous environment with
fear of infection and without the ability to maintain direct social contacts [3]. All of this can
greatly increase physiological stress, which later may have an impact on the overall health
situation of the population. It is possible that the COVID-19 pandemic will be followed by
an increased incidence of stress-related diseases. Moreover, this isolation and keeping away
from other individuals bring also new requirements for diagnosis in the home environment
without necessity of visiting a doctor. Thus, reliable remote diagnosis could increase
the quality of healthcare and speed up procedures. In the field of telemedicine and the
development of holters with advanced sensors, significant progress has been made in
recent years, and we are reaching a stage where we can move to a higher level in the
provision of healthcare.
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Stress is not an unusual response of the human body and has accompanied life
since its inception. It can even be useful but when it takes a very long time it worsens
an individual’s life and it can lead to illnesses. Short-term stress can arouse and push
a person for better performance [4], while frequent and long-term stress may damage
the organism [5]. An interesting and explanatory comparison can be a parallel with the
computer processor. When we overclock “stress” the processor by increasing the clock
frequency and supply voltage, we get increased computing power, but we have shortened
the life of the processor in the long-term run, because we have pushed it above the allowable
limits. Stress monitoring can be very useful for individuals and for easier communication
with a doctor. People could use a stress-meter to find out how much stress they are exposed
to and try to reduce its negative effects. This would lead to greater well-being and prevent
stress-related illnesses.

Our goal is to consider existing and recent knowledge and transform it into the con-
cept of a new stress-meter, suitable for the use in the home environment. The article itself
is divided into several sections according to individual physiological variables. In each sec-
tion, an up-to-date analysis of the current state and upcoming perspectives are performed.
In this article, we deal only with selected physiological variables that are suitable for the
use of stress measurement by a small wireless monitoring device. Based on these detailed
analyzes, we propose the concept of a new stress-meter at the end of the article.

2. Human Stress Phenomena

Stress in some forms affect people every day and the World Health Organization calls
stress a “21st Century Health Epidemic” [6]. However, what does the word stress really
mean? We can look at it from several angles. In the past, stress was viewed differently
and this word is still used inconsistently between disciplines. Until the 16th century, this
term was used directly for physical injuries. In the 17th century, stress was associated
with sadness, misery, and suffering, while in the 18th and 19th centuries, the word stress
was understood as tension, pressure, and effort due to the development of physics. In the
20th century, the view of stress was significantly influenced by wars, fatigue from fighting
and nervous shocks suffered by soldiers. At the end of the 19th century, on the basis
of significant experiments, the view began to focus on emotions, the homeostasis of the
organism and stress started to be thought of as a burden that causes changes in mental
health and affects a person’s physiology. At the beginning of the 20th century, the response
to short-term stress after the secretion of adrenaline was concretized by Walter Cannon,
who described prepares the organism for a rapid “fight or flight” response, and who made
significant discoveries with respect to internal balance—homeostasis. On the other hand,
Hans Selye known as the “father of stress”, focused on the chronic, long-term stress. He
pointed to the role of the brain and the adrenal cortex in response to stress and identified
several hormones that regulate the stress response. Unlike previous years, he emphasized
the importance of psychological and social factors in inducing a stress response. He gave
the first definition of stress, where it is referred to the mutual action of forces that take place
in any part of the body, physical or mental and which represent a psychophysiological
response of an individual mediated primarily by the autonomic nervous system (ANS) and
the endocrine system [6–9]. Selye also described the “General Adaptation Syndrome” [7,9],
which deals with changes in the body after exposure to stress, arguing that each stressor
factor stimulates the same response in the body. Today, stress can be described as “any
effect of a change in the environment on a living being that results in disruption of the
homeostasis of that living being” [9].

Nowadays, stress is categorized mainly as acute (short-term) and chronic (long-
term) [10–12]. The human body responds differently to various durations of stress stimuli
Acute stress can be for example a job interview, a fine for speed and more. Certainly, acute
stress is unpleasant, but the reaction can be positively influenced by soothing breathing
or rapid physical activity [13–18]. The problem arises when the stress is too intensive,
the stressors accumulate and one cannot get rid of them. Persistent chronic stress may
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have a milder course, but the body is prepared for a stress response long time. Stress
hormones are released and the body does not recover as fast as when it is at rest. This
can lead to more severe physiological manifestations than those of acute stress. People
might feel headaches, insomnia, fatigue, inattention, digestive problems, and memory
impairment can occur [19–26]. Each individual respond to stress differently. Effective stress
management involves the identification and management of both acute and chronic stress.
And it is precisely to be aware of the stress response and subsequent compensation that it
is possible to monitor a person’s physiological condition and change life for the better and
predict disease [27]. While acute stress can stimulate a person to perform better, in chronic
stress performance decreases rapidly. This also applies to stress in the workplace. Not only
a person has physiological manifestations of stress, but also stress is reflected in the results
of work done, loss of productivity, burnout, dissatisfaction with work and others [28–32].
Solving the issue of stress is very important from a human and economic point of view. Ac-
cording to The American Institute of Stress, work stress is a major source of stress for adult
Americans and is on the rise. They reported that approximately 33% of people experience
extreme stress. Stress is responsible for 80% of accidents and 120,000 deaths per year in
the workplace. The Global Organization for Stress reported 75% of Americans and 91%
of Australians exposed to stress. At work, 80% of American and 86% of Chinese workers
experience stress. They are also reported 450,000 workers in Britain with stress-related
illnesses. About half of people exposed to stress are affected by post-traumatic stress
disorder (PTSD) and acute stress disorder. The downside is that it tends to get worse and
no one is completely resistant to stress. An increasing number of people exposed to stress
and the contraindications associated with stress show us that there is a need for equipment
and methodology that would help detect stress and fluctuations in mental health and help
reduce them [19,33–41]. The stress is affecting also the economy, and U.S. employers are
spending health care and working days at $300 billion a year. In Britain, people miss out
on 13.7 million working days a year because of the stress, and it costs them about $37
billion, and in Australia, stress is responsible for the loss of $14.2 billion. Stress in everyday
life and in the workplace is related to anxiety and depression. Statistically, more than
300 million people suffer from depression and, along with anxiety, are the most common
mental disorders. The annual global cost is estimated at $2.5 trillion and is very likely to
increase in the coming years [35–37,39–42].

Stress from the perspective of medicine shows how stressors stimulate the human
body to defend itself. The response to stress affects the whole biological system of the
organism and physiological processes. This is manifested by various symptoms, often
deleterious individual problems such as headaches, gastrointestinal disorders, anxiety,
hypertension, coronary heart disease and depression [43]. It should be mentioned that the
response on stress begins in the same way. During the stress response, the stress hormones
adrenaline and noradrenaline, which are released by the sympathetic nervous system, and
cortisol that is produced after activation of the hypothalamic-pituitary-adrenal axis, are
released [44]. Cells in the body express receptors for stress hormones, so they are easily
provided with information about the stress stimulus. Other factors such as adrenocorti-
cotropin (ACTH), oxytocin and vasopressin, cytokines (interleukin-6 and interleukin-1β)
also play a role in stress. The length and magnitude of action of these factors depend
on the stressor type. Overall, the response to stress is still biologically consistent and
these physiological symptoms are suitable for measurement [16,23,24,45–48]. Autonomic
nervous system (ANS) plays main role in the response to stress, which cannot be con-
trolled by our own will. It consists of sympathetic and parasympathetic systems; whose
balance regulates the physiological degrees of “arousal” in the response to signals from
the environment. The parasympathetic regimen regulates the maintenance of energy and
the renewal of the organism; sympathetic one stimulates increased heart rhythm, blood
pressure, dilated pupils, sweating and other physiological manifestations caused by the
secretion of adrenaline and norepinephrine. These manifestations are visible even under
stress [49], so we focused on the possibility of recording them as well as on the subsequent
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interpretation of a person’s condition [27,50–54]. The primary response to stress triggers a
sympathetic nervous response that regulates the adaptation to the external environment.
The hypothalamus secretes hormones that stimulate the pituitary gland and thus begin
to regulate the stress response. The pituitary gland secretes adrenocorticotropic hormone
(ACTH) into the blood. This hormone helps to balance the intensely regulated stress
response. The amygdala, in turn, regulates emotional processes. Activities in the prefrontal
cortex are temporarily suppressed (planning, attention, problem solving). Adrenaline and
norepinephrine and cortisol are excreted. Serotonin, which regulates mood, especially
depression and anxiety, is also secreted. The hypothalamic-pituitary-adrenal (HPA) axis
enables the communication of three endocrine glands (hypothalamus, pituitary, adrenal
gland), which ensure the stress response, but also digestion, mood, autoimmune system,
energy, sexual cycles [33]. Inflammatory markers eluted approximately 90–120 min after
the onset of acute stress, specifically IL-6, IL-1β and TNF-α. Acute stress induced an
increase in the pro-inflammatory transcription factor NF-κB with the highest amount after
10 min. Chronic stress shows less inflammation, and available studies show elevated levels
of TNF-α and CRP over an observation period of 3 years. Inflammatory cytokines and
CRPs may play a role in increased amounts of secreted cortisol [55].

Also interesting is the connection between stress, CNS, ANS and voice output, which
consists of three stages—breathing, phonation and resonance. Thus, ANS is responsible not
only for the stress response but also for the creation of voice and speech. Even a shaking
voice is our body’s response to stress. The voice can be a very sensitive indicator of a
person’s emotions, attitudes, mental experience, depression, anxiety, tremor or physical
fatigue. Voice quality can be the result of tension throughout the body, which also manifests
itself locally as a specific tension in the external and internal laryngeal muscles [56]. It’s all
about the vocal cords, which in this case affects the ANS. There are currently several
studies that attempt to identify stress patterns of voice using neural networks and machine
learning [57–59]. Some even combine speech signals with electrodermal activity [60]
or use wearable devices with multi-sensors combining audio and physiological sensors
together with deep neural learning networks to monitoring an individual’s well-being in a
naturalistic environment [42,61,62].

In order for stress to begin, an individual has to be first be exposed to a certain
stressor, which initiates a stress response. Anything that forces the body to release stress
hormones can be a stressor and cause stress. Stressors can be divided into psychological
and physiological. Physiological effects on the body include, for example, very high/low
temperatures, injuries, chronic diseases, infection or pain. Psychological (mental) stressors
can be attributed to life situations, negative social communications, conflicts, failure to
satisfy internal drives and others [17,19,63,64]. The division into physical and psychological
stressors is also based on the scientific function of the organism, because these various
stressors activate every other part of the brain, and the trace they leave can be used back
to concretize the stressor [17]. On the other hand, stressors can also be divided into
absolute stressors, which would be evaluated by everyone who is exposed to them as
stress (objective stress factors such as natural disasters) and relative stressors, where we
can include effects that only part of the population would declare as the stress initiators
(subjective stress factors such as time pressure, tax payment, school exam) [11,16,65–68].
However, all stressors activate the same biological response of the body [44]. To determine
the stress to which a person is exposed, the “Social Readjustment Rating Scale” (SRRS) was
released in 1967 [69], but it was not ideal because it offered a very subjective view.

The stress monitoring techniques used today are based on several variables as self-
assessment, measurement of behavior and cognitive functions, and finally on physiological
manifestations. In our study, we focus mainly on physiological manifestations, because
they are an objective manifestation of the organism [28,32,49,70,71].

Stress affect all body system, including muscles, respiratory, cardiovascular, endocrine,
gastrointestinal, nervous, reproductive systems and speech [23]. Therefore, it is possible
to measure these physiological signals of the body, and after combining all the outputs
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together, we can get a correctly determined result of the stress level. In addition, monitoring
people in high-risk occupations where they are exposed to stress on a daily basis or
nowadays people quarantined and without direct social contact due to COVID-19, can
help preserve their health and prevent possible illness. In this way, chronic stress can be
prevented, individuals can protect themselves more effectively and compensate for the time
during which they feel stress. The measured physiological values can also serve experts in
the observation and analysis of psychophysiological changes in the body and on the basis
of the obtained data, diagnostic and therapeutic procedures can be optimized [72–74].

3. Physiological Variables in Stress Measurement
3.1. Electrodermal Activity

Electrodermal activity (EDA) very well reflects the activity of sympathetic ANS [3]
and is insensitive to the parasympathetic system. It is purely a measure of sympathetic
activity. EDA is a technically simple and very popular method for determining the psy-
chophysiological response of the body known since the 19th century [75] and it is widely
used in clinical research and in various cases such as understanding emotional behavior,
the effects of dysregulation, alcoholism, anxiety, autism, ADHD, depression, reactions to
various types of addictions, epilepsy, menopause, pain, phobias, psychiatric counseling,
schizophrenia, sleep monitoring and disorders, fatigue, exercise recovery and sociopathy.
This method is very sensitive, and it can detect even small changes from the external
environment. Moreover, it fits perfectly for stress measurement [49,76–78]. Nowadays,
EDA is used mostly to measure acute stress, however first devices for EDA recording of
chronic stress appear [79].

It has been found that skin becomes a better conductor of electricity for a while after
exposure to external stimuli [2,5,23,80–88]. EDA methodology is based on innervation the
sweat glands in the skin by sympathetic nerves, which control the synthesis of sweat and
its excretion [81,89]. The activity of the sympathetic nerves is mostly sensed by measuring
of the electrical conductivity between two electrodes placed on skin surface of bottom part
of the hands, especially fingers or feet, where most nerves are located [90–93]. Such an
EDA method is called exosomatic. It is obviously preferred method and we will also use it
in proposed concept. Measurements need a direct (DC), commonly used, or an alternating
current (AC) source. DC can provide full EDA signal [94], but electrode polarization can
be a problem [81]. EDA can be measured also passive—endosomatically, where potential
activity is obtained [81,88,93,95–97].

The EDA signal consists of a tonic response (skin conductivity level, SCL) as well
as a rapid phasic changes (skin conductivity reaction, SCR) (Figure 1) and artifacts that
also form a permanent part of the EDA data [98]. SCL represents the basal activity of the
sympathetic system [99,100]. Absolute value of SCL is individual. It should be noted that a
hand-held lumberjack will have a significantly different absolute value of skin conductivity
SCL than a small child. Therefore, we are only interested in variations, changes and the
shape of the curve of this particular person’s signal, because it is already related to long-
term stress. Even in situations where we do not have information about stimuli and we
measure stress for a long time, it is appropriate to use the SCL parameter. Typical SCL is
between 0.5 and 40 µS. The phasic response of SCR reflects changes to a discrete unexpected
stimulus and events [83,101]. For example, the stimulus may be a cognitive and emotional
response that causes activation of brain regions such as the amygdala, hippocampus, basal
ganglia, and prefrontal cortex. Typical SCR occurs between 1 and 3 s after stimuli (SCR lat.
in Figure 1) (rarely 5 s), the rising time (SCR ris.t) is in range 0.5 to 5 s (typical 1 to 3 s) and
the SCR half recovery time (SCR rec.t/2) is between 1 and 10 s. SCR amplitude (SRC amp.)
is normally in range 1 and 5 µS but under high aversive, threatening or fearful stimuli
can reach up to 8 µS. The overall duration of one SCR is between 10 and 20 s, followed
by a return to the tonic level. Typical response frequency is 1–10/min, if we are relaxed,
and can reach 25/min under high arousal. Spectral content of EDA is mostly confined
to 0.05–0.15 Hz. During intensive exercise about 0.37 Hz. Non-specific SCR (NS-SCR)
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response could be also used. Its frequency varies according to the situation from 1–3/min
at rest to more than 20/min in exciting situations and therefore this component could also
be used as an indicator of stress [83,88,92,93,102–104]. Phasic EDA output is used mainly
for short-term measurements with precisely defined stimuli, which is very suitable for
laboratory experiments. But we think that by adding multi-sensors and a comprehensive
analysis of physiological variables, it will be possible to use this component even in an area
where long-term monitoring is necessary.
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Another interesting idea is the use of EDA-recorded emotional patterns to detect
emotions and find abnormalities through machine learning and neural networks. Today,
this expanding industry can add robustness to the classification of human emotions without
additional physiological variables. Emotion recognition can help older or disabled people
become more involved in life, e.g., Active and Assisted Living (AAL) and Driver Assistance
Systems [105].

3.1.1. Optimization of EDA Measurements for Wearable Devices

Electrode optimization, whether by appropriate dimensional adjustment or by the
choice of materials used, is an important process for improving the output signal. Properly
optimized electrodes can also minimize artefacts that interfere recorded signal. In order to
obtain a correct and sufficiently strong signal, we need suitable electrodes which do not
polarize during the transition of the current and which show a minimum bias potential
(between pairs of electrodes) [98]. The quality of the skin-electrode contact is essential but
wearing comfort is important too. Kim et al. [80] produced a soft wearable sleep monitor-
ing system with flexible electrodes produced by nanomaterial printing which obtained
graphene layers. These layers were transferred into a silicone flexible and breathable
tape. This flexible approach also allows suppressing the movement artefacts during sleep.
Another study [106], focused on the design of electronic textile Ag/AgCl electrodes on
cotton, nylon and polyester fabrics brings interesting optimization. Textile electrodes do
not yet achieve the signal strength of ordinary electrodes but they bring an advantage
in the form of air permeability, comfort and invisible EDA monitoring systems (Univer-
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sity of British Columbia, Vancouver, Canada). Also interesting is the idea with the new
GEDIS system (Graz Electro Dermal Impedance measurement System), which measures
and analyses the electrical impedance allocated on 2.5 × 3.5 cm matrix. The matrix consist
of 48 spring-mounted gold-plated beryllium copper electrodes and manages to measure
impedance of the skin at different parts of the human body even continuously for several
hours [107].

Nowadays, all wearable systems measure skin conductivity at a macroscopic level
using relatively large electrodes. That means the electric field is closed perpendicular to
the surface of the skin. The signal passes from the first electrode across all skin layers
into vessels, then through whole length of vessel back to the next skin structures and the
second electrode. The imperfection of this system is the fact that it also records all stress
independent fluctuating parameters that actually occur in the skin and blood vessels. The
resulting EDA signal is thus disturbed by adverse effects [71,108]. Therefore, we began to
investigate whether these fluctuations could be minimized. It was generally assumed that
the increase in skin conductivity during the stress response was caused only by sweating.
Later the existence of a potential barrier near the stratum corneum [109] (Figure 2) and
stratum lucidum [110,111] was found. Dynamic electrical properties of the potential barrier
reflect the fact that it is responsible for trans-epidermal transports—substance exchange,
water transport, thermo-regulation and immunology [112]. The thickness of the barrier
and its properties can vary due to the activity of the sympathetic nervous system and stress
influence [113–115].
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Therefore, we decided to develop a device that would measure EDA only in these
upper layers of skin. For this purpose, interdigital array (IDA) microelectrodes have
been used. We know from the simulations [110,111] that when using symmetrical IDA
microelectrodes, the depth of penetration of the electric field into the skin is approximately
equal to the distance between electrodes. If the distance between electrodes is less than
the thickness of the electrically active skin layers, the lines of the electric field are parallel
to the laminar structures of the epidermal skin. From inner layers of skin, the electric
field intensity lines are embossed to the surface (to the area with a lower conductivity) by
the influence of the potential barrier which is generated by electrical double-layer around
stratum lucidum (Figure 2a). Under a stress stimulus the potential barrier narrows down
and the electric field can reach inner layers of human skin with higher conductivity, and
the total conductivity increases (Figure 2b) [116]. In our research IDA microelectrodes with
utilized dimensions between 100 µm/100 µm and 200 µm/200 µm (finger/gap) were used
for laboratory tests.

We have determined the appropriate amplitude, shape and frequency of the input
signal for selected configuration of EDA microelectrodes. The optimum amplitude of the
input signal should be in the range from 1.5 V to 3 V. The frequency of the input signal is not
so critical, nevertheless a value in the order of ones of kHz has been proved as the optimum.
During the measurements, we also mathematical separated the tonic response (Figure 3a)
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and phasic response (Figure 3b) of the EDA signal. However, as this terminology had not
yet been very well established at the time, parameters G and ∆G can be found in our older
sources [116]. There was one interesting observation found, we sometimes managed to
capture the pulsation of blood in the arteries on variations of the conductivity itself. We
assume that this was caused by mechanical compression of the skin layers and by a change
in the quality of the electrode-to-skin contact.
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In contrast to conventional measurements, we have also enriched some experiments
to measure not only conductivity, but also complex impedance and its dependence on the
source frequency. We observed that the absolute value of the impedance decreases with
increasing frequency of the input signal. Therefore, some compromise between these two
parameters is necessary. An interesting outcome was observed, EDA can also be sensed
accurate by the skin admittance phase, as this parameter significantly reflects the human
skin conductivity changes. A harmonic signal with a frequency around 10 kHz has been
found as the most proper input signal (Figure 4). Unfortunately, there are only few works
available, where the influence of frequency and complex impedance of EDA has been
investigated. We found only one study focused on the signal frequency variations in the
range 0 to 1 kHz using a sensor glove with textile electrodes placed on fingers [96].
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After a period of laboratory testing and several design steps, we finally built a simple
wearable EDA system implemented in the form of a ring with optimized IDA electrodes
placed on the bottom part of finger, where the EDA signal was transmitted directly by



Sensors 2021, 21, 3499 9 of 27

bluetooth (Figure 5). All experience gained through this research has been transferred into
our current concept of an advanced stress meter.
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3.1.2. Electrode Motion Artifacts

Detection of artifacts and noise in EDA signals is required to obtain a quality signal for
analysis. These artifacts need to be minimized and further filtered, smoothed or manually
deleted. Getting rid of artifacts in laboratory conditions is relatively easy. The tested person
is monitored and undesired movement can be easily restricted. With the recent trend of
wearable devices and real-time measurements in the home environment, the demands for
accurate measurement, analysis and automation are increasing [98].

EDA analysis is especial sensitive to motion artifacts that might degrade the measured
signal. This is more visible when using dry electrodes, which we also use in our concept.
On the other hand, dry electrodes are more practice from long-term measurements point
of view and additionally, they do not degrade over time [81]. Several publications deal
with the minimization of motion artifacts with the help of signal filtering and software
applications [90,91,117–119]. For example, the study of Posada-Quintero [81] describes
corrections of artifacts using a stationary wavelet transform and filter transformation of the
curve. In the research works Wavelet-based [120] and extended Kalman filter [90] motion
artifact removal are mentioned. In the already mentioned article by Kim et al. [80] soft
adaptive electrodes were used to solve motion artifacts problem.

However, there are also attempts to suppress motion artifacts in EDA by append
additional component and accelerometers come into consideration first. Today’s availability
and implementation is at a very high level. Although this research, which examined
8 different types of machine learning in the EDA and accelerometer signal database,
suggests only a very low (0.4%) contribution to the resulting EDA signal quality [119].
The disadvantage may be that the employed device Affectiva Q Sensor (Affectiva, Inc.
Waltham, MA, USA) uses two relatively large circular electrodes located at the bottom
of the wrist. Wrist exhibits very irregular movement with any activity of fingers, and
especially the palm. Unwanted blows with the palm of the hand to the device itself are
also very undesirable. In the past, we performed a parallel set of EDA measurements on
the wrist top and bottom [116]. Although we used microelectrodes with the total area
of only about 1.5 cm2, the measurement on the underside of the wrist was good only
if hand movement was completely disabled. Thus, we would certainly test the use of
accelerometers for other hardware and electrode placement configurations. These would
definitely be used at least to determine the time of increased motion artifacts, as some
researchers did with a simple 2-axis accelerometer [121]. Very good results of minimizing
motion artifacts were achieved with differential approach using two sensors in parallel.
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One was placed on the left hand, the other identical on the right and the resulting EDA was
derived [122]. It is also a good idea to compare the palms and distal forearm sites and select
the electrode material by comparing the conductive fabrics with Ag/AgCl electrodes [77].
The addition of a third electrode to endosomatic (potential) EDA measurement [91] or the
use of a piezoelectric sensor to suppress motion artifacts also seems to be very promising.
Although it has been implemented in PPG sensors [123]. The ability to measure the time
between transmitting and receiving an optical radiation would also be a challenge, since
the reflection occurs at the interface of the walls of the bloodstream. Thus, we would be
able to suppress even the biggest error of EDA measurement, and that is the fluctuation of
the pressure between the electrode and the skin.

3.2. Heart Rate, Heart Rate Variability and Electrocardiography

Heart rate (HR) measurement is a common method to determine the physical activity
and condition of the body. The HR reflects the overall activity of the ANS and this activity
changes provides a suitable indicator of the human state and mood. Under stress, the
heart rate is increased [78,124]. Heart rate variability (HRV) is derived from HR. Actually,
it is a measure of the variation in time between each heartbeat [125,126]. By contrast to
EDA, HRV reflects the function of both the sympathetic system and the parasympathetic
systems. The usage of HRV analysis is widespread, not only for medical use, but also
for measuring emotions, thoughts, behavior or feelings. In acute stress, the HRV value
is low, on the contrary, during rest is high. Low HRV value is also associated with the
development of cardiovascular disease and an increased risk of death and it is also linked
to increased arousal, illness anxiety and emotional disorder. High HRV indicates higher
action readiness, and higher resistance to stress and stress recovery and is associated with
higher self-control skills, better stress management skills and greater social skills [127–131].
Acute and chronic stress have negative impact on the heart and thus this fact is manifested
on HR and HRV. Acute stress increase HR and sympathetic activity decrease HRV. Chronic
stress also increases HR [132], while HRV is low [131].

It is generally accepted that the activities of the ANS, are reflected in the low-frequency
(LF: 0.04–0.15 Hz) and high-frequency (HF: 0.15–0.4 Hz) bands of HRV. On the other hand,
not without some controversy, the ratio of the powers in those frequency bands so called
LF-HF ratio (LF/HF), has been used to quantify the degree of sympathovagal balance [133].
The most significant recent work may be considered R. Baevsky, who proposed detailed
the methodology for HRV analysis and special determination of health and psychological
condition for many years [134]. The stress level is determined by the Baevsky stress index
and it is widely used today [135,136]. An interesting view based on more precise levels of
LF and HF, not only their ratio is also mentioned by the authors in [130].

We have also investigated whether the stress manifests itself in any anomalies on the
ECG curve. Demonstrable change in the incidence of atrial fibrillation has been found only
at very high levels of acute stress and anxiety [137,138]. Certain changes are observable also
on the T and P waves [139]. We also have some weakly proven references about changes
in the P wave in choleric patients, and the study of broken heart syndrome [140] is also
interesting. In general, we do not consider ECG curve abnormalities to be significant for
stress-meter development purposes. However, ECG measured with a chest holter is a great
source for HRV analysis, and in general, the ECG holter is still the most important device
in telemedicine. HR itself can be obtained by a very wide range of measurement methods.
Most commonly, it can be obtained from the biopotentials of the heart and using photo
and piezoelectric plethysmography. Our experience include also obtaining HR from SCG
seismocardiography [141] or from minor variations of the EDA itself [116].
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3.3. Circulatory Shock—Temperature and Skin Reflectance

Another important and easily measurable parameter manifesting stress is the body
temperature. Temperature in stress response is controlled by ANS. There is always a change
in temperature during stress, however it does not react as fast as EDA. The body has a high
thermal capacity and thermoregulatory processes require some time, but the thermal sense
represents one of the best characters of state of physical relaxation. Temperature changes
are inflicted due to increased amount of blood flowing in bloodstream by vasodilatation
that causes hyperthermia or even by vasoconstriction and related hypothermia [142,143].
The studies discovered both responses to stress stimuli [144]. The activity of sympathetic
nerves mostly increase temperature [145,146] due to sympathetic control of noradrenaline
secretion [146,147]. Studies describes decreases temperature in the fingers after stressor
stimuli [148] or refer decrease in hypothalamic temperature and ear skin temperature [146].
Acute stress showed short-term drop in skin temperature, because it triggers initial periph-
eral vasoconstriction [149]. Stress have impact to the peripheral and body core temperature.
While peripheral distal skin temperature has tendency of decreasing, core temperature
increases [142,150]. During chronic stress, even the fever can be developed [151]. To sum-
marize, with increasing stress, the core temperature of the human body or partially also face
(which may be also related to emotion expressions) increases [152], while the temperature
of the periphery of the human body (fingers) decreases significantly (a decrease of 13.5 ◦C
was reported) [142,149,153]. The core temperature responds more to the overall physical
and mental activity, while the peripheral temperature reflects the current stimuli [154].

We would venture to compare this behavior of periphery vasoconstriction to the
so-called “circulatory shock”. Circulatory shock is expression of the circulatory failure
and inadequate oxygen level [155]. It does not occur on such a large scale as in the
case of blood loss or hypothermia, but the wisdom of our elders about stress and fear
has a tiny scientific basis: “Blood would not cut in it” or “He turned pale/green with
fear”. So indeed, even during slightest stress or danger, small extent of circulatory shock
occurs. Therefore, we recommend equip the portable stress-meter ideally with at least two
temperature sensors—one for the body core temperature, the other for the peripherals and
possibly another measuring the outside temperature. Partly, they did so in [156], where
they introduced a quantity that depends on the ratio of the temperature of the fingers and
the face. We would rather replace the face temperature with a more suitable core body
temperature measured, for example, on the chest [151].

The technical implementation of temperature measurement is rather simple. We
can use contact sensors such as thermocouples, metal sensors, diodes, double-transistor
measurement, etc. or non-contact optical measurement. When selecting/manufacturing
a sensor, it is important to select the appropriate temperature range so that the sensors
are stable and have the highest possible sensitivity in the human body temperature range.
Perhaps more important than their absolute accuracy will be ability to respond to small
temperature variations. We might also pay attention to the asymmetric ratio temperature
sensors [157].

In the meantime, one can provide experiments with measuring the reflection and
spectral characteristics of the skin. The dermis is heavily permeated with blood vessels
that contain hemoglobin, which has a unique light absorption spectrum with characteristic
absorption bands in the 540–576 nm wave length range. Using optical (light reflectance)
measurements, we were able to monitor the quantity of hemoglobin in top layers of the
human skin. Coherence between the EDA and the reflection of skin in the bottom area
of fingers and wrist (Figure 6) were investigated. The shape of the reflectance curve
roughly copies the shape of the EDA resistivity. This actually confirms the presented theory
of so-called “circulatory shock” due to stress. Due to short-term stress, blood from the
periphery moves to more important internal organs, which causes a drop-in temperature
and reflection in these places.
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To measure the skin reflectance, one has to focus on the wavelengths of hemoglobin
absorption spectrum. It would be interesting to combine a hemoglobin sensor with a
temperature optical sensor with actual reflective pulse-oximeters (PPG), which are present
in almost every smart watch or bracelet today. It may lead to a unique and robust optically
based sensor for the measurement of temperature variation, hemoglobin presence, heart
rate and blood oxygen saturation spO2. The spO2 is measured on basis of hemoglobin
bound to the oxygen and on different wavelengths of light-red (660 nm—deoxygenated
blood) and near-infrared (890 nm—oxygenated blood) [158–161]. In rare cases e.g., (people
suffering from chronic anxiety) a stressful situation can cause respiratory complications and
subsequent depletion of spO2. Oxygen depletion in elite sports can also act as a stressful
factor. However, both of these areas are not our primary focus, so we do not consider spO2
sensing necessary since having fundamental information from respiratory sensing [162].
To summarize, one can conclude that stress is a factor, which have an impact on heart,
circulation and oxygen transfer and could show symptoms of circulatory shock [163–165].

3.4. Respiration

Stress sympathetic activation also affects the respiratory rate (RR). Respiration fre-
quency increase and is less stable during the stress response. We can use this knowledge to
increase reliability of the HRV stress marker [166]. Also high correlation between emotions,
especially anxiety levels and respiratory rate was observed [167]. In this research, the
authors divided the experiment into two phases: mental stress and physical exertion while
analyzing: minute ventilation VE, tidal volume VT, respiratory rate RR, O2 consumption
and CO2 production were analyzed. Unpleasant emotions caused by mental stress altered
the breathing pattern. VE increased in all subjects during mental and physical exertion,
however for subjects with high anxiety, RR increased more than VT. Similar results were
observed also during quiet breathing [168]. It is also known that a person who concentrates
on a certain role breathes shallower and VT is decreased. In [169], the authors investigated
mental stress using multi-variate time-frequency analysis of cardiorespiratory.

A very good overall review about impact of stressors on the contribution of RR, VT
and VE was written by Michael J. Tipton et al. [170]. He claims that ventilation is increase in
response to stress in humans and he also reported it as an increase in VE. Identical VE can be
achieved by a wide variety of changes in the depth VT and number of breaths RR. It seems
that more intense stress leads to an increased VE, which increases more by RR than VT,
disregarding whether this was the case in the lower stress case. Stress-induced ventilation
depends on the nature of the stress, so that metabolic-chemical/chemical stimuli usually
lead to an increase in both RR and VT; and non-metabolic/non-chemical intense stimuli
(thermal, nociceptive, psychological) to increase RR. Exposure to environmental stressors
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is often associated with simultaneous exercise, which may be related to the response of VE
to environmental stress, which is suppressed by physiological manifestations of exercise.
In addition, exercise also gradually increases body temperature, can increase heart rate and
respiratory rate. People can influence the generation of respiratory patterns if they play
wind instruments, talk or swallow. As shown, dependence of respiration on stress is rather
complex, and one must examine also other physiology, so again use a multi-sensor system.
We have to consider that the respiration itself is influenced by the posture, so the use of
IMU sensors is necessary.

As for the measurement of respiration itself, the use of chest straps is rather com-
mon. For our purpose of holter measurement, however, we recommend using impedance
respiration measurement. From the previous experiments, we have experienced that the
results in terms of RR, VT and VE are not only comparable, but in some situations, such as
increased physical activity is their function more reliable [141].

3.5. Blood Pressure

The impact of stress on blood pressure (BP) is involved with a response of the sympa-
thetic nervous system by releasing catecholamines. These hormones temporarily increase
blood pressure by making the heart to beat faster and narrowing blood vessels. The stress-
related increase in blood pressure can be dramatic and are present in short-term peaks.
Such sympathetic responses to acute stress are well documented, but the process by which
stress contributes to a sustained increase in BP over time is not well known. It may be
repeated activation of this system, inability to return to a resting level after stressful events,
failure to become accustomed to repeated stressors, or a combination responsible for the
development of hypertension [171,172]. Stress can cause hypertension by repeatedly rais-
ing blood pressure as well as stimulating the nervous system to produce large amounts
of vasoconstrictive hormones that increase blood pressure [173]. The application of the
classical Riva-Rocci method for measuring the BP and the use of a pressure cuff in the
concept of an advanced stress-meter is out of the question. Fortunately, PPG has been
widely used in recent years to determine cuff-less blood pressure. This principle calculates
systolic and diastolic BP from the PPG curve using dedicated algorithms [174]. Currently,
more and more devices are beginning to appear that measure the approximate blood
pressure by a phase shift between the ECG and the PPG curve [175–178]. We consider this
approach to be suitable for use in the proposed advanced stress-meter.

4. Advanced Wearable Stress-Meters

Current human stress monitoring devices are usually very inaccurate or rely on a
strictly controlled laboratory environment. The concept proposed in this paper is based
on our long-term experience in this scientific field in which we have been operating for
the last 10 years [179]. In this work, we focused on a multi-sensor device, because one
separate sensor is not able to determine whether a person is really exposed to stress. Simply
put, the electrical conductivity of EDA actually only responds to brain activity. Using
memory is less energy-intensive than inventing new things. As an example, a lie detector
can be used. It works on the principle that when person telling the truth, the brain is not so
burdened (EDA drops) as when a person lies, invents and the brain is more congested (EDA
increases). The EDA does not distinguish whether the increase in conductivity actually
occurs due to real stress or only increased physical or mental activity. A single sensor does
not know if the change in finger temperature is caused by stress or the outside temperature.
It does not know if posture affects respiration or HRV. Therefore, a reliable and accurate
stress monitor that includes not only long-term stress but also acute short-term stress must
be multi-sensor. The result must be supplemented by other physiological variables in order
to obtain the most comprehensive view of the overall situation of a subject under test.
Our aim is to create a multi-sensor device for sensing several physiological variables. An
advanced stress meter must be something like a portable lie detector, which also captures
blood pressure, pulse, respiration in addition to skin conductivity.
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4.1. Multi-Sensor Monitors Overview

A large number of scientists have been interested in the idea of using the coherence
of several sensors to determine stress in their laboratories [148,180–182]. For example it
is worth to mention the classifier of negative emotion induced by a visual stimulation
evaluated from EDA, ECG and skin temperature [183], multimodal emotion evaluation
from combination of EDA, ECG and EMG [184], driver anxiety detection using EDA, PPG,
EEG and pupil information [185], identification of cognitive tasks by machine learning
from EDA and HRV [186], evaluating of mental workload during web browsing from EDA,
PPG and EEG [156,187]. Nowadays, the trend is the use of virtual reality [145,188].

In the current scene of wearable devices usable in the diagnosis of human stress, we
have discovered several promising commercially available multi-sensor systems. Smart
health watches are very widespread in the today’s population. Since early 2010s, the
CPU computational power and the overall performance have been high enough to run
sophisticated machine learning algorithms, and such devices are able to derive stress
from HR. Actually, the most popular way to detect stress today is using wrist wearables.
WHOOP’s Recovery metric uses HRV, resting HR, sleep and respiratory rate to determine
the state of recovery after body underwent stressful endurance physical training [189].
Nowadays, smartwatches and trackers from Garmin [190] such as Vivoactive 4, Vivosmart 4,
Fenix 6, from Samsung [191] Galaxy Watch and Galaxy Watch Active 2, from Apple Watch
Series 6 [192], Google Wear smartwatches [193] such as Fossil Gen 5, Fossil Sport, TicWatch
E2 and Skagen Falster 3 and Fitbit products [194,195] such as Charge 4, Versa 3 and Ionic
are worth mentioning devices on the market. An interesting solution from the Fitbit
Company in the Sense product is the possibility to measure also the SCL of EDA after
placing your second hand over the watch thanks multi-path electrical sensor [194]. Using
Fitbit Sense, you can make a mental well-being practice. Clinical studies have shown
that such meditation is very effective in reducing stress [33]. Last but not least, Withings
Scanwatch [196] with medical grade ECG and oximeter and two devices from company
Empatica: Embrace 2 and E4 should be mentioned [197–199]. Both are in the form of
wristband and can stream the following variables in real time: EDA, wrist temperature and
accelerometric signal. E4 is enhanced further by employing a PPG sensor. Embrace 2 was
especially designed for epilepsy monitoring, sleep/rest management and physical activity
tracking. E4 is more suitable for lab or home recording, real-time clinical observation
and raw data analysis. Very interesting is also Samsung health device concept Simband
with Simsense [200], which includes PPG, EDA, skin temperature, 3D accelerometer and
ECG lead. Today’s advances in miniaturization allow us to monitor physiology with
a ring. Perfect example is the Oura health ring, which includes PPG and temperature
sensors together with an accelerometer and a gyroscope encapsulated in an attractive
package [201]. Another very common form of recording human physiology are chest-belts.
A typical representative is, for example, Zephyr Bioharness 3 that includes HR, RR and
accelerometric monitoring [202]. One can also appreciate the design of the non-traditional
Qardiocore chest holter [203] that captures ECG, RR, temperature and activity recognition,
as well as Wearable biosensor from Philips [204], which contains an ECG sensor together
with an accelerometer and a skin temperature sensor. A chapter in themselves are headband
neurotrackers like Neurosky Mindwave [205], Muse 2 EEG [206], and Flowtime [207] that
monitors EEG and helps to reduce stress through meditation. Muse 2 and Flowtime have
also an integrated PPG sensor. Spire Health Tag [208] is also worth mentioning. This
device can be adhered inside clothes and detect heart rate, breathing patterns, and body
movements to assess the emotional and mental well-being of a person. Detailed parameters
of the selected wearable devices suitable for stress-detection can be found in Table 1. Within
some experiments, scientists have developed their own designs. One of these offers stress
detection from portable ECG and EDA, where authors use two channels EDA and ECG
to suppress undesired artifacts [108]. Another example is the activity recognition system
(mental, physical and emotions) based on combination of ECG and respiration sensor, and
EDA gloves [209]. Systems using speech analysis also appear to be very promising for
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stress analysis purposes. These systems can be easily incorporated into modern mobile
phones [210]. In the research of Jin et al. [42], in addition to the speech analysis itself,
they included behavioral signals (3D accelerometer and 3D angle sensor) and propose an
attention-based deep-learning architecture for a more accurate classification of mental state.
Nowadays, there are even systems that perform the analysis of biomarkers from sweat
and saliva directly during sports activities [211]. The current literature summary of stress
assessment using wearable multi-sensors in the natural environment includes: emotion
recognition by neural networks from portable eyetracker and Empatica E4 [212], ANS
research using again E4 but now with ECG and respiration sensors [213], development of
cognitive load tracker using machine learning [109], smart stress reduction system using E4
combined with accelerometers [214], validation of wireless sensors for psychophysiological
studies and stress detection [100,215], prediction of relative physical activity [216], real-
time monitoring of passenger psychological stress [147], classification of calm/distress
condition [217], assessment of mental stress of fighters [218], and others. A comprehensive
overview about pain and stress detection using available wearable sensors was actually
made very recently by Jerry Chen et al. [150]. They mention, stress monitoring using mobile
EEG head set MindWave [219], ECG and EMG DataLOG [220], using a combination of
MindWave EEG (NeuroSky, San Jose, CA, USA), Zephyr BioHarness 3 chest belt (Medtronic,
Boulder, CO, USA), Shimmer Sensor (Shimmer Sensing, Dublin, Ireland) [221] and mobile
sensors suite AutoSense (National Institutes of Health, Bethesda, MD, USA) [222]. Mental
health monitoring using ubiquitous wearable sensors [223] and machine learning [224,225]
has been also described.

4.2. The Proposed Multi-Sensor Concept

Based on the analysis described in the previous sections, we still see points where
current multi-sensor monitoring systems can be improved, and therefore we come up
with our own concept. From practical reasons, the main idea behind the concept is to
divide the stress-meter system into two separate sub-systems (Figure 7). We consider
appropriate to place one sub-system on bottom parts of non-dominant hand, ideally on
fingers (smart-ring) as depicted in Figure 7a. The second part of sensors should be placed
on the chest in the heart area, most probably in the form of a smart sticker or a tiny chest
belt, as depicted in Figure 7b. The keystone lays in the precise time synchronization of
those two sub-systems.
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Let us start with a smart ring illustrated in Figure 7a. The basis component, as in most
other stress detection devices, should be an exosomatic EDA sensor stored in a smart-ring
(Figure 7a). For practical reasons of long-term monitoring, we choose dry electrodes and
harmonic signal. However, instead of conventional macroelectrodes, we recommend using
optimized microelectrodes in the form of symmetrical IDA microelectrodes of dimensions
between 100/100 and 200/200 µm (finger/gap). In this way, we will be able to obtain
the EDA signal from a smaller area and the measure signal will be more tied to nerve
activity and stress. In the first research phases, we would not even ignore the possibility
of measuring the complex impedance at different frequencies. From our experience a
harmonic input signal with the frequency value about 1 kHz and the amplitude between
1.5 and 3 V is recommended. Since dry microelectrodes are intended to be used, there will
be a need to minimize the motion artifacts. Despite the fact that we have high hopes for
software filters, built in circuity as a part of a standard physical sensor is assumed. A simple
accelerometer seems to be the most suitable choice, but using the piezoelectric pressure
sensor we can obtain direct information about the contact force between the electrodes
and the skin. Another essential part of this sensor sub-system must be the optical HR
sensor, where conventional PPG sensor can be used. As confirmed in the previous analysis,
monitoring of blood oxygenation is not necessary, but at the present COVID-19 time, will
certainly not be redundant. The transmittance principle of PPG used on fingers has been
suggested in [226], which is more reliable compared to the reflective principle. The last
sensor in the ring/watch sub-system should be a reliable thermometer, whether it is a
contact thermocouple or an optical one. It should not be a problem to place all these sensors
in a still compact ring of about 1.5 cm thickness. An area of about 2 cm2 is sufficient for EDA
electrodes, LED and photodiode placed opposite each other and the thermal sensor occupy
only a few tens of mm2. The battery and the transmitter are the largest parts. If there is a
requirement for further integration, we have experience with the use of transparent metals
for EDA electrodes [116]. Such a design would allow the placement of optical sensors
directly behind EDA electrodes.

The second multi-sensor sub-system (Figure 7b) should definitely contain an ECG
sensor. The quality of the ECG itself is not important, we are dominantly interested
only in the exact estimate of the R peak in the QRS complex. From this information we
obtain HR and, thanks to the precise synchronization with the first sensor sub-system
and the PPG, also pulse transition time (PTT) which is relative to BP. If the quality of
ECG is high enough, it will definitely not hurt. ECG holters are the most commonly used
telemedicine devices and they can also monitor other cardiovascular parameters that can
more accurately determine the physiological condition. We have good experience with
chips from Texas Instruments (TI 1292R) [227], which also integrate a reliable respiration
impedance sensor, so in this way, the second important physiological parameter—the
respiration could be obtained. Biosignals can be measured using Ag/AgCl adhesive
electrodes with the sufficient mutual distance of 5 cm. Another important sensor is an
IMU sensor (3-axis accelerometer, gyroscope and compass). There are an infinite series
of IMU sensors. Since the IMU sensor will be placed on the chest, the best overview of
posture and physical activity of the body can be extracted. An IMU sensor on your hands
or feet would not be reliable enough. Information on overall human activity will help us
better understand the very important phasic response of the EDA signal. We know that in
some situations, especially with higher physical activity, the signal from the accelerometer
so-called seismocardiographic signal, can replace the ECG signal in determining HR [141].
The last used sensor here is again a body core thermal sensor.

From the all sensors used, the following physiological variables will be obtained:
ECG and chest temperature, HR and finger temperature, EDA, EDA motion artefacts,
respiration, posture and physical activity. Synchronization is now entering the scene. For
sub-systems synchronization and external communication we plan to use Bluetooth Low
Energy. By comparing the temperature of the finger and chest, one can get information
about the heat gradient and so-called “circulating shock” level. From the determination
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of the time shift between the ECG and PPG signals, continuous information about the
blood flow rate will be available, which in our case can be considered as BP. Here is the
key to accurate synchronization. We estimate that an inaccuracy of 5 ms corresponds to
a blood pressure error of 1 mmHg corresponding to the average person when using a
ring. We should try to achieve a sync error of about 1 ms [228]. Additional information
on systolic and diastolic pressure can also be obtained by analyzing the shape of the
PPG curve [124,141,229]. In addition to bluetooth connectivity, the concept can be also
connected via USB. The device will have integrated an internal memory (micro SD card),
real-time clock and battery management circuitry. The battery management is one of
issues to be investigated further. Here, energy harvesting systems generating electrical
energy from ambient environment represent a promising solution towards enhancing the
battery lifetime or avoiding the necessity of battery change that might be very impractical
and inconvenient in some applications [230,231] could be effectively employed to provide
a self-powered (at least partially) electronic system. Detailed parameters of proposed
multi-sensor concept are summarized at the end of Table 1.

Table 1. Technical parameters of selected wearable devices suitable for stress-detection.

Garmin Vivoactive 4 [190]

Sensors: PPG 1, accelerometer, gyroscope, compass, barometer, thermometer, microphone, ambient light, GPS, GLONASS, Galileo
Physiology variables: HR, spO2, stress 2, respiration 2 (meditation), sleep and activity tracking, body battery energy

Connectivity: Bluetooth, Wi-Fi, NFC, ANT+, Waterproof : 5 ATM; Form: Watch

Samsung Galaxy Watch Active 2 [191]

Sensors: PPG 1, ECG 3, accelerometer, gyroscope, compass, barometer, microphone, ambient light, GPS, GLONASS, Galileo, Beidou
Physiology variables: ECG 3, HR, BP 3, stress 2 (meditation), sleep and activity monitoring

Connectivity: Bluetooth, Wi-Fi, NFC; Waterproof : 5 ATM; Form: watch

Google Fossil Gen 5 [193]

Sensors: PPG 1, accelerometer, gyroscope, compass, barometer, microphone, ambient light, GPS
Physiology variables: HR, stress 2 (meditation), sleep and activity monitoring

Connectivity: Bluetooth, Wi-Fi, NFC; Waterproof : 3 ATM; Form: watch

Apple Watch 6 [192]

Sensors: PPG 1, ECG 3, accelerometer, gyroscope, compass, barometer, microphone, ambient light, GPS, GLONASS, Galileo
Physiology variables: ECG 3, HR, spO2, sleep and activity monitoring
Connectivity: Bluetooth, Wi-Fi, NFC; Waterproof : 5 ATM; Form: watch

Withings Scanwatch [196]

Sensors: PPG 1, ECG 3, accelerometer, gyroscope, compass, barometer, ambient light
Physiology variables: ECG 3, HR, spO2 (medical grade), sleep and activity tracking

Connectivity: Bluetooth Low Energy, USB; Waterproof : 5 ATM; Form: watch

Fitbit Sense [195]

Sensors: PPG 1, ECG 3, EDA 3, thermometer, accelerometer, gyroscope, barometer, microphone, ambient light, GPS, GLONASS
Physiology variables: ECG 3, HR, spO2, peripheral temperature, stress (meditation), sleep and activity monitoring

Connectivity: Bluetooth Low Energy, Wi-Fi, NFC; Waterproof : 5 ATM; Form: watch

Samsung Simband [200]

Sensors: PPG 1, ECG 3, EDA, bioimpedance, thermometer, accelerometer
Physiology variables: ECG 3, HR, EDA, bioimpedance (blood flow), peripheral temperature, activity tracking

Connectivity: Bluetooth, USB; Form: watch

Empatica Embrace 2 [199]

Sensors: EDA, temperature, accelerometer, gyroscope
Physiology variables: EDA (clinical grade), peripheral temperature, stress, sleep and activity tracking

Connectivity: Bluetooth Low Energy; Waterproof : 0.1 ATM; Form: wristband
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Table 1. Cont.

Empatica E4 [199]

Sensors: PPG 1, EDA, infrared temperature, accelerometer, event maker
Physiology variables: HR, spO2, EDA, peripheral temperature, activity tracking

Connectivity: Bluetooth Low Energy, USB 2.0, Raw data analysis; Waterproof : 0.1 ATM; Form: wristband

Zephyr Bioharness 3 [202]

Sensors: HR, RR, accelerometer
Physiology variables: HR, RR, activity monitoring

Connectivity: Bluetooth Low Energy; Form: chest-belt

Quardiocore [203]

Sensors: ECG, skin temperature, accelerometer, gyroscope, compass
Physiology variables: ECG, HR, RR, body core temperature, activity tracking

Connectivity: Bluetooth 4.0; Form: chest-belt

Philips Wearable biosensor [204]

Sensors: ECG, skin temperature, accelerometer
Physiology variables: ECG, HR, RR, body core temperature, activity tracking

Connectivity: Bluetooth; Form: chest-belt

Oura health ring [232]

Sensors: PPG 4, accelerometer, gyroscope, NTC thermometer
Physiology variables: HR, RR 2, peripheral temperature, stress (meditation), sleep and activity tracking

Connectivity: Bluetooth Low Energy; Waterproof : 10 ATM; Form: ring

Neurosky MindWave [205]

Sensors: EEG
Physiology variables: EEG

Connectivity: Bluetooth/Bluetooth Low Energy dual mode; Form: headband

Muse 2 EEG [206]

Sensors: EEG, PPG 1, accelerometer, gyroscope
Physiology variables: EEG (emotions), HR, stress (meditation) and activity tracking

Connectivity: Bluetooth 4.2, USB; Form: headband

Flowtime EEG [207]

Sensors: EEG, PPG 1

Physiology variables: EEG, HR, stress tracking (active/neutral/calm)
Connectivity: Bluetooth; Form: headband

Spire Health Tag [208]

Sensors: PPG 1, accelerometer
Physiology variables: HR, RR 2, stress (calm/focus/tension), sleep and activity tracking

Connectivity: Bluetooth; Form: adhered to clothes; Washer and dryer proof
Multi-sensor concept

Sensors: ECG, PPG 4, respiration, EDA (IDA microelectrodes), 2× infrared temperature, 2× accelerometer, gyroscope, compass
Physiology variables: ECG, HR, spO2, EDA, respiration, peripheral and body core temperature (heat gradient), BP (derived from ECG

and PPG), stress, sleep and activity monitoring
Connectivity: Bluetooth Low Energy, USB; Form: ring and chest-belt

1 Reflectance principle. 2 Derived from HRV. 3 On demand—second hand must be placed on device. 4 Transmittance principle.

After designing a device, which is the main development goal in the near future, the
experimental part will follow. The biggest challenge will be to examine the coherence of
all the measured physiological variables during different situations in human life. Some
mutual relations have been already analyzed within the previous analysis, however, skillful
programmers and the use of neural networks and machine learning will be in high demand.
Of course, one cannot avoid laboratory and simulated situations supplemented by standard
psychological tests and stress assessments, whether by standardized questionnaires or by
measuring hormone levels to fine-tune the device.
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5. Conclusions

We live in a world where there are a lot of stressors around us. Everyone is stressed
from something else, but in the end, the body’s reactions and its physiological manifes-
tations are rather the same. These common manifestations can be measured and their
recording determines the body’s response to stress. When a person is better aware of living
under stress, they can recover by physical movement, relaxation or otherwise relieve the
stress. Our goal was to find out what are the latest approaches and systems for measuring
human physiology, and to design a multi-sensor device for measuring acute and chronic
stress. For this purpose, we performed a detailed review of measurements of selected
physiological variables, which we consider appropriate to use in a precise wearable stress
meter and also presented several promising existing wearable devices. Compared to simple
devices, which mostly determine stress based on one or a few variables, we realize that a
reliable device for daily stress monitoring has to consist of a coherent set of sensors in order
to form a wearable lie detector device. The proposed concept will uniquely use multiple
physiological variables and measure these variables using two synchronized sensor blocks
to improve the monitoring quality and interpretation of results. The main benefits of the
proposed concept for average commercial facilities include: the use of IDA microelectrodes
with higher sensitivity for EDA measurement, possibility to examine complex impedance
of EDA, and hardware tracking of motion artifacts. Using the chest sub-system we will get
continuous high quality single channel ECG, respiration derived from chest impedance,
and adequately monitoring of posture and physical activity. In the ring sub-system, we
can apply a more reliable PPG transmittance sensor. Thanks to the synchronization of
the continuous BP signal of both sub-systems and using two temperature sensors, we can
monitor the peripheral skin temperature and the body core temperature at the same time
and to determine the body’s heat gradient. In the concept, we also consider the use of
energy harvesting.

We do believe that this proposal will attract researchers and designers in this field. In
any case, we will develop, implement, verify and optimize the proposed concept in the
near future. Part of our research is also the implementation of the presented techniques
into smart clothing.
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