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Abstract: Falls among the elderly population cause detrimental physical, mental, financial problems
and, in the worst case, death. The increasing number of people entering the higher risk age-range has
increased clinicians’ attention to intervene. Clinical tools, e.g., the Timed Up and Go (TUG) test, have
been created for aiding clinicians in fall-risk assessment. Often simple to evaluate, these assessments
are subject to a clinician’s judgment. Wearable sensor data with machine learning algorithms were
introduced as an alternative to precisely quantify ambulatory kinematics and predict prospective
falls. However, they require a long-term evaluation of large samples of subjects’ locomotion and
complex feature engineering of sensor kinematics. Therefore, it is critical to build an objective fall-risk
detection model that can efficiently measure biometric risk factors with minimal costs. We built and
studied a sensor data-driven convolutional neural network model to predict older adults’ fall-risk
status with relatively high sensitivity to geriatrician’s expert assessment. The sample in this study
is representative of older patients with multiple co-morbidity seen in daily medical practice. Three
non-intrusive wearable sensors were used to measure participants’ gait kinematics during the TUG
test. This data collection ensured convenient capture of various gait impairment aspects at different
body locations.

Keywords: fall-risk detection; wearable shoe sensors; timed-up-and-go test; convolutional neu-
ral networks

1. Introduction

Falls are common in the older adult population, causing serious injuries [1]. U.S.
Centers for Disease Control (CDC) statistics [2] show that the risk of death due to a fall
begins to soar starting at the age of 65, with 27% of adults in the age range of 65–74
reporting one or more falls, increasing to 30% in those aged 75–84, and 37% of those
85 and older [3]. Additionally, the size of the population entering the higher fall-risk
age is exponentially increasing [4]. Common injuries related to falls include hip and
other bone fractures [5,6], as well as head injuries [6,7]. The injuries sustained from falls
lead to emergency care treatment and hospitalizations [8]. Those who suffer a fall are
further impacted by mental trauma [7], including fear of future falls, feelings of loss of
independence, increased social isolation, and depression [1]. In addition to the suffering
experienced by the individual involved in a fall, caregivers of that individual also face
burden, increased fear, and stress [9,10]. Therefore, it is critical to recognize when an older
adult has an increased risk of being involved in a fall in order to implement appropriate
preventive measures to mitigate the risk.

A fall occurs when a person loses balance or consciousness caused by an outside
trigger, a physical impairment, malnutrition, medication, or disease [11,12]. Fall risk factors
are generally divided into intrinsic/physiological attributes and extrinsic/environmental
risks [11]. Recognizing the presence of these risks through assessment is crucial in the
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prevention of future falls. Interventions include environmental alterations, gait and balance
training, physical therapy, stopping or substituting different medications, etc. [13].

Some clinical tests such as the Four Square Step Test (FSST) [14], the Timed Up and
Go (TUG) test [15], Functional Reach Test (FRT) [16], Step Test [17], and Berg Balance Scale
(BBS) [18] have been designed to not only screen the balance, strength, stepping and gait of
the older adult population but also to quantify functional mobility and analyze fall risk
factors. Appendix A Table A1 provides an overview of each of these clinical tests. These
assessments are accepted measures to evaluate different aspects of balance and mobility in
the elderly population [14]. However, all of these measures lack a standardized approach
with concise and straightforward instruction for both patients and providers. In 2013, the
CDC developed the Stopping Elderly Accidents, Deaths and Injuries (STEADI) initiative to
aid clinicians in assessing fall risk [19]. The STEADI initiative uses an algorithm to assess a
patient’s fall risk in a clinical setting by a primary health care provider [19]. This algorithm
accounts for the patient’s history and evaluates gait, strength, and balance, to identify
possible contributing fall risk factors [19,20]. STEADI recommends several functional and
clinical assessments such as the TUG test, 30-Second Chair Stand (30 Sec Stand) test, 4-Stage
Balance test, and measuring orthostatic blood pressure [21,22] to screen for patients’ fall
risk. STEADI also provides guidance on how to conduct the tests, recommends cut-off
points for the measurements that indicate fall risk, and includes a Fall Risk Factors checklist
which is completed by the patient [23].

Table 1 compares the clinical tests in terms of their efficiency in capturing the promi-
nent gait and balance attributes indicative of fall risk. The features represented in Table 1
are the dominant criteria that the clinician considers in rating clinical fall-risk screening
tests. Of the clinical tests mentioned in Table 1, the TUG test represents the most effective
means for a practical fall-risk screening. TUG is the most efficient as far as the time re-
quired and patients’ ability to perform the test, while still evaluating 8 out of the 9 features
thought to be important in assessing falls. The BBS test has a similar benefit to the TUG
test to capture many mobility tasks crucial to detecting fall risk. However, it consists of
14 complex and time-consuming tasks. In contrast, the TUG test requires the patient to
simply stand up from a chair, walk for three meters, turn, walk back to the chair, and sit
down [22]. Thus, the TUG test has been widely adopted as a standard test to study balance
and functional mobility and the associated issues such as falls [24,25].

Table 1. Comparison of functional clinical fall-risk screening tests to find the simplest test with the
most beneficial risk-factor measurement. +/− denotes if a specific criterion is met in a clinical test.
The total row counts the number of existing features for each test.

Features
Clinical Tools

FSST Step Test TUG FRT BBS 4-Stage
Balance

30 Sec
Stand

Time required <a couple of minutes + + + + − + +

Ease of performing − − + + − − −

Measures static stability − − + + + + −

Measures dynamic stability + + + − + − +

Gait motion − − + − − − −

Turning motion − − + − + − −

Sitting and Standing motions − − + − + − +

Reaching forward − − − + + − −

Stepping + + + − − − −

Total 3 3 8 4 5 2 3

Aside from the TUG screening test benefits, there is an evaluation deficiency in all the
screening tests. For each clinical test, a dichotomous value of the quantified measurement
(e.g., the TUG test’s time length) is suggested to determine if the person is at a risk of fall.
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This classification technique dichotomizes a continuous variable with a separation cut-off
point, which could depend on a slight change of the selected cut-off point. Thus, the result-
ing classification using these clinical assessments is highly susceptible to bias. Moreover,
performing and assessing all these tests and gathering all the patients’ medication and fall
history is time-consuming and cumbersome. Overall, these methods are costly and prone
to inaccuracies, relying heavily on patients to provide accurate data or on the clinician’s
best judgment based on what they can see.

Researchers recently have begun using body-worn kinematic sensors to precisely
quantify participant gait and balance attributes during the clinical tests [26–28]. The TUG
test’s efficiency in capturing a wide range of kinematic movements has made it the most
suitable clinical test to use to obtain kinematic sensor data. Body-wearable kinematics
sensors were mounted on the subjects’ bodies to measure gait kinematics during the TUG
test [26,27]. Machine learning techniques were applied to enhance the prediction with a
multi-dimensional feature space of kinematics data.

Greene et al. [26] included a large sample of 349 community-dwelling older adults
for the TUG test’s retrospective fall prediction. The study involved attaching two IMU
wearable sensors to the participants’ anterior shanks. Twenty-nine parameters, including
mean stride time, stance time, and step time, were determined to be statistically significant
features in discriminating previous falls and were included in the fall-risk prediction. Their
cross-validated logistic regression models obtained a mean sensitivity and specificity of
77.3% and 75.9%, respectively, and outperformed both TUG and BBS tests to predict prior
fall incidents. Their contribution to the previous works was using wearable sensors to
accurately measure the TUG test and extracting temporal gait features. However, their
feature engineering could be time-consuming and demanding in terms of lab equipment
and expertise.

Weiss et al. [27] had 41 participants perform the TUG test with a wearable accelerom-
eter attached to their waist. They extracted accelerometer-driven parameters such as
sit-to-stand and stand-to-sit times, amplitude range, average step duration, and gait speed.
Multivariate logistic regression was used to predict the risk of falls, based on the history
of falls, with resulting accuracy, sensitivity, and specificity of 87.7%, 91.3%, and 83.3%,
respectively. Although they could achieve high accuracy, their study included small sample
size and required feature engineering.

Buisseret et al. [28] addressed the feature engineering challenge using a convolutional
neural network (CNN) on raw kinematics signals collected during a clinical 6 min walk
test. The test was performed with an IMU sensor attached to the back of participants in the
L4 lumbar position. They predicted the actual falls during six months after the test with
relatively good accuracy, sensitivity and specificity of 75% and the prediction was improved
compared with the traditional TUG test scores. Although gait and balance kinematics
were measured over a longer period, the 6 min measurement did not include sitting and
standing motions. The 6 min walk only includes walking and some turnarounds, and it
requires the clinician to watch and walk the patient for the entire time.

All previous studies have used the actual falls before or after the gait measurement to
predict fall risk. However, the fact that patients did not experience a fall does not necessarily
indicate that they do not have a gait and balance impairment that might cause a fall. Past
research studies on fall-risk predictions have based their conclusions on results where
most tests were performed on a population that had met multiple inclusion or exclusion
criteria. Their conclusions might not apply to the population typically seen in a primary
care or geriatrics clinic. Additionally, gait feature extraction used in some prior studies
requires domain knowledge of signal processing and gait physics, which is not necessarily
the clinicians’ expertise. Machine learning algorithms such as CNNs can perform data-
driven feature extraction; however, they require a large sample size to produce certain
results. These issues are critical because clinicians look for fall-risk detection techniques
that are simple and affordable in a clinical setting and can be conducted quickly by a
primary doctor.
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Although the prospective fall occurrence can be the best comparator when evaluating
fall-risk assessment tools, acquiring such data requires a larger-scale longitudinal study.
Training the prediction model based on the actual fall incidents for a short-term screening
study could increase the risk of imposing a bias. For example, the individual might have a
high risk of falling, but they have not yet experienced a fall. Conversely, the geriatrician’s
assessment is based on the comprehensive guidelines defined by the CDC, which includes
not only the history of falls but also the patient’s medications, prior diagnoses, and mul-
tiple gait and balance assessments. Often, geriatricians receive a referral from a primary
physician to assess the fall risk of a patient, and they want to know the sensitivity of the
assessment before recommending interventions. The goal is to provide interventions for
people at risk of falls even if they have not yet fallen. Therefore, there is a pressing need
for an efficient and precise data-driven fall-risk detection algorithm that can automate the
cumbersome process of the clinical fall-risk assessment. Achieving this goal is subject to a
comprehensive gait measurement, which is quick and straightforward. Furthermore, it is
critical to evaluate the prediction robustness in recognition of patients with high fall-risk
by evaluating the model’s sensitivity to the choice of a fall-risk probability cut-off point.

This study aims to enhance the geriatrician’s fall-risk screening test of the older adult
population with the minimal and most uncomplicated means of measuring and evaluating
risk factors. The goal is to provide a clinically practical fall-risk detection with comparable
sensitivity to the geriatrician’s assessment that can be considered a replacement for the
clinician’s time and effort. Fall-risk classification is performed only using the kinematic
sensor data of the TUG test. While the TUG test is conducted on a subject as part of the
STEADI recommendations, the subject’s gait acceleration and angular velocity signals are
extracted using three IMU sensors mounted at three different locations on the body. This
data collection is cheaper and more comfortable than long-term gait evaluation and results
in less effort and stress for both patients and clinicians. A CNN algorithm predicts the
risk of fall using the entire sensor signals; instead of deciding based on only one single
variable, which depends on the choice of a cut-off point, the CNN model analyzes the
comprehensive kinematics feature space. CNNs have the already built-in feature extraction
process, which helps to digest the complex gait features. Eventually, our approach aims to
help clinicians detect fall risk without going through the demanding process of applying
the CDC protocols to evaluate patients’ intrinsic fall risk factors.

The contribution of the current work can be summarized as follows:

1. The geriatrician’s fall-risk assessment is facilitated by combining an affordable and
convenient way of measuring patients’ gait and balance. This inexpensive method
can provide performance comparable to the human clinician’s assessment.

2. This is the first paper to compare a prediction model with a geriatrician’s assessment
of fall risk, which synthesizes information on fall risk factors (medical health status,
gait impairments, and fall history), rather than only relying on the fall incidents,
which can increase the error of false negatives.

3. Sensor location was navigated to guarantee data acquisition from three important
body points that we consider relevant to fall-risk prediction. Comparison of kine-
matics data from three sensor locations is conducted to investigate the most effective
measurement of risk factors.

2. Materials and Methods

RunScribeTM (Scribe Labs, Inc., Half Moon Bay, CA, USA) [29] wearable IMU sensors
were used to extract the subjects’ gait kinematics signals during the TUG test. A Machine
Learning algorithm was implemented to predict the clinicians’ assessment of fall risk and
the participants’ actual falls in the follow-up study.

2.1. Population

One hundred participants (51 males, 49 females), 65 years of age and older, who
consented under Internal Review Board (IRB) guidance at the University of Iowa Hospitals
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and Clinics were evaluated with several gait and balance tests in the Geriatrics Clinic.
Participants were composed of a diverse group of geriatric patients attending an academic
geriatrics clinic. They included 10 with cognitive impairment, 9 with vestibular impairment
or hearing aid use, 5 with past brain injuries, 4 with peripheral neuropathies, 3 with
parkinsonism, and 20 with lower extremity orthopedic conditions. A board-certified
geriatrician with 35 years of clinical experience (GJJ) performed multiple CDC standardized
functional and medication assessments: the TUG, the 30 Sec Stand, and the 4-Stage Balance
tests were administered, and the measurement of orthostatic blood pressure was obtained
from the health record. Some subjects used walking-assistant equipment, such as a walker
or cane, while performing the TUG test.

According to the clinician’s evaluation extensively reviewed by multiple geriatricians,
the subjects were categorized into high risk of fall (fallers) and low risk of fall (non-
fallers) using the functional test assessments (test scores and the clinician’s observation
of movement disorders), number of medications, number of diagnoses, age, gender, BMI,
and the Staying Independent Brochure (SIB) score. SIB is the subjects’ report of risk factors,
including subjects’ history of falls. Fifty-four (23 males, 31 females) participants were
classified as fallers. Table 2 provides a general description of the subjects’ characteristics
and functional test scores. Among the physiological attributes, only age is significantly
different between fallers and non-fallers (p-value = 0.004). The odds ratio shows that
older ages are prone to a higher risk of fall. Medical record data showed the highest
associated with being classified as a faller to be the number of diagnoses and the number
of medications used (p-value < 0.001). All STEADI tools had a high odds ratio with a wide
confidence interval (CI) associated with the geriatrician’s assessment of the participant
being a faller (p-value < 0.001). The participants’ report of fall risk factors obtained with SIB
scores had the highest odds ratio and widest CI. Although they showed a high association
with the geriatrician’s assessment of falling in our case study, the wide CI reveals extreme
uncertainty due to the small sample size.

RunScribeTM IMU pods were mounted on patients’ bodies at three locations before
performing the clinical tests. Two pods were fastened tightly on the lace of the right and
left shoe near the midfoot, while the third pod was attached to the collar of the subject’s
clothing at the back of the neck. These sensor pods are respectively referred to as the right
foot, left foot, and neck. After data collection, it was noted that one subject had missing data
from the right foot sensor, and one subject from the left foot sensor. Therefore, we continued
the study with the remaining ninety-eight participants (50 males, 48 females). Fifty-three
(23 males, 30 females) out of 98 subjects were classified as fallers (with a high risk of fall),
and the other forty-five (27 males, 18 females) were classified as non-fallers (with a low risk
of fall). The summary of the distribution of geriatrician’s fall classification versus gender,
height, and weight of the studied sample is illustrated in Figure 1. The acceleration and
angular velocity signals collected from the sensors alongside the geriatrician’s evaluation
of the subject as a potential faller or non-faller are used to study patients’ gait and balance.



Sensors 2021, 21, 3481 6 of 18

Table 2. Summary statistics of participants’ attributes, medications, health and fall history, and fall-risk assessment measurement scores.

Summary
Statistics Age (Years) Gender (Female

vs. Male) BMI (kg/m2) # of Diagnoses # of Movement
Disorders

# of
Medications

# of Psychoactive
Medications

TUG (14 s or >
vs. <14 s)

4-Stage Balance (30 s
or < vs. >30 s)

30 Sec Stand (8 or <
vs. >8 Stands)

SIB Score (4 or >
vs. 0–3)

Mean
(range)

75.41
(65–96) 49% 28.8

(18.30–47.74)
8.43

(1–19)
0.47
(0–4)

7.70
(0–21)

0.91
(0–5)

14.1
(7–98)

31.4
(4–40)

10.55
(0–23)

3.24
(0–12)

Odds ratio
of being a

faller
(95% CI)

1.09
(1.03–1.16)

2.10
(0.94–4.67)

1.08
(1.00–1.16)

1.44
(1.23–1.69)

2.56
(1.21–5.39)

1.34
(1.17–1.55)

1.66
(1.13–2.44)

10.25
(3.51–29.96)

28.66
(7.81–105.71)

14.33
(3.96–51.87)

44.00
(9.57–202.35)

p-value 0.004 0.070 0.042 <0.001 0.014 <0.001 0.009 <0.001 <0.001 <0.001 <0.001
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2.2. Data Acquisition

The IMU sensors captured data during the TUG test. Subjects were asked to stand up
from a sitting position in a chair and walk at their usual pace for three meters, turn and
walk back and sit again. The RunScribeTM pods use MPU-9255 Micro-Electro-Mechanical
Systems (MEMS), which contains a triple-axis accelerometer and a triple-axis gyroscope.
The pods setting for these MEMS was to collect 3D kinematics data at a sampling rate of
250 Hz, within the range of 16 G acceleration and 2000 degree/s angular velocity, where G
is the gravitational unit. The raw sensor data in this study contain the anterior–posterior
(AP), mediolateral (ML), and superior–inferior (SI) acceleration and roll, pitch, and yaw
angular velocity signals during the TUG test. The original signals of 250 Hz are sensitive to
the abrupt magnitude drops and increases in a signal due to noise. Signal preprocessing
is crucial to improve the original kinematics signals by filtering out very low and high
frequencies out of the natural domain of human gait frequency. In this study, the signals
were low-pass filtered 100 Hz using the Fast Fourier technique, and it was implemented by
the resample function in Python’s SciPy library. Figure 2 illustrates the neck, right and left
foot signals of a 71-year-old male subject, assessed with a high risk of fall.

Data normalization was conducted to convert all the input attributes into the same
standard scale to help the machine learning model converge to the optimal solution. The
acceleration and angular velocity signals were mapped separately from their respective
range to [0, 1] using the minimum and maximum magnitude of acceleration and angular
velocity signals across all subjects. Zero-padding was used to have all the input signals
in the same size. This means that the time length of a subject’s signals is increased by
adding zeros to the end of the signals until all the subjects have the same length as the
longest TUG test’s length. Before feeding the raw signals into a deep learning model, signal
segmentation was used to enhance the performance of CNNs. Motion signals were cut
into three-second segments using a sliding window approach. A three-second window
slides over a signal with a one-second stride and creates the three-second segments until
the sliding window covers the entire signal. Every individual participant’s segmented
signals were stacked channel-wise (3 acceleration and 3 angular velocity channels). The
three-channel signal segments of each sensor location were considered as the input to the
prediction models.
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2.3. CNN Model with the Segmented Raw Signals of the TUG Test

The tasks performed by our CNN algorithm were twofold: learning feature represen-
tation and fall-risk classification. The normalized signal segments were fed into the CNN
as the model input. The overall geriatrician’s fall classification of the subjects was binarized
into faller (output = 0) and non-faller (output = 1), representing the probability of fall.
The CNN model consisted of 4 building blocks of 1-D convolutional (Conv) layers, each
followed by a Batch Normalization (BN) and ReLU activation, which all together extracted
the signals’ high-level gait features. Additionally, Max pooling layers were used after the
second and the fourth ReLU activations to downsample the similar local information into a
concentrated output. The feature maps of the last ReLU activation were flattened into a
1D array and then fed into a fully connected (FC) layer with a sigmoid activation function
to serve as the predictor of the fall-risk probability. Then, binary classification of fallers
versus non-fallers was performed using the threshold probability of 0.5. Figure 3 illustrates
the architecture of the designed CNN model.
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Figure 3. The CNN architecture of the proposed fall-risk classification model. The 3-channel acceleration or angular velocity
3 s segments are fed into the convolutional building blocks, and the high-level kinematics feature map is extracted. The
features are flattened and classified as faller/non-faller by a fully connected neural network.

The participants were divided into training and test subjects with an 80% and 20%
ratio. The proportion of fallers and non-faller was kept 50 to 50 in both training and test
sets of patients. Each of these sets was randomly bootstrap resampled with a replacement
for 100 iterations. In each iteration of bootstrapping, each set’s participants were resampled
with replacement randomly for 100× number of subjects in the set. Therefore, we increased
the sample size such that one training subject could exist more than once in the training
set. Finally, all the raw signal segments of the training subjects built the training set, and
all the raw signal segments of the test subjects built the test set. The CNN model was
then trained using the training segments and then evaluated on the test segments. This
process was repeated for 100 iterations. Eventually, the mean and 95% CI of classification
accuracy (Acc), sensitivity (Se), specificity (Sp), F1-score, and the area under the Receiver
Operating Characteristic curve (AUC) of the bagging CNNs are used to evaluate the
classification performance.

3. Results
3.1. The Clinical Scoring Tests in Predicting Geriatrician’s Fall Classification

For each clinical assessment test, the dichotomous binary fall classification of the
subjects was performed such that all the participants were in each test set. Each clinical test
result was considered the predicted fall status, the overall geriatrician’s fall-risk assessment
was assumed as the true fall-status, and the classification confusion matrix was built.
Table 3 represents the classification results of each of the clinical tests.
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Table 3. Functional tests’ classification results with the geriatrician’s cut-off points.

Fall-Risk Assessment Tools
(Fallers vs. Non-Fallers) Acc (%) Se (%) Sp (%) AUC J Index Optimal

Cut-Off

TUG
(14 s or > vs. <14 s) 71.00 55.55 89.13 0.72 0.45 14

4-stage balance
(30 s or < vs. >30 s) 81.00 70.37 93.48 0.82 0.64 32

30 sec stand
(8 or < vs. >8 stands) 70.00 50.00 93.47 0.71 0.43 10

A Receiver Operating Characteristic (ROC) analysis was performed for each clinical
classification. J = Se + Sp − 1 (Youden’s J index) was also calculated for different cut-off
thresholds to find the optimal threshold that maximizes J index (the trade-off between the
true positive and false positive rates). As shown in Table 3, the 4-stage balance was the
most sensitive among the practiced functional tests to detect fallers (70.37% sensitivity)
with 81% accuracy and 0.64 J index. However, the optimal cut-off point of the 4-stage
balance, similar to 30 sec stand cut-off points, differed from the respective cut-off points
suggested by the CDC or used by the clinician. On the other hand, 14 s cut-off value,
selected by the clinician and suggested by the CDC, was the optimal threshold for the TUG
test with prediction accuracy, sensitivity, and specificity of 71%, 55%, and 89%.

Despite higher J index in the 4-stage balance test, we chose the TUG test for further
sensor measurement because of its other benefits over the other tests. First, the optimal
prediction achievable with the TUG test agrees with the clinician’s evaluation of the TUG
test. Our goal was to find an approach that can eventually be a suitable replacement for
clinician prediction. Second, due to the comparison in Table 1, in contrast to the 4-stage
balance test, the TUG test implementation was simpler and incorporated multiple mobili-
ties, resulting in a more precise kinematics measurement of gait and balance impairments
associated with fall risk. Comparing these clinical test results with previous works could
not be valid because they have applied different cut-offs [30,31] due to the researcher’s
judgment or possibly adjusting the specific attributes in their studied population [15].

3.2. The CNN Prediction of Geriatrician’s Fall Classification

The bagging CNN algorithm was performed for each individual sensor location,
one time using the 3-channel angular velocity signals, another time using the 3-channel
acceleration signals. The prediction results of the six separate training experiments of
the CNN model are reported with classification metrics in Table 4. The same bagging
algorithm was also used with a support vector machine (SVM) model to evaluate the
particular benefit of CNN. In Table 4, the notation gyro denotes that the ML model was
trained with 3-channel gyroscope signals, and the notation accel denotes that the ML model
was trained with 3-channel accelerometer signals. The SVM models were trained with
the mean, standard deviation, and coefficient of variation of the three directional signals
such that in each experiment, nine statistical variables were the inputs rather than the
three-channeled time series that were fed into the CNN models.

Finally, the bagging ML models were compared with 100 iterations of bootstrap
resampling of the traditional TUG test prediction. Contrary to the CNN models, the TUG
test classification did not require training. In each iteration of bootstrap resampling, only
twenty out of ninety-eight (10 fallers, 10 non-fallers) subjects were randomly selected.
Then, a random sample was drawn with replacement from the selected subjects for 2000
(100 × 20) times to create the test set.



Sensors 2021, 21, 3481 11 of 18

Table 4. Fall-risk classification of geriatrician’s fall assessment using ML with the kinematics measures of the TUG test and
comparison with traditional clinical TUG test.

Sensor Classification
Method Acc (%) Se (%) Sp (%) J Index F1-Score AUC C-Statistic

(95% CI)
C-Statistic

p-Value

- Clinical
TUG test

70.65
(53.80, 85.78)

56.02
(27.48, 81.64)

88.53
(67.70, 100)

0.44
(0.10, 0.73)

0.67
(0.41, 0.85)

0.72
(0.55, 0.87)

25.70
(0.71, 0.74) <0.001

N
ec

k

SVM_gyro 67.13
(50.00, 80.00)

92.51
(72.72, 100)

36.11
(11.11, 66.67)

0.29
(0.04, 0.57)

0.81
(0.69, 0.92)

0.70
(0.51, 0.90)

18.57
(0.68, 0.73) <0.001

SVM_accel 62.39
(46.87, 75.00)

83.14
(54.54, 100)

36.57
(4.17, 66.67)

0.21
(0.02, 0.46)

0.77
(0.62, 0.88)

0.71
(0.51, 0.87)

23.05
(0.69, 0.73) <0.001

CNN_gyro 66.21
(50.00, 80.00)

86.51
(56.82, 100)

41.27
(11.11, 66.67)

0.28
(0.05, 0.57)

0.80
(0.67, 0.92)

0.75
(0.54, 0.92)

25.20
(0.73, 0.77) <0.001

CNN_accel 63.08
(50.00, 75.00)

75.47
(45.45, 100)

47.93
(22.22, 66.67)

0.25
(0.01, 0.48)

0.75
(0.55, 0.88)

0.73
(0.49, 0.89)

20.32
(0.71, 0.75) <0.001

R
ig

ht

SVM_gyro 56.06
(50.00, 67.87)

98.00
(81.82, 100)

4.89
(0.00, 33.33)

0.05
(0.00, 0.33)

0.76
(0.71, 0.84)

0.52
(0.41, 0.71)

3.33
(0.51, 0.53) <0.001

SVM_accel 55.35
(55.00, 60.00)

99.64
(95.22, 100)

1.22
(0.00, 11.11)

0.01
(0.00, 0.11)

0.76
(0.73, 0.79)

0.50
(0.43, 0.55)

1.55
(0.49, 0.51) 0.061

CNN_gyro 59.77
(45.00, 79.50)

83.18
(46.82, 100)

31.04
(0.00, 66.67)

0.17
(0.00, 0.56)

0.75
(0.59, 0.91)

0.66
(0.47, 0.84)

14.82
(0.64, 0.68) <0.001

CNN_accel 58.33
(45.00, 75.00)

79.57
(36.36, 100)

32.37
(0.00, 66.67)

0.16
(0.00, 0.44)

0.72
(0.50, 0.86)

0.61
(0.38, 0.81)

9.92
(0.58, 0.63) <0.001

Le
ft

SVM_gyro 56.65
(55.00, 65.00)

99.36
(90.91, 100)

4.55
(0.00, 22.22)

0.04
(0.00, 0.22)

0.77
(0.73, 0.82)

0.53
(0.43, 0.66)

4.77
(0.52, 0.54) <0.001

SVM_accel 55.00
(55.00, 55.00)

100
(100, 100)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.76
(0.76, 0.76)

0.50
(0.50, 0.50)

−1.00
(0.49, 0.50) 0.841

CNN_gyro 60.91
(45.00, 73.50)

81.13
(39.09, 100)

36.20
(0.00, 66.67)

0.19
(0.00, 0.45)

0.75
(0.51, 0.86)

0.68
(0.48, 0.88)

15.71
(0.65, 0.70) <0.001

CNN_accel 59.41
(40.00, 78.50)

82.89
(36.36, 100)

30.70
(0.00, 66.67)

0.18
(0.00, 0.53)

0.71
(0.00, 0.90)

0.63
(0.37, 0.84)

10.45
(0.61, 0.65) <0.001

Table 4 contains the prediction results of the test set such that for each model, the
classification metrics are reported with the mean and 95% CI of 100 bootstraps resampling.
The AUC of an ML model shows a single model’s power to classify the fallers and non-
fallers given the ROC analyzing the sensitivity and specificity trade-off with changing the
fall-risk probability threshold. The p-value and CI for concordance (C-statistic) are based
on the null hypothesis that assumes a model is a random guess (AUC = 0.5) versus the
alternative that assumes the model can distinguish fallers and non-fallers (AUC > 0.5).

All kinematics-based ML models demonstrate an improvement of at least 19% higher
sensitivity (neck CNN_accel), 4% higher F1-score (left CNN_accel) over the traditional TUG
test. Although the clinical TUG test has 88% specificity with 72% AUC, it has very poor
fall-risk detection (56% sensitivity). Among the three sensors, neck kinematics improved
the performance of the ML models with a better trade-off between sensitivity and specificity
and a higher power level to discriminate between fallers and non-fallers (p-value < 0.001
and AUC > 0.70). Overall, neck gyroscope signals boosted ML models to detect fall risk
with higher sensitivity and AUC.

The Right and Left SVM models show very high sensitivity (>90%) with the cost of
very low specificity (<5%) and lower AUC than the CNN models. The very low specificity
and accuracy close to 50% demonstrate that these models do not learn any data patterns
to detect the risk of fall, and they just classify most of the subjects as fallers. However,
neck SVM models with high sensitivity have better performance in terms of accuracy and
specificity. Although neck CNN_gyro has a 6% and 1% lower average sensitivity and
F1-score than neck SVM_gyro, it is a more robust model on average in distinguishing
fallers and non-fallers (5% higher AUC with shorter CI). The AUC of neck CNN_gyro
indicates that, on average, a faller had a higher risk of falling than 76% of the non-fallers.

Overall, the wide 95% bootstrap CIs of classification metrics show that the prediction’s
significant uncertainty. Despite the data augmentation (bootstrap resampling and signal
segmentation), the results still depended on which participants were selected in the training
set. Figure 4 compares the J index, F1-score, and AUC of the models.
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3.3. The CNN Prediction of the Follow-Up Falls Report

We conducted a follow-up survey of the subjects 6 to 12 months after the geriatrician’s
assessment. They were asked if they experienced any falls since their TUG test in the clinic.
Among 98 subjects, 87 (43 females, 44 males) responded to the follow-up question. Twenty-
five (11 females, 14 males) reported falls (classified as fallers), and 62 (32 females, 30 males)
reported no falls (classified as non-fallers). The reported fall status was not consistent with
the geriatrician’s classification. Results in Table 5 show that the bagging CNN models
cannot accurately predict the patients’ actual falls (very low average sensitivity with wide
CI), and the SVM models have a very weak performance (sensitivity close to 0). The ML
model used the gait kinematics over a short amount of time, collected more than six months
before the actual falls. Therefore, the sensor data and the fall incidents are not closely
associated. In addition, the imbalanced number of fallers and non-fallers (28% fallers) in
the follow-up report could cause significantly higher specificity than sensitivity for the
screening TUG test. A very low AUC shows that even adjusting the fall-risk probability
threshold does not improve the prediction performance (p-value > 0.05 and/or average
AUC very close to 0.50).

3.4. The Geriatrician’s Classification of the Follow-Up Falls Report

We used the geriatrician’s fall assessment to predict the follow-up falls report. The
geriatrician’s classification labels were considered the predicted values and the follow-up
falls report as the actual falls. The geriatrician’s fall assessment could predict the actual
future falls with the accuracy, sensitivity, specificity, and F-1 score of 61%, 76%, 55%, and
0.53. Twenty-eight participants predicted as fallers reported no falls (false positives), and
6 of the participants predicted as non-fallers reported at least one fall (false negatives).
Compared to the CNN prediction of actual falls, the geriatrician’s fall classification was a
better predictor of the follow-up actual falls because the geriatrician assessment included
multiple additional risk factors such as patients’ medications and diagnoses that could
include long-term risk factors.
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Table 5. The ML prediction of follow-up fall incidents for each sensor location using the TUG tests’ kinematics signals.

Sensor Classification
Method Acc (%) Se (%) Sp (%) J Index F1-Score AUC C-Statistic

(95% CI)
C-Statistic

p-Value

N
ec

k

SVM_gyro 70.00
(58.19, 72.22)

2.20
(0.00, 20.00)

96.08
(76.92, 100.00) −0.02 0.16

(0.00, 0.43)
0.50

(0.36, 0.69)
0.34

(0.49, 0.52) 0.367

SVM_accel 69.00
(47.08, 72.22)

1.20
(0.00, 20.00)

95.08
(65.19, 100) −0.04 0.04

(0.00, 0.26)
0.53

(0.36, 0.68)
2.92

(0.51, 0.54) 0.002

CNN_gyro 60.46
(44.44, 72.16)

42.35
(0.00, 83.5)

67.42
(37.11, 100)

0.07
(−0.37, 0.42)

0.41
(0.00, 0.69)

0.56
(0.33, 0.74)

4.27
(0.54, 0.58) <0.001

CNN_accel 54.71
(27.78, 72.22)

28.61
(0.00, 100)

64.74
(19.61, 84.61) −0.06 1 0.26

(0.00, 0.63)
0.46

(0.16, 0.81)
−2.13

(0.43, 0.49) 0.983

R
ig

ht

SVM_gyro 71.78
(66.67, 72.22)

1.40
(0.00, 20.00)

98.77
(88.27, 100)

0.00
(−0.08, 0.12)

0.11
(0.00, 0.31)

0.49
(0.37, 0.60)

−0.25
(0.49, 0.51) 0.599

SVM_accel 70.50
(61.11, 72.22)

0.60
(0.00, 10.50)

97.38
(84.61, 100) −0.02 1 0.12

(0.00, 0.29)
0.49

(0.31, 0.66)
−0.12

(0.48, 0.51) 0.548

CNN_gyro 50.38
(26.11, 72.22)

44.00
(0.00, 100)

54.10
(0.00, 88.84) −0.12 1 0.52

(0.00, 1)
0.48

(0.26, 0.68)
−1.83

(0.45, 0.50) 0.966

CNN_accel 49.72
(27.78, 72.22)

43.05
(0.00, 100)

52.11
(0.00, 84.61) −0.14 1 0.32

(0.00, 0.53)
0.46

(0.18, 0.68)
−2.48

(0.43, 0.49) 0.993

Le
ft

SVM_gyro 71.61
(66.67, 72.22)

0.00
(0.00, 0.00)

99.15
(92.31, 100) −0.01 1 0.00

(0.00, 0.00)
0.49

(0.34, 0.66)
−0.82

(0.48, 0.51) 0.794

SVM_accel 71.06
(61.11, 72.22)

1.00
(0.00, 20.00)

98.00
(84.62, 100.00) −0.01 1 0.21

(0.00, 0.33)
0.51

(0.37, 0.62)
1.37

(0.49, 0.51) 0.085

CNN_gyro 47.15
(27.78, 77.78)

64.32
(0.00, 100)

40.54
(0.00, 84.61)

0.05
(−0.27, 0.45)

0.54
(0.32, 0.81)

0.41
(0, 0.70)

3.06
(0.51, 0.57) <0.001

CNN_accel 49.91
(27.78, 72.22)

38.02
(0.00, 100)

54.48
(3.84, 84.61) −0.08 1 0.28

(0.00, 0.62)
0.44

(0.19, 0.70)
−3.95

(0.41, 0.46) >0.999

1 Although the range of J is in [−1, 1], there is no practical interpretation of its negative values. Therefore, for the negative mean J index, the
confidence interval is not reported.

4. Discussion

The use of small non-intrusive IMU sensors attached to a subject provided an inexpen-
sive alternative approach for the classification of a subject’s fall-risk status. Using only the
participants’ TUG test kinematics instead of using the 6 min walk test kinematics and the
traditional TUG test, as performed by Buisseret [28], our method classified subjects with at
least similar sensitivity as an experienced clinician and would have required less clinician
time. Using the single TUG test could reduce the risk and effort of having patients perform
additional tests.

To avoid loss of generality imposed by sample bias, we used multiple techniques.
Our study population consisted of 98 subjects with various physiological attributes and
different health conditions such as cognitive and physical impairments. This contrasts
with the other studies where co-morbidities were either disregarded, or in the case of
Green et al., who used a largest sample size of 349 participants, participants with major
cognitive or physical disorders were excluded. By including patients with impairments,
we were able to have a sample that was consistent with the typical population seen in the
geriatric clinical setting. To further avoid loss of generality, we estimated the prediction
uncertainty due to sample selection. Each ML model was trained on a random selection
of 80% of participants, and testing was performed on the remaining 20%. This random
selection repeated in every 100 iterations of our bagging model added generality to our
prediction and decreased the risk of overfitting to the selected subjects. At each bootstrap
iteration, the subjects in each training and test set were resampled with a replacement for
100 times of each set’s sizes. Then, each subject’s signals were segmented into three-second
window segments.

To our knowledge, this study is the first that predicts the outcome of a geriatrician’s
fall-risk screening test rather than the actual previous or future falls predicted in prior
studies (e.g., [26–28]). Using the CNN method with neck angular velocity, we achieved a
high sensitivity of 86% compared to only 56% sensitivity using the traditional TUG test.
However, the specificity result was 41%, below what is preferred in a diagnostic test to rule
in a disease process [32,33], such as the hip fracture resulting from a fall. As the purpose of
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our study is a screening test and not a diagnostic test, the low specificity was not considered
to be significant, while sensitivity was in a range to support better screening to rule out the
high risk of fall [32,33]. However, the high false positives due to the resulting specificity
can lead to unnecessary fear of falling among the subjects. To address the increased risks
associated with fear of falling, the clinicians investigated this explicitly in this study’s SIB
questionnaire. If a patient is screened as possibly high risk for falls, further interventions
such as medication reduction, physical therapy, and exercise programs are recommended,
which help alleviate the fear of falling.

The SVM and CNN models are compared based on two factors, sensitivity versus
specificity, and AUC, where the model prediction has low responsiveness to the fall-risk
probability cut-off at the final stage of classification. Although the neck CNN_gyro has
lower sensitivity than the neck SVM_gyro, its higher AUC shows that it is more robust in
distinguishing fallers from non-fallers while changing the fall-risk probability threshold.

As CNN analyzes the entire signal and performs data-driven feature extraction, there
is no risk of missing any information by only introducing the statistics of the signals as was
demonstrated with the SVM model in this study. Therefore, the neck CNN_gyro shows
higher potential than the neck SVM_gyro for better performance with a more accurate
sensor data acquisition system.

The gait feature engineering process used by Greene et al. [26] and Weiss et al. [27]
focused on sensor-driven parameters such as temporal gait features to build prediction
algorithms. However, relying only on kinematics signals to detect gait events’ timing
can be prone to human error in selected filtering or rule-based algorithms. Therefore,
their feature engineering required validation against a reference motion capture system
to assure accurate extraction of gait features. Overall, gait feature engineering requires a
certain amount of expertise in signal processing and gait analysis, given accurate sensor
data acquisition. A combinatory sensor system to assure the synchronized left and right
foot signals could be demanding and impractical for a low-cost screening at clinics. Our
solution used CNN models with raw kinematics signals to perform data-driven feature
extraction and faller classification. This automated feature representation reduced the
costly feature extraction process by saving the required time and expertise effort. In
addition to the kinematics data acquisition, the CNNs’ performance was improved by
sample augmentation, signal resampling curation, and signal segmentation.

While CNN can automate feature engineering and eliminate the bias of human error
and costs of motion capture lab facilities to validate manual feature engineering, its learning
process remains unclear. In future studies, Grad-CAM visualization [34] could be used to
localize the segments in the kinematics signals indicative of a high risk of fall, assisting
clinicians in discovering the gait attributes that are closely associated with a high risk
of fall.

The IMU sensors were placed on the participants’ neck, right shoe, and left shoe
to investigate the importance of sensor location in fall risk prediction and evaluate the
locational kinematics risk factors. The placement of the sensors’ effect on prediction was
evaluated by training the CNN models separately for angular velocity and acceleration, as
well as separately for right foot, left foot, and neck. Previous studies placed the sensor in
the body center’s proximity (e.g., waist) to approximate the body centroid motion [28,35].
Other studies that aimed to analyze the gait features closely installed the sensors closer to
the feet [36–38]. In our study, the neck sensor provided the TUG test kinematics associated
with the upper torso and outperformed the foot sensors in fall-risk prediction. With proper
synchronization, the foot sensors may have been more useful for engineering gait features.

Sensor synchronization was a limiting factor in this study. Due to the lack of automatic
synchronization between sensors, each sensor relied on its own internal clock to keep time,
and the resulting sensor data were collected in varying non-uniform time. The RunScribe
sensors provide a method for calibration to prevent this; however, it would have required
each participant to collect sample data by running for an extended distance before a test.
This was unfeasible with our subjects. This timing issue hindered the ML implementation



Sensors 2021, 21, 3481 15 of 18

when combining separate sensors and limited a valid computation of temporal and spatial
gait features. Some researchers have worked to solve this problem through the use of
highly customized wirelessly networked IMUs or through the use of extensive camera
systems connected to real-time references to guarantee accurate kinematics data collection
for different purposes [39,40]. These studies do provide more reliable results than our
study, but at a much greater cost of time and resources, and restrictions in deploying the
systems to the general clinical setting.

Another limitation discovered in the results of the CNN classification in our follow-
up fall reports revealed that AUC and sensitivity drastically deteriorated. This poor
performance could be attributed to imbalanced follow-up data or the use of late fall
incidents as the “ground truth” fall status for the TUG test. An actual fall incident that
occurred more than six months after the TUG test could not be closely associated with
fall risk factors captured at the time of the initial tests. The balance and mobility strength
of older adults can change drastically over that time period. Other studies attempted to
account for this by contacting participants monthly for fall reports [28]. In this situation,
the geriatrician’s fall classification was a better predictor of the follow-up falls because
it includes some long-term aspects of the subjects’ ambulatory, locomotion, and health
condition. The geriatrician’s fall classification investigates fall risk factors using patients’
fall history, functional test scores, medications, and diagnoses, while the CNN classification
only relies on the short TUG test kinematics at the time of testing.

5. Conclusions

Fall prediction in the older adult clinic population is an important and demanding
task for geriatricians. It is limited to capturing only intrinsic risk factors for falling and,
therefore, is likely not as accurate as a system that includes extrinsic risk factors found in
the patient’s home environment. We proposed a fall-risk prediction model that can detect a
geriatrician’s fall-risk assessment using cheap wearable sensors. The study was performed
in a real-world clinical environment using simple procedures to obtain results. The study
has demonstrated the use of machine learning techniques applied to sensor data obtained
during the TUG test that can closely align with the experienced geriatrician’s ability to
predict falls. Such machine learning techniques may become valuable clinical tools that
could assist less experienced clinicians in being as accurate as an experienced evaluator of
intrinsic fall risk factors. The final goal of this area of research is to create a non-intrusive
sensor system that can measure intrinsic risk factors while the patient is interacting with
the home environment.
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Appendix A

Table A1 explains each clinical assessment tool’s functions, the measured variable,
and the average required time to complete the test.

Table A1. An overview of fall-risk assessment clinical tests.

Tests Function Measurement Assessment Average
Completion Time

FSST
Stepping over multiple low

objects in
different directions.

completion time dynamic standing
stability <5 m

TUG
test

Standing up from a chair,
walking for three meters,
turning, walking back to

the chair, and sitting down.

completion time gait and balance <2 m

FRT

Measures the maximum
forward reach without
moving the feet (while

standing in a
fixed position).

maximum forward
reach

stability and
balance <2 m

Step
test

Stepping on the same foot
on a stair without moving

the other foot for 15 s.
number of steps dynamic standing

stability <1 m

BBS

Performing 14 static and
dynamic balance-related
tasks, including standing,

sitting, turning,
reaching forward.

a total score of all
the tasks

stability and
balance >15 m

4-stage
balance

Standing in 4 different foot
positions, in each stage, not

moving the feet while
keeping the balance.

total time of
keeping the

balance

stability and
balance <2 m

30 sec
stand

Standing up from a chair
and sitting back, repeating

this move for 30 s.

number of stands,
age- and

gender-dependent

functional lower
extremity strength <2 m

Overall, some critical attributes and motion tasks are considered to find the most
suitable test to further sensor measurement. Due to the real-world application of these
tests and the limited time in clinical settings, the time required to complete the tests plays
an important part in ranking the tests. The other key factor in choosing the optimized test
is the ease of performance for both the clinician and the patients. Additionally, turning
motion is critical to capture how subjects sway to keep their balance while turning and can
be more critical than the gait motion in determining someone is at risk of falling.

Gait and dynamic stability are at the next level of importance and provide more
fall-risk-related information than static stability and the rest of the features. Sitting and
standing are also crucial because they would determine if someone could be independent
in daily activities. The forward reach and stepping might not be as important as some of
the other measures. Although stepping over an object is not asked in the TUG test, the
clinician evaluates the patients’ step length and height to detect the risk of tripping over
something or any correlated cognitive impairment. The reaching forward test challenges
the patient’s balance and captures maintaining the balance at a two-foot stance. However,
in the TUG test, the clinician evaluates the balance by watching the body’s center sway
while getting off from the chair and turning.
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