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Abstract: Blind image deblurring, also known as blind image deconvolution, is a long-standing
challenge in the field of image processing and low-level vision. To restore a clear version of a
severely degraded image, this paper proposes a blind deblurring algorithm based on the sigmoid
function, which constructs novel blind deblurring estimators for both the original image and the
degradation process by exploring the excellent property of sigmoid function and considering image
derivative constraints. Owing to these symmetric and non-linear estimators of low computation
complexity, high-quality images can be obtained by the algorithm. The algorithm is also extended
to image sequences. The sigmoid function enables the proposed algorithm to achieve state-of-the-
art performance in various scenarios, including natural, text, face, and low-illumination images.
Furthermore, the method can be extended naturally to non-uniform deblurring. Quantitative and
qualitative experimental evaluations indicate that the algorithm can remove the blur effect and
improve the image quality of actual and simulated images. Finally, the use of sigmoid function
provides a new approach to algorithm performance optimization in the field of image restoration.

Keywords: image processing; blind deblurring; image deblurring; inverse problem

1. Introduction

Digital images are an important source of information for humans. However, due to
the imaging equipment’s defects (optical aberration, defocusing, etc.) and limitations of
shooting conditions (insufficient light, bad weather, and atmosphere turbulence), images
obtained will be of low visual quality. It is a blind deconvolution problem which calls for
a solution to recover the scene or restore the clear picture from its blurred counterparts
with unknown blur parameters. Blind deconvolution is a well-known, ill-posed problem.
This paper also takes the effects of noise into account. To obtain an image of high visual
quality, it is necessary to strike a balance between resolution and noise suppression. In the
deblurring image discussion, the obtained blurred vision g(x, y) is modeled as the convo-
lution between a clear image o(x, y) and the point spread function (PSF) h(x, y) and the
additive noise n(x, y). The PSF, also known as blur kernel [1], causes image degradation.
In the image restoration literature, image degradation is commonly modeled as follows [2]

g(x, y) = o(x, y) ∗ h(x, y) + n(x, y) (1)

where “*” is the convolution operator, o(x, y) and g(x, y) stand for the given clear image
and its degraded counterpart, respectively, h(x, y) denotes the point spread function
(PSF) representing degradation induced in the spatial domain, and n(x, y) represents the
additive noise.

Image blurring is a significant detriment to the succeeding work, such as object
recognition and object tracking. Therefore, image restoration technology has attracted
extensive attention. Many academics have presented meaningful work. Categorizing by
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problem-solving approach, there are four main types of image restoration method. They
are image restoration algorithms in the spatial domain, image restoration algorithm in the
frequency domain, image modeling and image estimation algorithm, and neural network
algorithm. The most common type of image restoration algorithms is those in the spatial
domain. This algorithm was proposed and used first. The most representative algorithm in
the spatial domain is the regularization method [3]. For an ill-posed problem, the condition
number is considerable. By adding regularization to the loss function, the approach can
use the original image’s priors to reduce the condition number. The approach can obtain
a good result quickly for image restoration algorithms in the frequency domain [4]. The
approach maps the different frequency characteristics of the image according to the flat
region and the edge region. The approach converts the image to the frequency domain
through the transformation model [5,6]. After completing data processing in the frequency
domain, it converts the results to the spatial domain. The filtering method is widely used.
The most typical method is Wiener filtering, which essentially minimizes the mean square
error (MSE). The study of stochastic processes is always a hot topic. Gaussian random field
theory and Markov field theory are well known. They apply Bayesian theory to image
restoration. The most critical probabilistic models are maximum likelihood estimation
(MLE) and maximum a posterior estimation (MAP) [7], by which the image restoration
problem is converted to probability estimation through Bayesian inference. Maximum
Likelihood Estimation algorithm and the Richardson–Lucy algorithm (RL) [8] are the
most representative. A multiplicative iterative approach (MIA) [9,10] was proposed based
on a probabilistic model. MIA [9,10] naturally preserves the non-negative constraint on
the iterative solutions when the initial estimates are non-negative, producing a restored
image of high quality. At present, neural networks are the most popular in computer
vision. An artificial neural network [11,12] is a new method to obtain the loss function’s
minimum value. However, artificial neural networks tend to be more expensive in terms
of computation complexity.

When restoring image sequences, it is usually assumed that the image sequences’
target does not change significantly in a short time. The estimation of adjacent frames
of short exposure sequence is applied to approximate the current frame and to obtain a
better target image estimation. Due to the redundancy of information, image sequences
provide more supplementary information for image recovery. Compared with single image
restoration, image sequences can reduce the meaningless solution and improve restoration
stability. Unfortunately, there are two sides to everything, like a coin. Image sequences
always need more storage memory. Additionally, the need for image information of
adjacent frames leads to more computation.

In this paper, an efficient scheme for blind deblurring is introduced via the sig-
moid function, which was inspired by the multiplicative iterative algorithm (MIA) [9,10].
The MIA, as reported in [9,10], is efficient but limited to weak degradation. To overcome
this drawback and deal with the severe degradation problem, a new form of iteration
strategy is adopted in this work, which employs the sigmoid function, leading to a novel
blind deconvolution algorithm for restoration of seriously degraded and blurred images.

The contributions are as follows. First, this paper proposes an image restoration model
based on the sigmoid function. Intuitively, the latest iteration model can ensure that the
image is non-negative in the iteration process. As a result, it does not need any other
constraints to make the pixel value non-negative. Second, the approach can effectively
restore severely degraded images using the sigmoid function and the information between
sequences. Compared with the classical and the state-of-the-art methods, experiments
show that the new method has a better competitive performance for severely degraded
images. Third, to better evaluate the algorithm’s performance, this paper presents more
experimental results of blind deblurring. The results demonstrate that the new algorithm
can achieve the same level of performance as state-of-the-art methods.
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2. Related Work

In recent years, significant progress has been made in image deblurring [13]. In particular,
using the prior information of the image to deblur has attracted significant attention
from academics. Many contributions reported in the literature are based on maximum a
posterior (MAP) framework and variational Bayesian methods [14–32]. These methods
often involve two steps. In the first step, the blur kernel is estimated by using the obtained
image. The second step is to estimate the latent image according to the estimated blur
kernel through a non-blind deconvolution method [33–36]. Considering that the simplest
MAP method cannot always estimate the blur kernel effectively, it is not easy to obtain a
satisfactory image.

The key to image deblurring is to use the image’s prior information to constrain the
blur kernel and the image. The most widely used prior is gradient sparsity prior [37–40].
However, in reference [18], the authors find that the gradient sparsity prior is often more
friendly to blurred images than to clear images. In reference [14–16,29,41,42], the sharp
edges of the image are constrained in order to alleviate the above shortcomings. However,
it has to be acknowledged that images do not always have sharp edges; for example, many
natural images have unsharp edges. At the same time, some other image priors are also
widely used by scholars. For example, intensity prior [22], normalized sparsity prior [19],
dark channel prior [23], data-driven learned prior [28]. These image priors have also
achieved remarkable results.

With the popularity of deep neural networks, data-driven methods have also achieved
great success [43–48]. In reference [43], Sun et al. adopted a convolutional neural network
(CNN) to remove motion blur. Nah et al. [45] designed a multi-scale convolutional neural
network that can restore the image without estimating the blur kernel. Furthermore,
Kupyn et al. [46] designed a generative adversarial network (GAN) to restore images
end-to-end. Su et al. [47], applied an improved convolutional neural network to video
deblurring. Yang et al. [47] designed a 3D convolutional encoder–decoder network for
video deblurring. The data-driven methods do not always generalize well if the test images
vary or differ from the training dataset.

Having reviewed image restoration progress of the last decade in this section, the
remaining contents of this article are organized as follows. In Section 3, a new blind
deblurring algorithm based on the sigmoid function (BDA-SF for short) is introduced
in detail with practical applications. In Section 4, experimental results are presented
for performance evaluation, which are compared with those of the existing algorithms.
Section 5 provides a summary of this paper.

3. Methods
3.1. Image Restoration Model

Based on the idea of the multiplicative iterative algorithm (MIA), which is efficient but
limited to weak degradation, a novel blind deconvolution algorithm is devised employing
the sigmoid function, i.e., the BDA-SF, for the restoration of seriously degraded images, to
overcome MIA’s limitation. The algorithm has good convergence with simple parameter
selection. The algorithm can avoid the instability of numerical calculation and naturally
meet non-negative constraints. It has been shown that the performance of the least-squares
algorithm is almost insensitive to whether noise is Poissonian or Gaussian [49], and that,
for Poissonian noise, no strong difference exists between the results of the ISRA and those
of the RLA, while for Gaussian noise, the ISRA produces much better results than the
RLA [50]. Here, owing to the robustness of Gaussian noise hypothesis, the likelihood
probability function [51] can be established as

P(g|o, h) = ∏
x,y

1√
2πσ

exp(− [g(x, y)− h(x, y) ∗ o(x, y)]2

2σ2 ) (2)
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The σ2 is the variance in the noise, g(x, y) is the blurred image, o(x, y) is the original
image, and h(x, y) is the point spread function (PSF). The corresponding log-likelihood [51]
multiplied by σ2 is

σ2log[P(g|o, h)] = ∑
x,y

σ2log[
1√
2πσ

]−∑
x,y

[g(x, y)− h(x, y) ∗ o(x, y)]2

2
(3)

J(o, h) = −σ2log[P(g|o, h)]

= ∑
x,y

[g(x, y)− h(x, y) ∗ o(x, y)]2

2
+ C

= ‖g(x, y)− h(x, y) ∗ o(x, y)‖2 + C

(4)

where C is a constant independent of o(x, y) and h(x, y), J(o, h) is the loss function. Basically,
the problem is highly ill-posed, and there are many different solution pairs (o, h) that give
rise to the same g [22]. In order to make the problem well-posed, this paper uses sparsity
prior to constrain the image and the kernel [20]. This paper uses ‖h‖1 instead of ‖h‖2 used
in [20], which works to constrain the kernel to be sharp [17,52].

p(o) = α‖∇o‖0 (5)

p(h) = γ‖h‖1 (6)

p(o, h) = p(o) + p(h) (7)

where α, γ are penalty parameters, “∇” is the gradient operator, L0 norm is modeled by a

numerical approximation function in [53], i.e., ‖∇o‖0 ∼ ‖∇o‖2
2

‖∇o‖2
2+β

, where β is a modulation

parameter (in this paper, β is set to 0.001). The loss function can be written as

J(o, h) = ‖g(x, y)− h(x, y) ∗ o(x, y)‖2 + p(o, h) (8)

Just as the MIA [10], blind deconvolution is to minimize the loss function by obtain
partial derivatives of J(o, h) with respect to o(x, y) and h(x, y), respectively, as follows

∂J(o, h)
∂o

= hc(x, y) ∗ [g(x, y)− h(x, y) ∗ o(x, y)] +∇o p(o, h) (9)

∂J(o, h)
∂h

= oc(x, y) ∗ [g(x, y)− h(x, y) ∗ o(x, y)] +∇h p(o, h) (10)

where the function f c() represents the adjoint function of f (),∇o p(o, h) = −α∇· 2β∇o
‖‖∇o‖2+β‖2

2
,

∇h p(o, h) = −γ∇ · ∇h
‖∇h‖2

. Forcing (9) and (10) to zero, it will arrive at the maximum log-
likelihood equations:

hc(x, y) ∗ [g(x, y)− h(x, y) ∗ o(x, y)] +∇o p(o, h) = 0 (11)

oc(x, y) ∗ [g(x, y)− h(x, y) ∗ o(x, y)] +∇h p(o, h) = 0 (12)

Multiply both sides of (11) and (12) by a positive actual number λ, which is a pa-
rameter used to adjust the convergence rate of the algorithm. When it is large, the
algorithm converges quickly. This paper adopts the sigmoid function to promote the
optimization performance

2Sigmoid(λ1hc(x, y) ∗ [g(x, y)− h(x, y) ∗ o(x, y)] +∇o p(o, h)) = 1 (13)

2Sigmoid(λ2oc(x, y) ∗ [g(x, y)− h(x, y) ∗ o(x, y)] +∇h p(o, h)) = 1 (14)
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Multiply both sides of (13) and (14) by the estimates of o(x, y) and h(x, y), respectively,
to arrive at the final iterative formulae for image restoration.

ok+1(x, y) = 2ok(x, y)Sigmoid(
λ1∂J(ok, hk)

∂ok(x, y)
)

= 2ok(x, y)Sigmoid(λ1hc
k(x, y) ∗ [g(x, y)− hk(x, y) ∗ ok(x, y)] +∇o p(o, p)), λ1 > 0

(15)

hk+1(x, y) = 2hk(x, y)Sigmoid(
λ2∂J(ok, hk)

∂hk(x, y)
)

= 2hk(x, y)Sigmoid(λ2oc
k(x, y) ∗ [g(x, y)− hk(x, y) ∗ ok(x, y)] +∇h p(o, p)), λ2 > 0

(16)

For (15) and (16), this paper initializes o(x, y) and h(x, y) to the matrices of all ones
due to their insufficiency. In this paper, in order to make the result converge and protect
the edge information of the image while removing the noise, Equations (15) and (16) can
be rewritten as

ok+1(x, y) = 2ok(x, y)Sigmoid(λ1hc
k(x, y) ∗ [g(x, y)− hk(x, y) ∗ ok(x, y)∗

(1 + µhSobelV(x, y) ∗ hSobelH(x, y)) ∗ hGaussianLP(x, y)] +∇o p(o, p))
(17)

hk+1(x, y) = 2hk(x, y)Sigmoid(λ2oc
k(x, y) ∗ [g(x, y)− hk(x, y) ∗ ok(x, y)∗

(1 + µhSobelV(x, y) ∗ hSobelH(x, y)) ∗ hGaussianLP(x, y)] +∇h p(o, p))
(18)

The hGaussianLP(x, y) represents the Gaussian low-pass filter; hSobelV(x, y) is the Sobel
vertical edge detector impulse response function; hSobelH(x, y) is the Sobel horizontal edge
detector impulse response function. µ ∈ [0.15, 0.35] is the edge protection factor. This paper
chose a more considerable value when there are many details in the image; otherwise, it
chose a smaller one. λ ∈ [600, 1200] is the coefficient that controls the convergence rate.
When λ takes a considerable value, the convergence speed is fast.

The Sobel vertical edge detector impulse response function, hSobelV(x, y), defined as

hSobelV(x, y) =


sgn(x) i f |y| = 1 and |x| = 1
2sgn(x) i f |y| = 0 and |x| = 1,
0 otherwise

(19)

and the Sobel horizontal edge detector impulse response function, hSobelH(x, y), defined as

hSobelH(x, y) =


sgn(y) i f |x| = 1 and |y| = 1
2sgn(y) i f |x| = 0 and |y| = 1,
0 otherwise

(20)

where sgn(·) denotes the sign function, i.e.,

sgn(x) =


1 f or x > 1
0 f or x = 1,
−1 f or x < 1

(21)

The Gaussian low-pass filter, hGaussianLP(x, y), defined as

hGaussianLP(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (22)

The support size of Gaussian low-pass filter is fixed as 5 × 5, and the standard
deviation σ is set to 0.5–2.0. The range σ is a user parameter, which is related to the noise
level of the input image. When images contains much noise, a large σ is chosen. For
simplicity, drop “(x, y)” in (17) and (18),
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ok+1 = 2okSigmoid(λ1hc
k ∗ [g− hk ∗ ok ∗ (1 + µhSobelV ∗ hSobelH) ∗ hGaussianLP] +∇o p(o, h)) (23)

hk+1 = 2hkSigmoid(λ2oc
k ∗ [g− hk ∗ ok ∗ (1 + µhSobelV ∗ hSobelH) ∗ hGaussianLP] +∇h p(o, h)) (24)

Iterating Equations (23) and (24) to alternately estimate the ok(x, y) and hk(x, y),
achieve the maximum of Equation (3) and obtain the best original image estimation. The
main steps of the proposed BDA-SF are shown in the Algorithms 1 and 2.

Algorithm 1 Estimate latent image

Input: Blurred image g, kernel estimation h0, regularization weight α, γ, parameter λ,
iterations J, K;

1: ok ← g, hk ← h0.
2: while iter < K do
3: if iter < J then
4: for iter = 0 : J − 1 do
5: Compute ok+1 via (17) using hk, ok;
6: Compute hk+1 via (18) using hk, ok;
7: end for
8: elseJ < iter < K
9: for iter = 0 : K− 1 do

10: Compute ok+1 via (17) using hk, ok;
11: Compute hk+1 via (18) using hk, ok;
12: end for
13: end if
14: end while
Output: Intermediate latent image o. Blur kernel h.

Algorithm 2 Estimate Blur kernel

Input: Blurred image g, maximum iterations K.
1: while iter < K do
2: Update latent image o via Algorithm 1;
3: Update blur kernel h via (18);
4: end while

Output: Intermediate latent image o. Blur kernel h.

3.2. Sigmoid Function

It is the sigmoid function of the proposed BDA-SF that provides the critical difference
from the MIA which uses the exponential function, and significantly improves the blind
deconvolution performance. For comparison, these two functions are plotted here and
shown in Figure 1. Figure 1a shows the plots of exponential functions with different
coefficients, while Figure 1b shows a cluster of sigmoid functions. Figure 1 shows that the
exponential function is asymmetric. For the negative variable, it changes slowly, while for
the positive variable, it changes steeply. That is to say, the exponential function may fail
to update the estimator and tend towards zero when hc(x, y) ∗ [g(x, y)− h(x, y) ∗ o(x, y)]
is much less than zero. While the hc(x, y) ∗ [g(x, y) − h(x, y) ∗ o(x, y)] is much bigger
than zero, the estimator may overly update, thus incurring an enormous negative value
in the next iteration. We suppose this exponential function phenomenon is why MIA
cannot be applied to severely degraded image blind deconvolution. Conversely, the
sigmoid function is symmetric. It is free from the problems of the exponential function
mentioned above. Further, its saturation property helps it deal with the immense value of
the variable. Therefore, benefiting from these properties of the sigmoid function, this blind
deconvolution algorithm performs well, especially with severely degraded images.
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(a) Exponential function (b) Sigmoid function

Figure 1. Comparison between exponential function and Sigmoid function.

Image Sequence: The image target scene changes little when imaging with a short
exposure (the imaging system tends to have a high frame rate). Therefore, this paper
considers that adjacent frames are similar to the same target image and different point
spread functions (PSF). Figure 2 describes the image degradation process.

It is reasonable to assume that adjacent frames do not change significantly in a short
period [51]. For image degradation by atmosphere turbulence, the displacement of the
target image mainly comes from the degradation caused by turbulence rather than the
target itself changing. Figure 3 simulates the image degradation caused by atmospheric
turbulence. These blur kernels are generated by the random phase screen [54]. The pa-
rameters of the simulated atmosphere turbulence were chosen to create images similar
to images recorded by telescope (D = 1.50 m) through a turbulence of r0 = 0.045–0.055.
The blur nearly occupies 25 × 25 pixels in the 128 × 128 pixels image pane. Similarly, the
assumption that the target image will not change in the short-term is also applicable to
other situations where the imaging frame rate is high, such as removing motion blur.

Figure 2. Image degradation under short exposure conditions.
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Figure 2. Image degradation under short exposure conditions.

It is reasonable to assume that adjacent frames do not change significantly in a short
period [51]. For image degradation by atmosphere turbulence, the displacement of the
target image mainly comes from the degradation caused by turbulence rather than the
target itself is change. Figure 3 simulates the image degradation caused by atmospheric
turbulence. These blur kernels are generated by the random phase screen [54]. The
parameters of the simulated atmosphere turbulence were chosen to create images similar
to images recorded by telescope (D = 1.50 m) through turbulence of r0 = 0.045–0.055. The
blur nearly occupies 25 × 25 pixels in the 128 × 128 pixels image pane. Similarly, the
assumption that the target image will not change in the short term is also applicable to
other situations where the imaging frame rate is high, such as removing motion blur.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3. The image is degraded by the point spread function. (a) is the original image. Resolution is
128*128. Point Spread Functions are shown in (b)-(e). Degraded images corresponding to the (b-e)
are shown in (f)-(i).

The specific process of the algorithm is as follows: The work divides the reconstruction
of the iterative algorithm into two stages. The first stage is to restore the original sequence.
The second stage is the restoration of the remaining sequences. As shown in Figure 4. This
paper assumes that the short exposure image sequence does not change much in a short
period. This paper treat the first five frames of the input image sequence as a sub-sequence
and iterated the frames several times to restore them. (The appropriate number of frames
needs to be selected according to the target scene. When dealing with a single image, set
J=0. The method is suitable for short exposure images with little change in the target ).
BDA-SF gets an average result of the sub-sequence. (Using the average value can prevent
unknown noise interference). BDA-SF uses this result as the initial estimate for subsequent

Figure 3. The image is degraded by the point spread function. (a) is the original image. Resolution is
128 × 128. Point Spread Functions are shown in (b–e). Degraded images corresponding to the (b–e)
are shown in (f–i).

The specific process of the algorithm is as follows: The work divides the reconstruction
of the iterative algorithm into two stages. The first stage is to restore the original sequence.
The second stage is the restoration of the remaining sequences. As shown in Figure 4, this
paper assumes that the short exposure image sequence does not change much in a short
period. This paper treats the first five frames of the input image sequence as a sub-sequence
and iterated the frames several times to restore them. The appropriate number of frames
needs to be selected according to the target scene. When dealing with a single image, set
J = 0. The method is suitable for short exposure images with little change in the target.
BDA-SF obtains an average result of the sub-sequence. Using the average value can prevent
unknown noise interference. BDA-SF uses this result as the initial estimate for subsequent
frames. Next, BDA-SF uses the result of the previous frame as the initial estimate for the
next frame. In this way, BDA-SF can obtain good results with fewer iterations.

Figure 4. Two-step iterative algorithm. The iteration time J is greater than K.

4. Experimental Results and Analysis

First, This paper provides a practical application of the algorithm and analyzes the
convergence of the algorithm. Second, this paper compares the algorithm with traditional
algorithms. Third, this paper compares the algorithm with state-of-the-art methods.

4.1. Performance Evaluation

To evaluate the result of restored images. This paper uses the peak signal-to-noise ratio
(PSNR) [55] and structural similarity (SSIM) [56] to evaluate the effect of image restoration.
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PSNR is the peak value of the signal to noise in the images. The equation is shown below

PSNR = 10log10
MAX2

o

||ô− o||22
(25)

where o is the latent image. ô is the restored image. MAXo is the maximum value of the
image o.

SSIM is used to evaluate the degree of similarity of geometric structure information of
the restored image and the latent image. The equation is as below

SSIM =
(2µoµô + C1)(2σoô + C2)

(µ2
o + µ2

ô + C1)(σ2
o + σ2

ô + C2)
(26)

where µo, µô denote the means of o, ô, respectively. σo, σô denote variances of o, ô, respec-
tively. σoô is the image covariance.

4.2. Convergence Property

Figure 5 shows the frames from one video sequence of a flying plane. This paper
converts the frames in the video sequence to 256 grayscale for convenience and sheared the
images to 256 × 256 pixels. Figure 5a is the initial frame. This paper sets the parameters as
µ = 0.25, λ1 = 800, λ2 = 1000, α = 0.04, γ = 2. Through 200 iterations of the algorithm,
we obtain Figure 5d. At this time, the picture quality was not improved significantly. The
goal of this step is to obtain an initial estimate. Figure 5b is the 20th frame of the sequence.
BDA-SF iterates Figure 5e 40 times to get Figure 5b. At this point, we can vaguely see
numbers on the fuselage of the plane. The picture quality has improved to some extent.
Figure 5c is the 40th frame of the video sequence. Restoring Figure 5c obtains Figure 5f.
The picture quality was greatly improved. We can see the number “126” on the fuselage.
With the deepening of iteration, BDA-SF can restore the image sequence efficiently. The
most time-consuming part of the algorithm is the Fourier transform. The complexity of the
algorithm is O(nlogn). The simulations are carried out on Windows 10 with an Intel Core
i5-7200U CPU at 2.7 GHz with 12 GB RAM. The algorithm takes about 0.04 s per iteration
to process the 256 × 256 image. Using the previous frame as the initial estimate can save
many iterative steps and improve the algorithm’s efficiency.
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(µ2
o + µ2

ô + C1)(σ2
o + σ2

ô + C2)
(26)

where µo, µô denote the means of o, ô, respectively. σo, σô denote variances of o, ô, respec-
tively. σoô is the image covariance.

4.2. Convergence Property
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as µ = 0.25, λ1 = 800, λ2 = 1000, α = 0.04, γ = 2. By 200 iterations of the algorithm, we
obtain Figure 5d. At this time, the picture quality did not improve significantly. The goal
of this step is to get an initial estimate. Figure 5b is the 20th frame of the sequence. BDA-SF
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40th frame of the video sequence. Restoring Figure 5c obtain Figure 5f. The picture quality
was greatly improved. We can see the number “126” on the fuselage. With the deepening
of iteration, BDA-SF can restore the image sequence efficiently. The most time-consuming
part of the algorithm is the Fourier transform. The complexity of the algorithm is O(nlogn).
The simulations are carried out on Windows 10 with an Intel Core i5-7200U CPU at 2.7 GHz
with 12 GB RAM. The algorithm takes about 0.04 s per iteration to process the 256 × 256
image. Using the previous frame as the initial estimate can save many iterative steps and
improve the algorithm’s efficiency.
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Figure 5. Frames in a video sequence.

Figure 6 shows the iterative curve. The horizontal axis represents the number of
iteration, and the vertical axis is the residual. The black line is a direct iterative algorithm.
The curve marked by a red star represents the first stage of the algorithm. The first stage
of restoration did not arrive at the optimal point, but it does not matter; all we need is

Figure 5. Frames in a video sequence.
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Figure 6 shows the iterative curve. The horizontal axis represents the number of
iteration, and the vertical axis is the residual. The black line is a direct iterative algorithm.
The curve marked by a red star represents the first stage of the algorithm. The first stage
of restoration did not arrive at the optimal point, but this does not matter; all we need is
an initial estimate. The next step needs a few iterations, and the green line represents the
second step of the algorithm. BDA-SF can achieve convergence with only a few iterations—
no more than 20. Although the first step requires lots of iterations, it reduces the number of
iterations needed for later work.

To better show the convergence of the algorithm. This paper randomly selects four-
pixel points in Figure 5f and investigates the change in their pixel values with the number
of iterations. At the same time, this paper also obtains the residual curve of the image.
Figure 7 shows the variation in pixel values and residual. Figure 7a shows the pixel values
with the number of iterations; Figure 7b is the residual curve of the image.

Figure 6. Iterations curve.

(a) (b)

Figure 7. Pixel value curve and residual curve. The horizontal direction represents the number of
iterations. The vertical direction represents the pixel value.

4.3. Compared with Traditional Methods

It can be seen from Figure 8 that the proposed algorithm can protect the edge details
of the image while removing the blur. BDA-SF restores and extends the spectrum, and the
image quality is improved. The algorithm achieves high-resolution restoration.
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(a) Input (b) MIA [9] (c) Wiener-IBD (d) BDA-SF

(e) (f) (g) (h)

Figure 8. The proposed algorithm is compared with other general algorithms. (a) an actual blurred image. (b) Multiplicative
iterative algorithm. (c) Wiener-IBD. (d) the proposed BDA-SF. (e–h) are the corresponding spectra.

Another example: This paper restores the tower from an actual video. Figure 9a–c
are the blurred images and Figure 9d–f are the restored images. Figure 9 shows that the
texture information obtained is abundant. Even the lines on the top of the tower are clear.

Sensors 2021, 1, 0 11 of 22

(a) Input (b) MIA [9] (c) Wiener-IBD (d) BDA-SF

(e) (f) (g) (h)

Figure 8. The proposed algorithm is comparing with other general algorithms. (a) an actual blurred
image. (b) Multiplicative iterative algorithm. (c) Wiener-IBD. (d) the proposed BDA-SF. (e–h) are the
corresponding spectra.

Another example: This paper restores the tower from an actual video. From Figure 9,
The texture information obtained is abundant. Even the lines on the top of the tower are
clear.

(a) (b) (c)

(d) (e) (f)

Figure 9. The tower in the actual video.

4.4. Compared with State-of-the-art Methods

To better evaluate the algorithm. This paper selects severely degraded images from
the public dataset [18], which contains four images and eight kernels. Figure 10 shows
the comparison between the proposed algorithm and other iterative algorithms based on
MAP estimates. Algorithms involved in the comparison are Krishnan et al. [19], Xu et al.
[20], Pan et al. [22], Yan et al. [27], Jin et al. [31], Bai et al. [32]. This paper uses evaluation

Figure 9. The tower in the actual video.

4.4. Compared with State-of-the-Art Methods

To better evaluate the algorithm. This paper selects severely degraded images from
the public dataset [18], which contains four images and eight kernels. Figure 10 shows the
comparison between the proposed algorithm and other iterative algorithms based on MAP
estimates. Algorithms involved in the comparison are Krishnan et al. [19], Xu et al. [20],
Pan et al. [22], Yan et al. [27], Jin et al. [31], Bai et al. [32]. This paper uses evaluation
indexes PSNR and SSIM to evaluate the image quality. Table 1 provides a quantitative
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evaluation of Figure 10. Table 1 shows that the image restored by the method has the
highest PSNR and SSIM. [19] has the best visual effect, but it is too sharp compared to the
original image, resulting in poor evaluation. This paper also shows the error ratios for
various algorithms in Figure 11. Figure 11 shows that BDA-SF can achieve 100% success at
an error ratio of 2.

(a) Input (b) Krishnan et al. [19] (c) Xu et al. [20] (d) Pan et al. [22]

(e) Yan et al. [27] (f) Jin et al. [31] (g) Bai et al. [32] (h) BDA-SF

Figure 10. Deblurred results from the dataset [18]. The PSNR and SSIM values are shown in Table 1. BDA-SF has the highest
PSNR and SSIM. (Best viewed on high-resolution display with zoom-in).

Table 1. Quantitative evaluations on the image from Figure 10.

Methods PSNR SSIM

Krishnan et al. [19] 21.2398 0.7588
Xu et al. [20] 20.8402 0.6921
Pan et al. [22] 19.2688 0.6089
Yan et al. [27] 24.2150 0.7683
Jin et al. [31] 23.8377 0.7542
Bai et al. [32] 26.4120 0.8174

BDA-SF 27.2434 0.8859

Figure 11. Comparisons in terms of cumulative error ratio.
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Figure 12 is from the dataset by Kohler et al. [57] containing four images and twelve
kernels. This paper chooses a severely degraded image from the dataset. The compared
algorithms include Xu et al. [15], Krishnan et al. [19], Whyte et al. [30], Xu et al. [20], Pan
et al. [23], Pan et al. [22], Yan et al. [27], Jin et al. [31], Bai et al. [32]. Table 2 provides a
quantitative evaluation of Figure 12. Figure 13 investigates the effectiveness of the sigmoid
function. The results demonstrate that the sigmoid function gives rise to significant SSIM
(Figure 13b) and PSNR (Figure 13a) improvement. Figure 14 presents the PSNR results
of the compared algorithms. Figure 14 shows that BDA-SF can achieve a state-of-the-art
performance. It can be inferred from Figures 12 and 14 that BDA-SF can achieve comparable
visual results compared with the state-of-the-art methods [22,27]. Reference [27] is slightly
superior to BDA-SF in PSNR and SSIM. Figure 12 is a dark scene with lights, reference [27]
used the dark channel and the bright channel at the same time, so [27] achieved the best
results. However, reference [27] has poor robustness and may perform poorly on other
images, such as Figure 15e.

(a) Ground truth (b) Input (c) Xu et al. [15] (d) Krishnan et al. [19]

(e) Whyte et al. [30] (f) Xu et al. [20] (g) Pan et al. [22] (h) Pan et al. [23]

(i) Yan et al. [27] (j) Jin et al. [31] (k) Bai et al. [32] (l) BDA-SF

Figure 12. Deblurred results from the dataset [57]. The PSNR and SSIM values are shown in Table 2. BDA-SF has the
second highest PSNR and SSIM. The deblurred image estimated by BDA-SF is visually more pleasing. (Best viewed on
high-resolution display with zoom-in).
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Table 2. Quantitative evaluations on the image from Figure 12.

Methods PSNR SSIM

Xu et al. [15] 19.0964 0.6987
Krishnan et al. [19] 21.9974 0.8330

Whyte et al. [30] 20.6246 0.8254
Xu et al. [20] 21.8491 0.8373
Pan et al. [22] 21.7723 0.8250
Pan et al. [23] 23.9403 0.8047
Yan et al. [27] 25.5430 0.8507
Jin et al. [31] 22.0974 0.8376
Bai et al. [32] 22.0311 0.8401

BDA-SF 25.0137 0.8413
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Besides, this paper evaluates the method on natural, face, text, and low-illumination
images. This paper also reports results on images with non-uniform blur. This paper
provides typical results for each class. Finally, this paper also compares the running time of
different algorithms.

Natural image: The natural images are from the dataset [57]. Figure 15 presents a
visual comparison. The algorithm achieves competitive results against the method [23].
Furthermore, The method has a better visual result on textures for the local details than
other state-of-the-art methods.

Face image: Face image deblurring is a challenge for algorithms designed for natural
images. The lack of textures and edges in face images makes kernel estimation challenging.
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Figure 14. Quantitative evaluation results on the dataset [57].

This paper evaluates the method on natural, face, text, and low-illumination images.
This paper also reports results on images with non-uniform blur. This paper provides
typical results for each class. Finally, this paper also compares the running time of different
algorithms.

Natural image: The natural images are from the dataset [57]. Figure 15 presents a
visual comparison. The algorithm achieves competitive results against the method [23].
Furthermore, The method has a better visual result on textures for the local details than
other state-of-the-art methods.

Face image: Face image deblurring is a challenge for algorithms designed for natural
images. The lack of textures and edges in face images makes kernel estimation challenging.
It can be inferred from Figure 16 that the method can achieve comparable visual results to
other methods [23,27].
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Text image: Figure 17 illustrated the results of the state-of-the-art methods on a text
image. The algorithm can achieve a superior performance compared with existing methods.
Visually, BDA-SF shows better texture features compared with the method [23]. While
methods [19,20,31] produce heavy ringing artifacts, BDA-SF achieves more explicit images.

Low-illumination image: It is particularly challenging for most deblurring methods
to deal with the low-illumination images because low-illumination images often have
saturated pixels that interfere with kernel estimation. Figure 18 shows the results of the
state-of-the-art methods on a low-illumination image. As a result, the method achieves a
comparable result with the method [21], designed explicitly for low-illumination images.

Non-uniform deblurring: This paper applies the method to non-uniform blur. Figure 19
presents the results on images degraded by spatially variant blur. It can be inferred from
Figure 19 that BDA-SF can give comparable visual results to the state-of-the-art non-
uniform deblurring method [20,30]. Figure 20 shows the results and their corresponding
intermediate results. With the sigmoid function, the results contain more sharp edges and
texture features.

Computation complexity: This paper compares the computation complexity of BDA-
SF with existing state-of-the-art methods [19,20,23,27,31]. The simulations are carried out
on Windows 10 with an Intel Core i5-7200U CPU at 2.7 GHz with 12 GB RAM. The natural
image size is 280 × 325; face image size is 284 × 365; text image size is 1097 × 1094;
low-illumination image size is 800 × 533. The runtime of the non-blind deblurring step
includes the total time. Among the methods, it can be seen from Table 3 that the method
developed by Krishnan et al. [19] is the fastest. However, its results are inferior to BDA-SF,
as illustrated above. BDA-SF is slower than the method [23]. BDA-SF is twice as fast as the
method [31].

(a) Input (b) Krishnan et al. [19] (c) Xu et al. [20] (d) Pan et al. [23]

(e) Yan et al. [27] (f) Jin et al. [31] (g) BDA-SF without Sigmoid (h) BDA-SF

Figure 15. Visual comparison on a real natural image. BDA-SF achieves finer edges and details, as is shown in red boxes.
(Best viewed on high-resolution display with zoom-in).
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(a) Input (b) Krishnan et al. [19] (c) Xu et al. [20] (d) Pan et al. [23]

(e) Yan et al. [27] (f) Jin et al. [31] (g) BDA-SF without Sigmoid (h) BDA-SF

Figure 16. Visual comparison on a face image. BDA-SF achieves comparable visual results with method [23,27,31]. (Best
viewed on high-resolution display with zoom-in).

(a) Input (b) Krishnan et al. [19] (c) Xu et al. [20] (d) Pan et al. [23]

(e) Yan et al. [27] (f) Jin et al. [31] (g) BDA-SF without Sigmoid (h) BDA-SF

Figure 17. Visual comparison on a text image. BDA-SF achieves comparable visual results with method [23,27]. (Best
viewed on high-resolution display with zoom-in).
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(a) Input (b) Krishnan et al. [19] (c) Xu et al. [20]

(d) Hu et al. [21] (e) Pan et al. [23] (f) Yan et al. [27]

(g) Jin et al. [31] (h) BDA-SF without Sigmoid (i) BDA-SF

Figure 18. Visual comparison on a low-illumination image. BDA-SF achieves comparable visual
results with method [21] which is specifically designed for low-illumination images. (Best viewed on
high-resolution display with zoom-in).

(a) Input (b) Krishnan et al. [19] (c) Whyte et al. [30] (d) Xu et al. [20]

(e) Pan et al. [23] (f) Yan et al. [27] (g) BDA-SF (h) kernels

Figure 19. Visual comparison on images with non-uniform blur. Kernels are resized for visualiza-
tion. BDA-SF is visually comparable to methods [20]. Method [23] contains ringing artifacts and
residual blurs.
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(a) Intermediate result of Pan et al. [23]

(b) Intermediate result of Yan et al. [27]

(c) Intermediate result of BDA-SF without Sigmoid

(d) Intermediate result of BDA-SF with Sigmoid

Figure 20. Deblurred results and its corresponding intermediate results over iterations. With the
Sigmoid function, the proposed BDA-SF achieves intermediate results containing more sharp edges.
The use of the Sigmoid function makes the results contain sharper edges and texture features.

Table 3. Runtime (in seconds) of different methods. The code is implemented in MATLAB.

Methods 280 × 325 284 × 365 1097 × 1094 800 × 533

Krishnan et al. [19] 20.41 23.71 156.40 74.37
Xu et al. [20] 226.51 468.56 4033.79 1655.50
Pan et al. [23] 319.34 295.60 4078.68 1201.16
Yan et al. [27] 47.99 46.50 1077.90 294.89
Jin et al. [31] 561.12 620.04 14187.65 2814.74

BDA-SF 255.45 249.95 3115.04 1075.10

4.5. Effectiveness of BDA-SF

BDA-SF is based on sigmoid function, which constructs novel blind deconvolution
estimators for both original image and degradation process. Figures 5 and 9 are applications
of BDA-SF. Figure 8 demonstrates that BDA-SF can protect the edge details concerning the
Sobel filter (µ = 0.25).

To better evaluate the effectiveness of the sigmoid function, this paper selects severely
degraded images from public datasets [18,57]. Methods involved in the comparison are
Xu et al. [15], Krishnan et al. [19], Whyte et al. [30], Xu et al. [20], Pan et al. [23],
Pan et al. [22], Yan et al. [27], Jin et al. [31], Bai et al. [32]. Figures 11 and 12 show
the results. This paper uses evaluation indexes PSNR and SSIM to evaluate the image
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quality. Tables 1 and 2 demonstrate that BDA-SF using sigmoid function can achieve a
state-of-the-art performance on severely degraded images.

This paper evaluates the method on natural, face, text, and low-illumination images.
To better evaluate the effectiveness of the sigmoid function, ablation experiments were
performed. As is shown in Figures 15–18, the images recovered using sigmoid function are
more visually pleasing. Figure 19 shows that BDA-SF using sigmoid function generates
intermediate results with more sharp edges. All the results demonstrate the effectiveness
of the sigmoid function.

4.6. Limitation

This paper establishes the likelihood function assuming that the noise obeys Gaussian
distribution. When the image has significant non-Gaussian noise, the algorithm cannot
achieve satisfactory results. Figure 21 shows an example of the method dealing with
images degraded by salt and pepper noise. As shown in Figure 21, the method will not
work well when dealing with images degraded by non-Gaussian noise. Another drawback
of the method is that the running speed is not fast enough. Table 3 demonstrates that
the algorithm is slower than [19,27]. In the future, we will consider the effects of various
noises (such as salt and pepper noise). We will also consider extending the algorithm to
video deblurring.

(a) Input image with salt and pepper noise (b) Deblurring result of the proposed BDA-SF

Figure 21. Limitation of the proposed model.

5. Conclusions

This paper proposes a new iterative algorithm based on the sigmoid function for
image restoration. The algorithm can naturally maintain the non-negative constraint of
the solution during the restoration process. The algorithm can effectively enhance the
high frequency spectrum and achieve high-resolution restoration, even when images are
severely degraded. Since all operations in the algorithm are multiplication operations,
the method can avoid the instability of numerical calculations. The approach has added
a low pass filter and edge-preserving process to the iteration formulae, to protect the
image’s edges while removing noise sufficiently. For the image sequence, the method
uses inter-frame information, from which satisfactory results can be obtained with fewer
iterations. Extensive experiments demonstrate that the method achieves a state-of-the-art
performance for both natural images and images acquired under specific scenarios. It is
expected that the success of deploying the sigmoid function in construction of the blind
deblurring algorithm will motivate further research in the field of image restoration.
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