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Abstract: Counting the number of people and estimating their walking speeds are essential in crowd
control and flow. In this work, we propose a system that uses prevalent Wi-Fi signals to identify
the number of people entering and leaving a room through a door. It selects the best subcarrier of
Wi-Fi signals and applies the Hampel filter to remove outlier information first. Then, it employs a
double threshold method to determine the start and end times of entering or leaving. Afterward,
it compares the detected signals with the precollected database using the dynamic time-warping
algorithm and determines the number of people. It uses a variance threshold method to identify the
states of entering or leaving. It also employs a nonlinear fitting approach to calculate the walking
speeds. The experiments show that, in a large empty laboratory, the accuracy rates in determining
the number of people are 100% for one person, 81% for two persons, and 95% for three persons. In a
small office, the accuracy rates for detecting the number of people are 98% for one or two persons,
82% for three persons, 93% for four, and 75% for five persons. For the walking speed estimation, the
accuracy rate for a speed error of less than 0.2410 m/s is 75% for a single person.

Keywords: number of persons; walking speed; entering and leaving; channel state information;
variance threshold; dynamic time warping; Wi-Fi

1. Introduction

Counting people and determining their walking speeds and directions can find ap-
plications in many areas. For example, in a smart home, lighting, heating, and cooling
can be controlled based on the number of people counted in a room. In a shopping mall,
consumption habits and preferences can be analyzed based on the number of people and
the time they stay in an area. Public places, such as subways, bus stops, railway stations,
passenger flows, and traffic, can be managed and diverted based on crowd densities.

The traditional methods of counting people, including manual counting or infrared
imaging, are time consuming, expensive, and sometimes impractical, especially in densely
populated areas. Optical image processing with machine learning capability has been
introduced and used in various scenarios [1–4]. However, image-based methods have a
few disadvantages, such as performance dependence on optical sensors, potentially large
blind areas, and relatively low accuracy in complex environments due to the similarity of
multiple objects and the occlusion of targets. Radio-based counting methods then emerged.
Some radio methods require people to carry active devices, which emit radio frequency (RF)
signals for processing and extracting information [5–7]; they can often be inconvenient and
impractical. Other radio methods are passive: they do not require users to carry devices,
but they need to deploy a wireless sensor network in advance, which can be expensive and
challenging with operation overheads.

Fortunately, wireless networks for cellular and internet communications have become
widespread and prevalent in recent years. Wi-Fi routers and signals are available in most
homes and offices. Wi-Fi signals propagate everywhere and are reflected or scattered
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by objects and human bodies. Therefore, they carry information about people and their
surroundings, and they can be utilized for sensing and detecting human behaviors and
activities. For example, they can be used to recognize different human postures and
gestures [8–12], to identify people [13,14], to recognize object shapes [15], and to track
locations of humans and animals [16,17]. They can also be used to estimate the respiratory
rate of a person [18–22] by examining amplitude changes and phase shifts of the channel
state information (CSI) of Wi-Fi signals.

In people counting (the topic of this paper), a few methods using the WiFi signals
are developed. Seifeldin M et al. proposed the Nuzzer system [23]. The system uses the
variance of a received WiFi signal strength to estimate the number of people. Xi et al.
proposed the FCC system [24]. The system analyzes the relationship between the number
of active people in a region and the channel state information (CSI) it receives. It measures
the percentage of non-zero elements in the CSI matrix. Then it uses the gray model theory
to relate the percentage with the number of people, obtain its growth curve, and find the
number of people [25]. Depatla et al. analyze the absorption loss and multipath resulted
from blockage and reflection by a human body [26]. Then they develop a mathematical
model that is used to estimate the number of people. Fadel Adib and Dina Katabi [27]
apply the principle of inverse synthetic aperture radar and use the multiple input multiple
output interference techniques to eliminate the reflected signals of stationary targets. They
then propose a method that can identify moving targets and estimate the number of targets.
Yang et al. propose a first door-monitoring system by analyzing the WiFi signals [28].

However, all of these methods require training with prior knowledge of training data,
which may not always be available and feasible. For this reason, we propose a Wi-Fi signal-
based human flow detection method, which requires no data training but a predeveloped
sample database. Moreover, Wi-Fi signals can also estimate the walking speeds of a person.
The main technical contributions of this paper are summarized as follows:

(a) A double threshold technique is proposed to detect the start and end times of entering
or leaving a room. It overcomes the issues of inaccuracy and large computational
expenditures that are associated with the conventional manual algorithm described
in [29] and the sliding variance method.

(b) An estimation method is developed for the walking speeds of a person with a nonlin-
ear curve-fitting technique.

(c) A detection method is developed to determine the number of people entering or
leaving a room. Unlike the deep learning algorithm, such as the door monitoring
method presented in [28], this method requires no data training, but a predeveloped
sample database.

(d) A variance method is proposed to determine the states of entering or leaving. It
utilizes the differences between the signal variances inside and outside a room—a
feature that has not been explored or reported in the literature so far. It leads to a
relatively simple computation algorithm that requires only one receiving antenna
(unlike the two-antenna approach presented in [28]).

2. Materials and Methods

Figure 1 is the overall flowchart of the proposed method. The scenario under consider-
ation is a room with a door, and people enter or leave the room through the door. Wireless
routers are inside the room and placed close to the door. The subcarriers from the Wi-Fi
router are collected, and one of them is selected for further processing. A filter is used to
remove the outliers of the selected subcarrier. A threshold method is then applied to detect
the starting and end times of entering or leaving a room through the door. The dynamic
time warping (DTW) algorithm is used to compare and analyze the detected signals with a
preconstructed database. The number of people going through the door is then determined.
After this, a variance method is employed to decide whether a person is entering or leaving.
If it is a single person, the speed is also being estimated.
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Figure 1. The overall flowchart of the proposed algorithm.

The mainstream Wi-Fi system uses 802.11 a/g/n that employs orthogonal frequency
division multiplexing (OFDM). It divides the bandwidth of 20 MHz into 56 subcarrier
bands. These subcarriers carry the channel state information (CSI) in their amplitudes
and phases. When encountering an object, these carriers experience different frequency-
dependent scattering, which leads to signal multipath propagation and fading; they result
in the changes in the received CSI amplitudes and phases that are associated with the
object. The changed information can be used and processed for the detection of the object.
In other words, the Wi-Fi routers and signals commonly available in a room are utilized for
the sensing and counting of people entering and leaving through a door. In the following
subsections, we elaborate on the proposed system.

2.1. Selection and Filtering of the Subcarriers

In the proposed algorithm, we select the subcarrier with the largest variance for
detection processing. Because it has a largest variance, the chosen subcarrier is more
sensitive to the changes in the CSI than other subcarriers. In the scenario we consider, the
frequency response of a subcarrier can be expressed as follows:

CSIi =
K

∑
k=0

rke−j2π fiτk (1)

where K is the number of signal multipath, rk is the signal path amplitude through path k, fi
is the frequency of the subcarrier with the largest variance, and τk is the signal travel time
through path k. Figure 2 shows an example of the subcarrier that has the largest variance,
and it is the 15th subcarrier.

The signal of the 15th subcarrier is then sent to the Hampel filter [30] to remove
the outliers, which have significantly different values from the other neighboring CSI
measurements. Although the CSI signal is not normally distributed for a long period, it is
approximately distributed within a short time. Therefore, we use the Hampel filter. We
tried other filters, such as the median filter; they do not work as well as the Hampel.This
comparison indirectly verifies the appropriateness of the use of the Hampel filter. Figure 3
shows the normalized signal after the filter, and the outlier is removed. In comparison to
the signal of Figure 2 before the filtering, the signal of Figure 3 is much cleaner.
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Figure 2. The signal before the filtering.

Figure 3. The signal after the Hampel filtering.

2.2. Determination of the Start and End Times

In order to reduce the influence of the environment, the CSI signal is normalized
before we determine the start and end times. Figure 4a shows the result of normalization.
The signal after the filter, x(n), is further windowed and segmented with the function w(n).
It becomes yi(n):

yi(n) = w(n) · x[(i−1) · ns + n], 1 ≤ n ≤ L, 1 ≤ i ≤ fn, (2)

where yi(n) represents the segmented and windowed signal, xi(n) represents the signal
after the filter, w(n) represents the window function, ns represents the segment length,
n represents the segment shift number, L represents the total number of segments, and fn
represents the number of segments in each packet.
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Figure 4. (a) The normalized signal. (b) The short-time energy of the normalized signal.

The short-term energy expression of each segment is calculated with the follow-
ing equation:

E(i) =
L−1

∑
n=0

y2
i (n), 1 ≤ i ≤ fn (3)

where E(i) represents the energy of the signal. Figure 4b shows the short-term energy of
the segmented signal.

The following double threshold method is proposed to detect the start and end times
of entering or leaving the room. Assume that the wireless routers are inside, by the door:
entering is considered walking from outside the door, past the routers, and into the room;
leaving is considered walking from inside the room, past the routers, and out of the room.
The Wi-Fi signals inside a room are more concentrated and sensitive to environmental
changes (including human walking) than those out of the room and outside the room.

When a person goes past the door, the received Wi-Fi signal will experience a large
disturbance. Two threshold values are then preselected to determine the start and end
times of entering or leaving: a high threshold amp1 corresponds to a person’s passing by
the routers and initiates the crowd counting process. A smaller threshold amp2 determines
the start and the end time of the entering or leaving. In other words, once the signal reaches
above amp1, the proposed method searches to both the left and right sides of amp1 in time
to find the time instances at which the signal strengths are equal to amp2. The time instant
on the left side of amp1 (or before the time of amp1) that equals amp2 is the start time.
The time instant on the right side of amp1 (or after the time of amp1) that equals amp2
is the end time. Moreover, the minimum time of entering and leaving is preselected. If
the time difference between the start and the end time is less than the minimum time, the
signal detected is considered an interference signal and ignored. Initially, we take amp1
to be equal to one-half of the maximum value of amp and amp2 to be equal to one-eighth
of the maximum value of amp. They are then adjusted manually during the process of
developing the database. The computational algorithm for the double threshold method is
shown below (Algorithm 1).

Figure 5 shows the result of applying the double threshold method that leads to deter-
mining the start and end times for entering or leaving a room. Note that the normalization
is applied to the short-term energy to remove the adverse effects of the relative differences
among different data packets.
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Algorithm 1: Determination of the start and end times.

Input: amp, amp1, amp2,
Output: v_Begin, v_End
for n = 1: length(amp)

switch status
case {0, 1}

If amp(n) > amp1
Identify the entering and leaving stage;
else if amp(n) > amp2
May be the entering and leaving stage;

else
No one entering and leaving;

End if
case 2

if amp(n) > amp2
Keep entering and leaving stage;

else
entering and leaving stage will end;

else
End of entering and leaving stage;

End if
case 3

Record the current stage and look for the next stage
End switch

end for

Figure 5. Determination of the start and end times of entering or leaving.

2.3. Determination of the Number of People

Once the start and end times are determined, the signals detected between the start
and end times are processed to find the number of people. The processing is conducted in
comparison with a signal database, which has been developed in advance. The database
is assumed to have been developed for eight scenarios: one person entering, one person
leaving, two persons entering, two persons leaving, three persons entering, three people
leaving, one person entering and leaving with a child, and persons carrying a child.

The similarity between the detected signals and the database is measured and used to
determine the number of people. However, the length of the signal detected and analyzed
can be different from that of the database since it changes with time. If a simple reduction
or extension of signal length is applied, the results are not accurate. To address this issue,
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we adapt the dynamic time warping (DTW) algorithm. The DTW algorithm is proposed
in [31], and it is used to solve the problem of uneven speaking speeds in the speech
recognition of isolated words. Here, we adapt the DWT for measuring similarity between
the length-varying signal collected and the database.

More specifically, the DTW is an optimization algorithm. In application to our case, it
is used to find the minimum Euclidean distance between the signal data received and the
sample data in the database:

D = min
L

∑
i=1

d[x(i), Rk(i)] k = 1, 2, . . . , N, (4)

where x(t) represents the signal (the signal between start time and end time), Rk(i) repre-
sents the kth data set of the database, and L represents the total number of the segments in
the database. N is the number of the datasets. Finding the number of persons is to search
for the number of people that give the minimum Euclidean distance or smallest D of (4).

2.4. Determination of the State of Entering and Leaving

Once the number of people is determined, their state of entering or leaving needs to
be decided. A variance threshold method is developed to carry out the task. The CSI signal
strength received is shown in Figure 6a when a person is leaving and in Figure 6b when
a person is entering. Since the Wi-Fi routers are placed inside a room, the signal inside
is more cluttered than outside, mainly due to the signal multipath. Therefore, the signal
variance inside is larger than that outside. As a result, the variance threshold method
shown below is proposed to determine the state of entering or leaving. More specifically,
the following formula is used for judging the state of entering or leaving:{

If vt−1 ≥ vT&vt+1 < vT ⇒ entering
If vt−1 ≤ vT&vt+1 > vT ⇒ leaving

(5)

where vt−1 represents the variance of the interval signal in the previous segment and vt+1
represents the variance of the gap signal in the next period. vT represents the threshold
that is the mean value of vt−1 and vt+1.

Figure 6. The interval between entering and leaving. (a) Leaving the room. (b) Entering the room.

2.5. Determination of the Velocity

The walking speed of a person has an impact on the number of data packets received.
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Their relationship is measured during the development of the database. The result
is shown in Figure 7 in our case. In this paper, the method of curve fitting of a rational
function is used. The fitting algorithm took 0.33 s in this paper. The following is the
curve-fitting equation for the speed estimation:

u =
p1

L + p2
, p1 = 162.7, p2 = −6.01 (6)

where u represents the speed of entering or leaving, p1 and p2 are the fitting constants, and
L represents the number of data packets received between the start and end times. The
MATLAB toolkit is used linear fitting. Once (6) is obtained, it is used to determine the
walking speed. Then, (6) is used to determine the walking speed.

Figure 7. The curve-fitting relationship of velocity versus the number of data packets received.

3. Results

We conducted the experiments using the above method. They are elaborated as follows.
We used the Wi-Fi transmitter of a desktop equipped with an Intel 5300 NIC. It had one

antenna and broadcasts packets into the air. We used the receiver of a desktop equipped
with an Intel 5300 NIC. It had three antennas, which formed a uniform linear array. We
used a Linux 802.11n CSI Tool [32] to collect the CSI measurements. We employed channel
13 at 2.4 GHz. The transmission rate of packets was set to 100 Hz. We used MATLAB to
process the CSI data.

We conducted the experiments in the two indoor environments: a large empty labora-
tory and a small office room with furniture and students, as shown in Figures 8 and 9. The
transmitter and receiver were placed on both sides of the door at a distance of about 1.2 m
apart. There are many desks, chairs, and equipment in the laboratory. Seven volunteers
(three males and four females) participated in the experiment. They walked through the
door, as shown in Figure 10.
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Figure 8. Experiment with a large empty laboratory.

Figure 9. Experimental setup with a small office room.

Figure 10. Participants walking through the door.

3.1. Detection of Passing Directions: Entering or Leaving (Exiting)

In the case of a large empty laboratory, we tested for two persons entering and leaving
100 times, and three persons 103 times. The accuracy of entering is 100% for two persons
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and 100% for three persons. The accuracy of exiting is 100% for two persons and 100% for
three persons. For comparison purposes, the Door-Monitor’s [28] accuracy is also shown in
Figure 11. The signal outside the door is weak due to the attenuation by the walls. Walking
by humans causes a smaller CSI signal variance than that inside the door. By utilizing the
difference, the proposed algorithm is robust. Unlike the method of Reference [28] that uses
the two (or more) antennas and the phase difference between them, the proposed method
is independent of the number of antennas and can work with a single antenna.

Figure 11. Accuracy of passing direction detection at a large empty laboratory. (a) Enter. (b) Exit.

In the case of a small office room with furniture and students, we tested for two
persons entering and leaving 103 times, three persons 100 times, four persons 103 times,
and five persons 102 times. The accuracy of entering is 100% for two persons, 96% for three
persons, 100% for four persons, and 100% for five persons. The accuracy of exiting is 100%
for two persons, 98% for three persons, 100% for four persons, and 100% for five persons.
For comparison purposes, the Door-Monitor’s [28] accuracy is also shown in Figure 12.

Figure 12. Accuracy of passing direction detection at small office room. (a) Enter. (b) Exit.

3.2. Determination of the Number of People

In the case of the large empty laboratory, we tested for one person entering or leaving
100 times, two persons 100 times, and three persons 103 times. The accuracy is 100% for
one person, 81% for two persons, and 95% for three persons.

Table 1 presents the test results for the number of people in the large empty labo-
ratory. For instance, the fourth column shows that, for the 103 tests of the three-person
cases, the result is five tests showing one person (incorrect) and 98 tests showing three
persons (correct).
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Table 1. Test results of the numbers of persons in the case of a large laboratory.

Detected

Actual
One Person
(100 Tests)

Two Persons
(100 Tests)

Three Persons
(103 Tests)

One person 100 19 5
Two persons 0 81 0

Three persons 0 0 98

In the case of the small office, we tested the cases of one person 101 times, two persons
103 times, three persons 100 times, four persons 103 times, and five persons 100 times. The
accuracy is 98% for one person, 98% for two persons, 82% for three persons,93.2% for four
persons, and 75% for five persons.

Table 2 presents the test results for the number of people in the small office. For
instance, the fifth column shows that, for the 100 tests of the three-person cases, the result
is 10 tests showing two persons (incorrect), three tests showing one person (incorrect), five
tests showing four persons (incorrect), and 82 tests showing three persons (correct).

Table 2. The test results for the number of persons in the case of a small office.

Detected

Actual
One Person

Two
Persons

Three
Persons

Four
Persons

Five
Persons

One person 99 0 3 0 0
Two persons 0 101 10 7 0

Three persons 2 0 82 0 0
Four persons 0 2 5 96 25
Five persons 0 0 0 0 75

The above test results are applicable for either people entering or leaving. The pro-
posed algorithm can decide the passing directions (whether it is entering or leaving) and
then the number of people. It can account for the situation where the number of people
entering is different from the number of people leaving. The results of the determination
of the number of people entering or leaving are almost identical since the detection of the
passing directions is virtually 100% accurate.

3.3. Estimation of the Walking Speed

We tested the case of one person entering and leaving the room 26 times. The cumula-
tive density function for the speed estimation accuracy is shown in Figure 13. As can be
seen, the accuracy rate for the speed error of less than 0.241 m/s is 75%. For the speed error
over 0.7 m/s, the accuracy rate is 100%.

Figure 13. The cumulative density function of the speed detection accuracy.
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3.4. Impact of the Sizes of the Objects Carried

In many situations, persons entering or leaving a room may be carrying children
or objects. Therefore, it is useful to investigate the impact of children and objects on the
detection accuracy. Along this line, we tested the following cases: an adult walking with a
child, holding a child, dragging a suitcase of size 40 cm × 26 cm × 50 cm, and carrying
a carton box on their shoulders. We conducted 10 tests for each case. The results are
shown in Figure 14. Our proposed method performs better than the conventional SVM in
these scenarios. Note that the SVM has the previous filtering steps and is given the same
conditions as those for the proposed method. For example, the SVM approach uses the
same predeveloped database. In such a way, we can compare the proposed method and
the SVM approach fairly.

Figure 14. Accuracy in determining the number of persons entering or leaving the room with a child
or objects carried.

From Figure 14, we can see that dragging an object (either a person or an object) has
a higher accuracy than holding an object. This is perhaps due to the spatial separation
between the person and the object, and the object being dragged is larger than the object
being held.

3.5. Impact of the Disturbance

In order to verify the stability of the algorithm, we considered the influence of people
walking indoors on the accuracy of number recognition. The result was shown in Figure 15.
If the room is undisturbed, the average identification rate is 95%. The recognition rate is
88% when someone else is moving in the room.

Figure 15. Movement of other people as disturbance.
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4. Conclusions

Counting the number of people entering and leaving a room provides important
information in human traffic control and flow analysis. Few papers used CSI signals to
estimate the number of people entering and leaving a room. We found only one relevant
paper that has been published so far [28]. It uses a deep learning approach and requires
training with a lot of data. Our method does not need training. It only requires the
predeveloped sample database. In addition, at least two receiving antennas are used in [28]
with higher cost and complexity. The proposed method, however, only needs one receiving
antenna. It also computes the walking speed.

The experiments show that, in a large empty laboratory, the accuracy rates in deter-
mining the number of people are 100% for one person, 81% for two persons, and 95% for
three persons. In a small office, the accuracy rates for detecting the number of people are
98% for one or two persons, 82% for three persons, 93% for four persons, and 75% for five
persons. For the walking speed estimation, the accuracy rate for the speed error of less
than 0.2410 m/s is 75% for a single person. A group of five people may be considered
as a reasonably extreme case due to the size of the door. If more than five people enter
or leave the door and they are close to each other, the proposed method will present the
result of five people. If they are not close to each other, the proposed method will count
them separately.

The proposed algorithm is at the laboratory research stage and is not ready for real use
yet. However, the ultimate goal is to make it ready for real use and to embed it in the Wi-Fi
router—this paper is the first step development and verification of an algorithm. Its real-
time implementation and counting multiple persons entering and leaving simultaneously
are topics of future research.
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