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Abstract: Face morphing and related morphing attacks have emerged as a serious security threat
for automatic face recognition systems and a challenging research field. Therefore, the availability
of effective and reliable morphing attack detectors is strongly needed. In this paper, we proposed
a framework based on a double Siamese architecture to tackle the morphing attack detection task
in the differential scenario, in which two images, a trusted live acquired image and a probe image
(morphed or bona fide) are given as the input for the system. In particular, the presented framework
aimed to merge the information computed by two different modules to predict the final score. The
first one was designed to extract information about the identity of the input faces, while the second
module was focused on the detection of artifacts related to the morphing process. Experimental
results were obtained through several and rigorous cross-dataset tests, exploiting three well-known
datasets, namely PMDB, MorphDB, and AMSL, containing automatic and manually refined facial
morphed images, showing that the proposed framework was able to achieve satisfying results.

Keywords: face morphing; morphing attack detection; differential morph attack detection; single-
image morph attack detection; deep learning; Siamese networks

1. Introduction

Recently, morphing attacks have raised the interest of researchers belonging to dif-
ferent research areas, ranging from biometrics to computer vision [1,2]. Indeed, it has
been proven [3] that morphing attacks represent a concrete and serious threat for various
applications relying on identity verification: for instance, this is the case of the Automated
Border Control (ABC) gates often present in international airports, which automatically
verify if the face photo stored in the electronic Machine Readable Travel Document (eMRTD),
such as an e-passport, corresponds to the face of the document owner. Through a face
morphing operation, which consists of merging two identities into a single face, two sub-
jects can share the same legal document, e.g., the passport or the ID card. In particular, a
subject with no criminal records (here referred to as accomplice) could apply for an official
document presenting a photo morphed with the face of a criminal. Then, the criminal can
use that document to elude identity-based controls. Here, it is important to note that the
resulting document is perfectly regular, and it can be used to fool both the human control
(the police officer) and the current Commercial-Off-The-Shelf (COTS) Face Recognition Systems
(FRSs). Moreover, thanks to the wide spread of ready-to-use face morphing tools, such
as FaceFusion [4], FaceMorpher [5], and UBO-Morphed [6] also a criminal without specific
knowledge can easily obtain high-quality morphed images: in this scenario, the main
obstacle is finding a similar subject, in terms of visual appearance.

Therefore, in this context, methods that tackle the task of Morphing Attack Detection
(MAD), i.e., algorithms that are able to automatically and accurately detect morphed face
images, are strongly demanded [7]. These systems are expected to cooperate with existing
FRSs, providing a score that reveals if an input image is bona fide or not (morphed).
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In this paper, we proposed an MAD framework based on a double Siamese architec-
ture. The underlying idea is to develop a framework consisting of two deep learning-based
modules, the former (here referred to as the “Identity” block) specialized in the extraction
of identity information and the latter (“Artifact” block) designed to detect the presence
of artifacts produced by the morphing process. A final element aimed to merge these
two sources of information to output the final prediction. The framework receives as
the input a couple of facial images and predicts a score that indicates the presence of a
morphed face image or not. Each module works on both input images. Specifically, the
first module compares the two input faces and computes a face verification score, while
the second one detects artifacts located, for instance, in the proximity of the main facial
features, such as the nose, the mouth, and the eyes (some examples are shown in Figure 1).
These artifacts are usually produced by a misalignment of the facial landmarks during the
morphing procedure.

Figure 1. Examples of artifacts usually produced by morphing algorithms. These artifacts are pro-
duced by an inaccurate detection of the facial landmarks that are used during the morphing procedure.
Ghosts, blurred areas, and texture inconsistency are visible and highlighted with red circles.

2. Related Work

In the field of morphing attack detection systems, two main scenarios can be distin-
guished relying on the number of input images: Single-image (S-MAD) and Differential
(D-MAD) methods [8]. Hereafter, we briefly analyzed these two types of approaches,
focusing more on differential methods to which the proposed method belongs.

2.1. Differential Morphing Detection Attack

Differential methods, also referred to as two image- or pair-based methods, receive a
couple of face images as the input. The task consists of deciding if the first image (probe)
is morphed or not; the second image (which is a trusted live capture) can be used as a task
helper (e.g., compared with the first one to point out inconsistencies). These two images
can be acquired during, for instance, the passport issuance in which the first image is the
photo provided and the second is the live acquisition; also, during the controls at ABCs, the
live image is acquired through the automated face verification procedure, and the probe is
the image stored in the eMRTD.

A first simple approach to tackle this task was described in [9]: a comparison between
the facial landmarks extracted in bona fide and morphed images is carried out. Differences
are expressed in terms of the Euclidean and angle distance, and the best results, although
not very satisfactory, are obtained using a Support Vector Machine (SVM) [10] with a Radial
Basis Function (RBF) kernel. The method proposed in [11] aimed to invert the morphing
process to detect if more than one identities are merged in the same face. Experimental
results revealed an overall good accuracy, even though the main issue was represented by
the fact that usually the morphing process is not a simple linear combination. Following
a similar idea, in [12], a face de-morphing Generative Adversarial Network (GAN)-based
method was proposed to restore the accomplice’s facial image, starting from a couple
of images. The GAN framework, referred to as FD-GAN, is based on symmetric dual-
network architectures and two levels of restoration losses. The state-of-the-art in the
MAD scenario is currently represented by the recent work of Scherag et al. [13]: a CNN
network trained to solve the face recognition task, i.e., a ResNet architecture trained with
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an angular margin loss [14], here merely referred to as ArcFace, is used to extract visual
features from both input images. As stated by the authors, the network was pre-trained on
the original datasets, and no further training procedures were conducted on the network;
this element ensures the lack of overfitting of the deep learning model to the morphing
detection task. The extracted features were subtracted and passed to an SVM for the final
classification. We note that this approach tackled the D-MAD scenario exploiting only
the differences in terms of identity between the accomplice and the criminal; potentially
visible artifacts related to a morphing process applied on the input images were not directly
used to predict and consolidate the final score. Recently, a variety of anthropometry-based
features were proposed in [15], trying to capture the craniofacial proportions, and used as
the input for an SVM classifier. In [16], a deep learning-based architecture was trained by
triplets of face images, employing the landmark disentanglement and subjects’ appearance.
Specifically, this approach computes the final score using the distances between landmarks,
the appearance (consisting of two different, but complementary embedded representations),
and the ID information.

2.2. Single-Image Morphing Detection Attack

Single-image methods, also referred to as no-reference or forensic methods, receive
only one face image as the input. Thus, the morphing attack detection is conducted on a
single image that can be the photo presented to the police officer during the enrollment
procedure or the face read from the eMRTD during the controls, for instance at the ABC
gates. These approaches work under the assumption that the morphing procedure leaves
specific anomalous patterns and traces on the processed images, in terms of artifacts, tex-
ture anomalies, and other visual clues. A large majority of literature works belong to this
approach, which is usually considered more challenging with respect to the differential
scenario. A seminal work [17] aimed to extract discriminative texture features through tra-
ditional approaches, i.e., Local Binary Patterns (LBPs) [18], Binarized Statistical Image Features
(BSIFs) [19], and the Histogram of Oriented Gradient (HOG) [20], classifying them through
an SVM with an RBF kernel. However, the final results were limited in accuracy. Similarly,
authors of the work [21] proposed the combined use of HOG, LBP, and Scale-Invariant
Feature Transform (SIFT) [22] features extracted from grayscale 320× 320 images. Different
SVMs were then trained for each descriptor, and the final scores were merged through a
score-level fusion strategy. Experimental results showed that the combined use of different
descriptors improved the performance of single descriptors, but a manual fine-tuning of
each descriptor’s hyper-parameters was strongly required. A feature fusion method to
detect morphed images was proposed in [23], in which features were extracted through
two different deep learning networks, i.e., VGG19 [24] and AlexNet [25]. The authors
stated that two different neural networks, even though trained on the same dataset, could
provide complementary features that were finally classified by a Probabilistic Collaborative
Representation Classifier (P-CRC). Other works proposed to use different types of descriptors
(instead of the aforementioned hand-crafted features) and approaches. Zhank et al. [26]
proposed to compute the Fourier spectrum of sensor pattern noise to detect morphing in
images. On an input pre-processed image, a quantized statistics feature was extracted and
then classified as normal or morphed by an SVM. Similarly, Scherag et al. [27] proposed
to extract spatial and spectral features from the Photo Response Non-Uniformity (PRNU).
After a feature aggregation phase, a final decision was made by a simple threshold-based
operation. In [28], the authors analyzed the correctness of the illumination, estimating the
direction of the light sources. These estimations were then compared with the synthetic
reference: bad alignments and different geometries indicated the presence of morphing.
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2.3. General Considerations

One of the main obstacles in the development of MAD algorithms is the lack of publicly
released datasets, with a great data variety in terms of the number of subjects and morphing
tools exploited. This is mainly due to privacy constraints. This leads to some criticalities, as
reported in [2]. Indeed, there is a need for cross-dataset evaluations. All the above-reported
S-MAD and D-MAD works presented a good level of performance in in-house experiments,
but they were usually evaluated on limited sets, in which the testing data were a sub-
sample of the dataset used for the training and validation phases. Only a few works [7,29]
tried to investigate the generalization capabilities of their proposed approach. Therefore, in
this paper, we evaluated our method with a cross-dataset modality, training and validating
the proposed approach on a dataset, and testing the framework on two different ones. In
addition, we avoided tuning our method on particular a priori considerations related to
the type of the morphing tool used and the quality of the input images.

3. Proposed Method

In this section, we report the details of the proposed method—which is based on a
double Siamese architecture—the pre-processing of input images, and the adopted training
procedure. An overview of the proposed framework is depicted in Figure 2. As shown,
working in the D-MAD scenario, it receives as the input a couple of images. The proposed
framework consisted of two different modules, referred to as “Identity” (orange) and
“Artifact” (blue) blocks, respectively, and each block was based on a Siamese network
followed by a MultiLayer Perceptron (MLP) that act as fusion layers. Finally, a Fully
Connected layer (FC) merges the features originated from the two modules and outputs
the final score.

Figure 2. Overview of the proposed framework working in the D-MAD scenario. As shown, the
framework was mainly based on two modules: the first module, referred to as the “Identity” block,
focuses on the subjects’ identity of the input images, computing a sort of face verification score; the
second one, namely the “Artifact” block, is based on the analysis of artifacts produced by morphing
operations, such as ghosts, blurred areas, and texture inconsistencies (as shown in Figure 1). The
features computed through these modules are then merged by the final fully connected layer to
output the score that reveals whether an image is morphed or not.

3.1. Data Pre-Processing

The framework is fed with a pair of RGB facial images, a trusted live capture and a
probe image. Then, the first step is to detect the face in order to isolate the face area from the
background. This operation is based on two different face detection methods. Following
the original implementation described in [14], the Identity block relies on the MTCNN
detector [30], based on a multi-task cascade structure with three deep convolutional neural
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networks that predict face and landmark locations. The input size of the MTCNN network
and of this module is 112× 112 pixels. Instead, for the Artifact block, the method contained
in DLib libraries [31] is exploited; it is based on the computation of HOG features [20]
and the adoption of a linear classifier. A sliding window detection scheme is employed
in combination with an image pyramid system in order to improve the scale invariance.
The DLib detector is able to predict up to 68 landmarks, organized following the MPEG-4
standard, a higher number compared to the 5 landmarks provided by the MTCNN detector
adopted. After the computation of facial landmarks, we cropped the face area adding a 20%
offset in width and height with respect to the initial facial landmark position. Moreover,
the use of the DLib detector permitted obtaining more accurate facial landmark locations
on the face, especially for the jawline part, needed to correctly crop the frontal face, and
to directly work on images with full spatial resolution. Finally, input face images of the
Artifact block were resized to a spatial resolution of 224× 224 pixels.

3.2. Double Siamese Architectures

As mentioned before, from a general point of view, the framework is divided into two
blocks, as shown in the right part of Figure 2. Each block is based on a Siamese network,
i.e., a neural network with two branches that share the same architecture and weights and
that are finally merged in a single deep architecture (in our case, through an MLP). The two
blocks were designed to focus on different types of features. The Identity block, inspired
by the works proposed in [13,14], was based on a CNN trained on huge RGB datasets
for the face recognition task. Then, we expected that this block would be able to extract
highly discriminative features that were related to the identity of the input subjects. The
second element, referred to as the Artifact block, was instead based on a CNN specifically
trained to extract features that were directly related to the presence of artifacts that could
be produced by a generic face morphing algorithm.

3.2.1. Identity Block

In this block, we adopted a state-of-the-art ResNet50 [32] architecture as the backbone,
trained with the additive angular margin loss [14] for the face recognition task, on MS-Celeb-
1M [33] and VGGFace2 [34], large-scale datasets with trillions of face pairs. Its performance
consistently outperformed current face recognition approaches available in the literature:
the two branches of the Siamese network were based on this architecture and shared their
weights. From an implementation point of view, the last fully connected layer was removed,
and the feature maps from the last convolutional layer were extracted. Indeed, given two
input facial images, the two branches output two feature maps with a size of 512, which are
then combined through a subtraction operation, preserving the dimension. The resulting
feature map is fed into a multi-layer perceptron, composed of three fully connected layers
with 1024, 512, and 2 neurons, respectively. Dropout regularization (p = 0.5) was applied
on the first two layers of the MLP.

3.2.2. Artifact Block

This block was based on the recent SE-Resnet50 [35] architecture, originally proposed
for the image classification task. Similar to the previous block, the two branches of the
Siamese network were both based on this architecture and shared their weights. Given two
input facial images, two different feature maps of size 2048 were computed. Different from
the previous case, these features were then concatenated, achieving a final dimension of
4096. Indeed, in the Identity block, the identity features, whether computed on input images
that belong to the same subject, are “symmetrical”, and then the result of the subtraction
procedure can reveal the presence of a second identity. On the contrary, the features related
to the presence of artifacts are not “symmetrical”, since morphing artifacts are present only
on one image, and then, in this case, the concatenation operation is more discriminative
for the final classifier. Moreover, features extracted from the trusted live image (in which
morphing was not applied) represent a touchstone, useful to filter out artifacts related,
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for instance, to the quality of the image. Internal experimental results confirmed the
effectiveness of this approach. The last part of the Siamese model is represented by an
MLP architecture with three fully connected layers of size 1024, 512, and 2, respectively.
Dropout regularization was applied on the first two layers with p = 0.5.

3.3. Training Procedure

The outputs produced by the two blocks were finally concatenated and used as
the input for the last fully connected layer with 2 neurons. Then, the final output was
represented by a score in the range [0, 1], i.e., the probability if the probe input image
was bona fide or morphed. From a general point of view, there were five networks that
composed the framework and that were to be trained: for each Siamese block, the backbone
architectures (2 networks since the two branches shared the weights), the two MLPs at the
end of blocks (2 networks), and the final fully connected layer. The training of the whole
framework followed a two-step procedure.

In the first step, each architecture used as a backbone in the Siamese networks was
individually trained. In the case of ResNet50, we followed the authors’ implementation [36]
in order to guarantee the full reproducibility of the performance obtained in the original
paper, exploiting the additive angular margin loss [14]. We used MXNet [37] as the
deep learning framework and the weights obtained from the training procedure on the
MS1M [33] and VGGFace2 [34] datasets. As reported in [13], we note that the use of a
pre-trained model prevents overfitting phenomena that can occur due to the limited size of
training datasets containing morphed images. For the backbone of the second block, we
started from the SE-ResNet50 architecture trained on the VGGFace2 dataset. This dataset
guarantees large variations in face age, illumination, pose, and ethnicity with more than
3 million faces belonging to more than 9 k different subjects. Then, this network was fine-
tuned for 30 epochs, using the Stochastic Gradient Descent (SGD) optimizer, with a learning
rate equal to 10−4 and a momentum of 0.9. No early stopping techniques were applied.

In the second step, the whole framework was trained in an end-to-end manner,
freezing the weights that belonged to the backbones of each block, helping to avoid
overfitting on them. Specifically, this training step was divided into two sub-phases. In
the first one, only the Identity block was trained, i.e., the Artifact block and the following
MLP were frozen. Then, in the second phase, also the Artifact block and the following
multilayer perceptron were included in the training. This particular training procedure
(different, for instance, from training all networks at the same time), led the framework
to avoid unwanted side effects, such as the neglect of one of the block’s features from the
final classification. In both training procedures, we conducted training operations using
the Adam [38] optimizer, with an initial learning rate of 10−3 and a weight decay of 10−4.
In our experiments, we trained the Identity block for 10 epochs and the Artifact block, in
the second step, for 2 epochs.

4. Results

In this section, the experimental results of the proposed framework are reported and
discussed. In particular, we firstly analyzed the performance in the D-MAD scenario, that
is the scenario directly addressed by the proposed framework. Following, we report an
investigation about the performance in the S-MAD scenario, using a single backbone of the
Artifact block in order to predict if a single face image is morphed or bona fide.

4.1. Datasets

For our experimental evaluation, we used three different datasets: the Progressive
Morphing Database (PMDB) [11], the MorphDB [11], and the AMSL Face Morph Image [39]
datasets. We conducted a cross-dataset evaluation, exploiting the PMDB dataset only for
the training phase, while performance was computed on the MorphDB and the AMSL Face
Morph Image datasets.
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4.1.1. Progressive Morphing Database

The PMDB dataset consists of more than 1000 facial morphed images obtained through
the morphing algorithm described in [11]. The original facial images were collected from the
well-known AR [40], FRGC [41], and Color Feret [42] databases and belong to 280 subjects
(134 males and 146 females). Morphed images are automatically created: this element
guarantees a large number of samples available. Nevertheless, the absence of any manual
retouch limits the overall quality of morphed images, and visible artifacts, such as texture
inconsistencies, ghosts, and blurred areas, are present and visible, especially in the area of
the eyes, mouth, and face contour (see Figure 1). Further details of the dataset were reported
in [11]. We used this dataset in the training procedure, splitting data into training and
validation subsets in a cross-subject manner. Specifically, we put 225 subjects (108 males
and 117 females) in the training set and the remaining 55 (26 males and 29 females) in the
validation set. In this way, during the training procedure, the network was forced to learn
features related to the presence of artifacts and not related to the identity of the subjects.

4.1.2. MorphDB

The MorphDB dataset was created starting from the images collected in the FRGC [41]
and Color Feret [42] datasets. It consists of 100 morphed images obtained from 100 different
subjects (50 males and 50 females). For each morphed image, the two original images and
a variable number of test images are also included. The Sqirlz Morph 2.1 [43] algorithm
was used to generate morphed images with a morphing factor in the range [0.3, 0.4]. These
images were then manually selected in order to maximize the probability of fooling FRSs
and human experts (such as the officer at the passport issuing stage). Moreover, morphed
images were manually retouched to remove at best any visible artifacts. In this way,
MorphDB is different from the PMDB dataset, since it contains high-quality morphed
images without evident artifacts. This element led us to use this dataset during the testing
phase. Further details of the dataset were reported in the original work [11], while some
sample images are reported in the first row of Figure 3.

(a) Accomplice (b) Morphed (c) Criminal

Figure 3. Sample images from the MorphDB (first row) and AMSL (second row) datasets. The final
morphed image, along with the accomplice and the criminal starting images, is reported, in order to
appreciate the different morphing factor used for the dataset generation. It can be noticed that the
morphed image in AMSL is a balanced mix of both original subjects, while it more similar to the first
subject in MorphDB.
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4.1.3. AMSL Face Morph Image Data Set

This dataset [39] consists of morphed images generated from two different sources.
The first one is the Face Research Lab London Set [44], while the second one is the Utrecht
ECVP Dataset [45]. All face images comply with the requirements of the ICAO portrait
quality [46]. A total number of 2175 morphed images were generated through the approach
reported in [47], with a morphing factor equal to 0.5, belonging to 102 adult faces. All the
generated images were created to fit on a single chip of the eMRTD [48], then they were
compressed with the JPEG2000 algorithm, and the maximum size of each image was 15 kB.
We note that this dataset is different from the previous ones, since JPEG2000 compression
tends to delete most of the visible artifacts introduced during the morphing procedure.
The second row of Figure 3 contains some images from this dataset.

4.2. Metrics

The experimental results are reported exploiting the Bona Fide Presentation Classifica-
tion Error Rate (BPCER) and Attack Presentation Classification Error Rate (APCER) metrics,
commonly used for the MAD scenarios. Given N bona fide images, the BPCER is computed
as the percentage of images falsely classified as morphing presentation attacks. Similarly,
given M morphed images, the APCER is computed as the percentage of images falsely
classified as bona fide. From a mathematical point of view, these metrics are expressed
through the following equations:

BPCER(τ) =
1
N

N

∑
i=1

H(bi − τ) (1)

APCER(τ) = 1− 1
M

M

∑
i=1

H(mi − τ) (2)

where bi and mi are detection scores on bona fide and morphed images, respectively, τ
is a score threshold, and H(x) is the unit step function defined as: H(x) = {1 if x ≤ 0,
0 otherwise}. In addition, we expressed the BPCER also with respect to a defined value of
APCER: BPCER100 and BPCER1000 represent the lowest BPCER related to APCER ≤ 10%
and APCER ≤ 1%, respectively. We report also the Equal Error Rate (EER), the point at
which BPCER and APCER assume the same value, and the Detection Error Trade-off (DET)
curve, in which APCER and BPCER are plotted.

4.3. Experimental Evaluation in the D-MAD Scenario

The proposed framework was tested on the MorphDB and AMSL datasets in the
D-MAD scenario, i.e., two facial images were given as the input. In addition, we compared
our system with recent approaches available in the literature. As a first competitor, the
approach presented in [17] was implemented; it investigates the use of several hand-
crafted features in combination with an SVM classifier. In our implementation of this
work, we initially tested all features and selected LBP features since this achieved the best
performance on the test sets. For the second competitor, the method [21] proposed for the
S-MAD scenario was adapted to work in the case of the differential scenario: it was based
on a combination of features computed on a single image that was used to train an SVM
classifier. To adapt this work, we computed descriptors for both input images, and we
combined them to train and test an SVM classifier. Moreover, we implemented the current
state-of-the-art method proposed by Scherhag et al. in [13], based on an SVM trained to
classify the features computed by the ResNet50 architecture described in [14], extracted
from two input images. Finally, for the AMSL dataset, we report the results of the method
described in [16] taken from the original paper.

Results are reported in Tables 1 and 2. All methods were tested on two types of
couples, as indicated in the first column of both tables: “criminal” means that the probe
image was associated with the image that belonged to the criminal, while “accomplice”
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means that the trusted image belonged to the accomplice. “Both” denotes that all the
aforementioned couple types were merged into a single set. The morphing process, which
merges two faces into a single one, was based on the morphing factor (α) that weights the
presence of the two original subjects. Therefore, if α is different from 0.5, the final morphed
image will be more similar to one of the two subjects. The choice of the correct α is a key
element for the success of the morphing attack. In order to fool the human officer during
the passport issuance, the morphed photo must be similar enough to the accomplice (the
person requesting the document). On the contrary, during the control at automated gates,
the morphed photo must be similar to the criminal [49] (the person that carries the attack
thanks to the accomplice’s collaboration). Therefore, the use of different types of couples
(i.e., different values of α) is interesting and useful to monitor the performance of MAD
systems during all the steps involved and required in face morphing attacks.

Table 1. Experimental results obtained on the MorphDB [11] dataset. In the first column, we report
the type of couple that is created with the probe image and the image of the criminal or the accomplice
(or both), leading to different scenarios. For further details about the metrics reported, see Section 4.2.

Couple Type Method EER BPCER100 BPCER1000

Criminal

[17] 6.78% 66.4% 92.9%
[21] 6.01% 37.8% 72.2%
[13] 0.00% 0.00% 0.00%

Ours 0.00% 0.00% 0.00%

Accomplice

[17] 11.1% 80.7% 91.9%
[21] 10.5% 51.2% 90.7%
[13] 11.5% 49.7% 65.5%

Ours 1.42% 1.85% 4.50%

Both

[17] 8.83% 69.3% 93.8%
[21] 8.57% 40.4% 90.8%
[13] 7.37% 33.8% 63.9%

Ours 1.06% 1.32% 4.50%

Table 2. Experimental results obtained on the AMSL [39] dataset. In the first column, we report the
type of couple that is created with the probe image and the image of the criminal or the accomplice
(or both), leading to different scenarios. The results of [16] a were obtained when the trusted image
was known to the detection framework.

Couple Type Method EER BPCER100 BPCER1000

Criminal

[17] 8.92% 85.3% 98.0%
[21] 5.86% 14.7% 66.7%
[13] 0.00% 0.00% 0.00%

Ours 0.14% 0.00% 5.88%

Accomplice

[17] 5.93% 56.9% 83.3%
[21] 6.86% 25.5% 59.8%
[13] 0.25% 0.00% 1.96%

Ours 0.09% 0.00% 1.96%

Both

[17] 7.50% 75.5% 96.6%
[21] 6.86% 19.6% 66.2%
[16] 3.11% - -

[16] a 2.36% - -
[13] 0.13% 0.00% 1.96%

Ours 0.12% 0.00% 5.88%

As reported in Table 1, the method described in [13] and the proposed framework
obtained high accuracy in the “criminal” scenario. Probably, in this setting, features
related to the identity were sufficiently discriminative, and then, the classification was
effective. Different results were instead obtained in the “accomplice” scenario, in which
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the classification based only on identity features was not so reliable: we observed that [13]
had a dramatic change in performance. In contrast, the proposed framework seemed to be
able to combine identity-based and artifact-related features and overcame the competitors
in all the metrics reported. Similar observations can be made also for the AMSL dataset
(Table 2), in which the performance in the “criminal” setting of our method and that of [13]
were close. The “accomplice” scenario presented similar results, in terms of EER, to the
“criminal” one: while in the MorphDB dataset, morphed images were very similar, in terms
of identity, to the accomplice, in the AMSL dataset, morphed ones were halfway between
criminal and accomplice, as depicted in Figure 3. Overall, this was due to the different
morphing factors adopted during the creation of these two datasets, which influenced
the proportion of the criminal and accomplice in the final morphed face. Finally, we note
that the introduction of JPEG2000 compression negatively affected the performance of
the proposed framework, since artifacts tended to be deleted. A general overview of the
obtained results is depicted with the Detection Error Trade-off (DET) curves reported in
Figure 4.

(a) MorphDB (b) AMSL

Figure 4. Detection Error Trade-off (DET) curves computed on the MorphDB (a) and AMSL (b) datasets.

4.4. Ablation Analysis

As detailed before, the proposed framework was based on two different modules,
i.e., the Identity and the Artifact blocks, respectively. Here, we conducted an ablation
study, testing the performance of each single module to investigate its contribution towards
the final morph detection score. Specifically, we removed the last fully connected layer
(see the right part of Figure 2), used to merge features computed by both modules, using
only the MLP to predict the final score. Experimental results are reported in Table 3 and
were computed on couples created with both criminal and accomplice images. As shown,
separated modules generally performed worse than the whole framework, since they relied
on a backbone trained to extract a specific type of feature. Moreover, we observed that the
MorphDB dataset was more challenging in terms of face verification complexity (the EER
of the Identity block was higher), while the AMSL dataset was more challenging in terms
of artifact detection, due to the JPEG2000 compression applied to its images. Therefore,
the last fully connected layer of the framework was a key element in order to merge the
information of each module, allowing balancing the single contributions and achieving
high performance on both datasets.
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Table 3. Ablation study of the proposed framework. For each test dataset (MorphDB and AMSL), we
individually tested the Identity and Artifact blocks, respectively, reporting the results obtained on
couples with both the accomplice and criminal. For the sake of understanding, we show also the
experimental results obtained through the whole framework as reported in Tables 1 and 2.

Dataset Module EER BPCER100 BPCER1000

MorphDB
Identity 8.20% 72.8% 99.4%
Artifact 1.72% 19.0% 25.0%

Both 1.06% 1.32% 4.50%

AMSL
Identity 1.10% 1.96% 5.88%
Artifact 3.16% 6.86% 28.4%

Both 0.12% 0.00% 5.88%

4.5. Analysis of the Siamese Backbone

The choice of the backbone to be used in the blocks was a key element. Indeed,
the backbones of the Siamese networks played a crucial role, since they extracted the
features from the single images, and these features were then processed by the following
components of the proposed framework. Then, in this section, we focused on the backbone
adopted for the Artifact block, since the implementation and the training procedure of
the Identity block’s backbone followed the guidelines of the original paper [14] and of the
method proposed by Scherhag et al. [13].

Firstly, we analyzed whether, given the PMDB dataset as the training set, it was possi-
ble to train a deep neural network from scratch in the S-MAD scenario. This experimental
evaluation was conducted adopting a shallow and limited-in-depth neural network, i.e.,
SqueezeNet [50], that was able to achieve good classification performance with fewer
parameters and a limited model size with the respect to many deep architectures available
in the literature. In Figure 5, we report the graphs of the accuracy and the loss values
on both the training and validation sets obtained by training the network from scratch
(i.e., with initial random weights). As shown (in blue), the limited size and image variety
of PMDB dataset strongly limited the growth of the accuracy percentage and the related
decrease of the loss values. On the contrary, the same SqueezeNet architecture pre-trained
on the ImageNet dataset [51] was able to efficiently learn, as shown by the values reported
in gray. Therefore, for all the experiments reported in this paper, we used pre-trained deep
neural networks fine-tuned on the PMDB dataset.

(a) Loss
(training)

(b) Accuracy
(training)

(c) Loss
(validation)

(d) Accuracy
(validation)

Figure 5. Train and validation loss and accuracy of the SqueezeNet network trained on the PMDB dataset. In blue, values
with the training from scratch, while in gray, values for the training started from the pre-trained network.

A second step of the analysis was to determine the architecture that could provide the
best results for our task. The second column of Table 4 reports a list of network candidates
with the related pre-trained weights available in the literature (and, specifically, for the
PyTorch deep learning framework). For all these architecture, we performed a fine-tuning
stage on the PMDB dataset, and we tested them on the MorphDB dataset. There was
a group of networks trained on the well-known ImageNet dataset and a group trained
on the data provided by two datasets, i.e., VGGFace2 and MS1M. As expected, given a
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dataset, the final accuracy varied relying on the type of architecture exploited. Moreover,
we note that the training on the VGGFace2 and MS1M datasets achieved the best accuracy.
Therefore, we adopted the SE-ResNet50 architecture pre-trained on these two datasets as
the backbone for the Artifact block of our framework.

Table 4. Comparison of the performance in the S-MAD scenario with respect to a variety of architectures and datasets for
the pre-training phase. All networks were then fine-tuned on the PMDB dataset and tested on MorphDB.

Dataset Network EER BPCER100 BPCER1000

VGGFace2 [34]
MS1M [33]

Se-ResNet50 [35] 1.75% 1.50% 7.00%
ResNet50 [32] 2.75% 5.00% 13.50%

ImageNet [51]

AlexNet [25] 6.50% 100.00% 100.00%
ResNet18 [32] 5.25% 17.50% 25.00%
VGG-19 [24] 2.75% 9.50% 27.50%

MobileNet [52] 6.00% 24.50% 35.00%
SqueezeNet [50] 6.25% 11.00% 13.00%

Finally, we investigated the behavior of the networks exploiting the Grad-CAM [53]
and the guided backpropagation [53] algorithms, as implemented in [54]. These algorithms
were proposed in order to visualize and explain the internal behavior of neural networks or,
rather, to visualize the gradient activations given an input image of a specific class. Some
examples are reported in Figure 6, in which in the first row, we report the visualization of
the guided backpropagation (in which colors and contours reveal a high activation of the
gradient), while in the second row, the images produced by the Grad-CAM algorithm (in
which colors tending to red denote high activation values) are reported. In the first column,
we show the result obtained with the SE-ResNet50 architecture randomly initialized and
not trained. As depicted, the network was not able to focus on specific facial areas, but
on the contrary, it took into account arbitrary locations, such as the background and the
neck. In the second and third columns, visual results with the pre-training and fine-tuning
procedures, respectively, are shown and indicate that the network focused on a specific
face element, and in particular, with the fine-tuning procedure, it concentrated attention on
salient central face regions. While we observed a similar behavior on a number of different
images, more studies will be necessary to interpret the model decisions.

(a) No train (b) Pre-trained (c) Fine-tuned

Figure 6. Visual outputs of the guided backpropagation (first row) and Grad-CAM (second row)
algorithms that show the activation of the SqueezeNet architecture used for the S-MAD analysis
(see Section 4.5).
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4.6. Preliminary Results on P&S Images and GAN-Generated Morphed Images

In this paper, we focused on digital images, i.e., the training, validation, and test
procedures were conducted on the digital images available in the publicly released datasets.
We performed some preliminary tests also on printed and scanned (P&S) images, i.e.,
images that were acquired, printed, and finally scanned: this is the typical scenario in
which the ID photo is provided by the citizens printed on photographic paper and then
scanned by the officer during the issuing procedure. As mentioned above, this process
introduces significant changes in images and then strongly influences the accuracy of
MAD systems. To perform this test, we exploited the P&S images present in the MorphDB
dataset (unfortunately, P&S images are not available in the AMSL dataset), obtaining an
EER of 7.14% (BPCER100 = 23.4%, BPCER1000 = 38.7%) on MorphDB. The accuracy of the
framework significantly decreased, even though we note that our framework was not
directly trained or fine-tuned on P&S images.

We also investigated the performance of the proposed framework with images gener-
ated through a GAN-based approach. Specifically, we used the method described in [55]
starting from the criminal and accomplice images available in the MorphDB dataset. The
proposed framework achieved an EER of 9.33% (38% BPCER100 and 54% BPCER1000), de-
spite it not being trained on datasets generated through GAN approaches (i.e., the network
never learned to detect artifacts related to GAN-based generation procedures).

These preliminary tests led us to consider the training data. As described before, the
Artifact block, and specifically its backbone, learns to detect artifacts similar to those present
in the training set. As a consequence, during the testing phase, the network will correctly
detect artifacts already seen during training. Therefore, the choice of the training dataset is
a key element in order to detect certain types of artifacts. Since the underlying idea of the
proposed method was to investigate the combined use of features related to the identity
and artifacts, the choice of training datasets should be made taking into consideration the
variety of morphed images and the use of different morphing tools.

5. Conclusions and Future Work

The proposed framework tackled the D-MAD scenario obtaining satisfying perfor-
mance on both the MorphDB and AMSL datasets. However, we note that the training
phase and the input data played a crucial role in the final performance. In particular, the
system was able to detect artifacts to the extent that they were present in the training set.
In addition, compression and other procedures, such as the P&S operation, could severely
affect the quality of input images and then the performance of the framework. These
limitations can be addressed through the acquisition of new datasets, created with a variety
of face morphing tools, and the adoption of particular data augmentation techniques,
which will be investigated in future work. We believe that this work could represent a
first step towards the definition of a D-MAD strategy that aims to combine identity- and
artifact-related features in a fully deep learning-based pipeline. The proposed framework
was tested following a cross-dataset evaluation, improving performance especially in the
presence of the couple composed of the morphed face and the accomplice. Plenty of future
works can be planned, ranging from the deeper investigation about the use of P&S- and
GAN-generated images in the training and testing sets, to the implementation and compar-
ison with recent methods proposed in the literature. Finally, we will prepare a submission
for the FVC OnGoing [56] and NIST platforms. Unfortunately, this requires a specific
software implementation that is not easy to fulfill and to meet the strict time constraints.
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