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Abstract: Remote sensing technology, such as hyperspectral imaging, in combination with machine
learning algorithms, has emerged as a viable tool for rapid and nondestructive assessment of wine
grape ripeness. However, the differences in terroir, together with the climatic variations and the
variability exhibited by different grape varieties, have a considerable impact on the grape ripening
stages within a vintage and between vintages and, consequently, on the robustness of the predictive
models. To address this challenge, we present a novel one-dimensional convolutional neural network
architecture-based model for the prediction of sugar content and pH, using reflectance hyperspectral
data from different vintages. We aimed to evaluate the model’s generalization capacity for different
varieties and for a different vintage not employed in the training process, using independent test sets.
A transfer learning mechanism, based on the proposed convolutional neural network, was also used
to evaluate improvements in the model’s generalization. Overall, the results for generalization ability
showed a very good performance with RMSEP values of 1.118 ◦Brix and 1.085 ◦Brix for sugar content
and 0.199 and 0.183 for pH, for test sets using different varieties and a different vintage, respectively,
improving and updating the current state of the art.

Keywords: machine learning; convolutional neural networks; transfer learning; hyperspectral
imaging; prediction; grape berries

1. Introduction

The science of winemaking has significantly evolved at every stage of its production
process, starting at the vineyard where much is defined about the quality of wine. In addi-
tion to phytosanitary status, the evaluation of grape quality is mainly associated with grape
ripeness, based on the evolution of enological parameters over time, which determines the
optimal time for harvesting depending on the desired wine to be obtained. Monitoring mat-
uration faces problems related to the huge variability of grape composition, grape variety,
and terroir. Usually, this evaluation is done through classic physical and chemical methods
performed offline, using a limited number of samples, which are time-consuming, costly,
and invasive and which generate chemical waste. In recent years, extensive studies by dif-
ferent academic researchers and producers have been conducted, aiming the development
of innovative and less expensive approaches in order to accomplish a faster, nondestructive,
noninvasive, and ultimately more sustainable grape maturity assessment. In this context,
hyperspectral imaging in reflectance mode [1–16] has proven to be a viable alternative
to classic techniques in the determination of enological parameters that are important
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for ripeness assessment and harvest date decision. This imaging technology integrates
spectroscopy and digital imaging techniques and allows collecting information about the
intensity of light reflected by grapes as a function of their wavelength [3,17,18]. Addition-
ally, hyperspectral imaging allows the acquisition of a large number of samples to assess
grape ripeness locally in the vineyard, being of important added value for the industry.

Together with the help of effective machine learning methods, hyperspectral imaging
allows estimating multiple enological parameters from the same spectral data, since the
reflected light depends on the chemical composition of grapes. In fact, due to the complex
spatial wavelength structure, which contains information about all chemical compounds
present in grapes and with their overlapping peaks, it is imperative to use learning algo-
rithms to convert the spectral data into the desired enological information. These methods
have the ability to generate learning models from training samples composed of measured
spectra and the measured enological information of the samples. Thus, once the model
is established, they are able to predict the chemical information of interest for new sets of
samples. Today, the methods commonly applied for predicting enological parameters of
grape berries from spectral data include partial least squares (PLS) [1,4–7,10–13,16,19,20],
support vector machine (SVM) [2,8], and artificial neural networks (ANNs) [3,4,15,21,22].
However, there are some drawbacks in these methods, such as the dimensionality effect
(difficulties in processing the complete spectrum, requiring dimensionality reduction pro-
cesses). Therefore, the use of deep learning methods, which are emerging in computer
science with excellent results in extracting complex patterns of data for a wide field of
applications, can be a plus in this prediction context. Deep learning is a class of machine
learning algorithms that are most often used for classification, but also employed in regres-
sion problems, with successful applications in object classification, object detection, and
facial expression recognition, among others. Within deep learning, convolutional neural
networks (CNNs) are one of the most popular architectures, showing great potential with
innovative results in a variety of fields dealing with images, including remote sensing
image classification [23–26]. Despite being mainly applied to classify two-dimensional
(2D) images [27], CNNs have also been used to analyze one-dimensional (1D) data, such
as speech recognition, text classification, and, more recently, spectral analysis. However,
there are only a few recent studies showing that one-dimensional convolutional neural
networks (1D CNNs) can be successfully applied to spectroscopic measurements (1D) in
both classification [28–32] and regression [33–39] problems.

The present work reports the building of one-dimensional convolutional neural net-
works toward the assessment of grape ripeness focusing on sugar content and pH, two
essential maturity indices. Moreover, the broad goal of this study was to assess the behavior
and performance of 1D CNNs, addressing the issue of natural variability, in the following
relevant tasks: (i) effect of different preprocessing spectral data methods on samples from
the same variety for different vintages in the model training, validation, and testing; (ii)
generalization ability of the best 1D CNN from the previous task using as independent test
set new varieties not employed during the training step; (iii) generalization ability for the
same variety but using a different vintage, i.e., using, as an independent test set, samples
from a different vintage not employed in the model creation (training and validation).
Considering the large variability within vintages/varieties and between vintages/varieties,
derived from different conditions such as climate variation, sun exposition, water avail-
ability, soil quality, and altitude, inspecting the generalization ability of the 1D CNN with
different vintage/varieties is fundamental to acquire robustness of the final methodology.
If it is not possible to reach the task of generalization in grapes, then the solution becomes
less attractive from the industry point of view, since it will be necessary to fully retrain
the model annually to be used for that particular year [3,4]. The scientific literature for
this generalization aspect is practically nonexistent, and only a few works training models
with grapes from one vintage and testing them with grapes from another vintage can be
found [3,4,8,13,19]. Regarding task (i), although deep learning can be trained on datasets
without the use of preprocessing [40], there have been some recent works published in
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the scientific literature where the use of preprocessing combined with deep learning was
applied to spectroscopic data, leading to results improvement. For instance, in [37], the raw
spectrum was standardized using the standard normal variate (SNV) method before being
fed into the CNN model; [39] evaluated the effect of using the original spectra or of the
spectra preprocessed by the multiplicative scatter correction (MSC) method in a 1D CNN
model for the prediction of corn seed, showing an improvement in accuracy for MSC + 1D
CNN; [28] used a preprocessing strategy, combining different spectral preprocessing tech-
niques, to develop CNN models in different spectroscopic datasets; [38] implemented
extended multiplicative scatter correction (EMSC); [31] applied a Savitzky–Golay (SG) filter
and logarithm methods to the reflectance spectra before 1D CNN.

To the authors’ best knowledge, this work is innovative in the use of 1D CNN to
predict enological parameters in whole grapes using hyperspectral imaging in reflectance
mode. In addition, our 1D CNN architecture was designed to make predictions, unlike
most CNNs applications which are developed for classification problems, and its relevant
hyperparameters were optimized through Bayesian optimization with a Gaussian process.

2. Material and Methods
2.1. Data Acquisition

Three native Portuguese varieties that are widely used to produce port wine were
selected due to their high relevance for Symington Family Estates, our industrial partner
and one of the largest and most important port wine producers in the world. Grape samples
of the three varieties considered, Touriga Franca (TF), Touriga Nacional (TN), and Tinta
Barroca (TB), were harvested from the vineyards of Quinta do Bomfim, Pinhão, Portugal.
TF samples were collected in 2012, 2013, 2014, 2016, 2017, and 2018, while TN and TB
samples were harvested in 2013, 2014, 2016, and 2017 (see Table 1). For each vintage/variety
set, the grape berries were collected between the beginning of veraison and maturity, from
three different locations inside the vineyard (from vine trees with small, medium, and
large vigor), assembling a total of 1748, 454, and 463 grape samples for TF, TN, and TB,
respectively. More details on the characterization of the collected samples per vintage and
variety can be found in Section 3.1.

Table 1. Number of samples collected for each vintage and variety.

Vintage Variety No. of Samples

2012 Touriga Franca 240

2013
Touriga Franca 81

Touriga Nacional 60
Tinta Barroca 82

2014
Touriga Franca 120

Touriga Nacional 118
Tinta Barroca 120

2016
Touriga Franca 407

Touriga Nacional 132
Tinta Barroca 143

2017
Touriga Franca 540

Touriga Nacional 144
Tinta Barroca 118

2018 Touriga Franca 360

Line-scan hyperspectral image acquisition was performed in our laboratory-based
imaging system using fresh grape samples. Each sample comprised six or 12 grape berries,
randomly collected from a single bunch with their pedicel attached. After imaging, all
samples were frozen at −18 ◦C before determining the analytical enological values. The
procedures regarding the experimental setup for hyperspectral imaging acquisition and the
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computation of reflectance spectrum were previously described by the authors in [3,4,8,15].
Therefore, the reader is directed to additional references for a detailed description. In
summary, the hyperspectral data were collected using the following hyperspectral imaging
system acquisition: a hyperspectral camera, composed of a JAI Pulnix (JAI, Yokohama,
Japan) black-and-white camera and a Specim Imspector V10E spectrograph (Specim, Oulu,
Filand); lighting, using a lamp holder with 300 × 300 × 175 mm3 (length × width × height)
that held four 20 W, 12 V halogen lamps and two 40 W, 220 V blue reflector lamps (Spotline,
Philips, Eindhoven, the Netherlands), powered by continuous current power supplies
to avoid light flickering at only 110 V to reduce lighting and prevent camera saturation.
The distance between the camera and the sample base was 420 mm, and the camera
was controlled with Coyote software from JAI. After imaging, the grape berries were
identified, and their data were extracted using a threshold-base segmentation method.
Furthermore, reflectance was used to correct signal variations caused by the illumination
and the hyperspectral camera. This step was performed by recording the dark current
signal (DI) associated with the hyperspectral camera output, acquired with the camera
shutter closed (0% reflectance), and the intensity of light that illuminated the grape berries
(SI), using a white reference target, Spectralon (Specim, Oulu, Filand), which reflects almost
all the light reaching its surface in the ultraviolet, visible, and infrared wavelengths. Thus,
for a given wavelength, λ, and position, x, the reflectance, R, was computed as follows:

R(x, λ) =
GI(x, λ)− DI(x, λ)

SI(x, λ)− DI(x, λ)
, (1)

where GI is the intensity of light reflected by the grapes.
The reference values of sugar content and pH that allowed building and evaluating the

prediction models were determined by conventional chemical analysis. Thus, the grapes
were defrosted and crushed, and then the sugar content (measured in ◦Brix) and pH were
analyzed by refractometry, using a handheld refractometer (ATAGO N1, ATAGO CO., Ltd.,
Tokyo, Japan), and by potentiometry, using an automatic titrator (Crison micropH 2002,
Crison, Barcelona, Spain), respectively, according to validated standard methods [41].

After data acquisition, each acquired spectrum was paired with the sugar and pH
reference values to assemble the final datasets.

2.2. Spectral Preprocessing

In order to evaluate the effect of reflectance spectrum preprocessing on the predictive
model, three well-known techniques were considered: multiplicative scatter correction
(MSC), min–max normalization (Norm), and Savitzky–Golay (SG). The use of preprocessing
techniques is an often-used step in spectroscopic measurements to minimize/eliminate
fluctuations in the measured light intensities, which for the present purpose are due to the
grape berry size and curvature [3,4,15]. In addition, this process is usually important for
the development of regression-type algorithms, since they generally benefit from better-
conditioned data.

The MSC technique is probably the most widely used transformation technique in
visible/NIR spectroscopy that aims to correct the scatter level of each spectrum in such
a way that all samples appear to have the same level as the reference spectrum [42]. The
scatter correction is achieved by regressing each spectrum against the reference spectrum
(usually the mean of the training set), and then correcting the recorded spectrum using the
slope and intercept of the linear fit [43]. For the min–max normalization approach, each
spectrum is normalized into a 0–1 range. First, the minimum and maximum values of all
the intensities of a given spectrum are computed, and then the normalized spectrum is
obtained through subtracting the minimum value from the given spectrum and dividing by
the range (maximum–minimum). The Savitzky–Golay method is a moving-window-based
local polynomial least-square fitting procedure, being one of the most commonly employed
smoothing and differentiation techniques [44]. There are two important parameters that
must be taken into account when the Savitzky–Golay technique is used: the window size
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and the order of the polynomial. The window size specifies the number of data points that
will be used to fit a polynomial regression model of a given order. The choice of too small a
window may not be enough to reduce the noise. On the other hand, the choice of too large
a window might filter relevant information and misrepresent the spectra [45]. The second
parameter specifies the degree of the polynomial used during the fitting and conditions
the highest derivative that can be estimated. Usually, the second-order polynomial is
employed, and the most used window sizes range between seven and 15 points. In
this work, the Savitzky–Golay technique was employed to perform both smoothing and
differentiation, allowing an estimation of the derivatives of the smoothed signal. This was
done by inferring the first-order derivative from a best local least-squares polynomial fit at
each wavelength. A second-order polynomial was used with a window size of 15 points.

2.3. One-Dimensional Convolutional Neural Network Architecture

A one-dimensional convolutional neural network architecture was developed in
Python (Python Software Foundation, Wilmington, DE, USA) using KERAS package
version 2.2.4 (https://keras.io/ accessed on 25 March 2021). Typically, a CNN architecture
involves an input layer, several hidden layers (convolutional layers, polling layers, fully
connected layers), and an output layer. The input and output of our 1D CNN were the grape
reflectance spectrum (1040 × 1) and the sugar content and pH predictions, respectively.
The feature extraction part of our 1D CNN consisted of two one-dimensional convolutional
layers (with a stride of 1, the ‘same’ padding, and rectified linear unit (ReLU) activation
function). A batch normalization layer was added after each convolution layer in order to
accelerate training, as well as provide some regularization in the model [46]. The output of
each convolutional layer was passed to a max pooling layer in which the pooling size of the
first layer was set to two and that of the second layer was set to five. The last output feature
maps from the pooling layer were flattened and fed to a fully connected dense layer. Lastly,
the output layer was a single dense neuron with a linear activation function. A dropout
layer was added after the last pooling layer and another was added between the fully
connected layer and the output layer to avoid overfitting. The weights of the convolutional
kernels and fully connected layer were initiated using ‘Glorot uniform’ initialization [47].
The mean squared error (MSE) was defined as the loss function, and early stop was used.
Furthermore, the training process was done using the Adadelta optimizer [48] and was
stopped at the number of epochs with the lowest mean square error for validation patterns.
The detailed 1D CNN architecture proposed in this work is shown in Figure 1.

2.4. Hyperparameter Optimization

The successful implementation of deep learning approaches strongly depends on
the set of hyperparameters used during model training. Unfortunately, the relationship
between hyperparameters and the performance of the model is still unclear, making it
difficult to calculate the value of each hyperparameter to be used in the model [49]. In this
context, hyperparameter optimization is required and, despite being a challenging and
time-consuming approach, it is a key issue in deep learning algorithms. The optimization
of hyperparameters can be performed through manual or automatic search methods. In
practice, manual search consists of training a number of models with different combination
of hyperparameter values manually set in which the best-performing model is chosen.
Nevertheless, it requires the user to have background knowledge and practical experience
with the particularities of the data, hindering its application by nonexpert users [49]. To
overcome this issue, automatic hyperparameter optimization approaches such as Bayesian
optimization have been widely used in recent years [38,49–55]. In this work, Bayesian
optimization with a Gaussian process (BOGP) was used to tune a set of hyperparameters
(see Table 2). BOGP has become popular in the literature due to its ability to model the
objective function, as well as the uncertainty associated with predictions. The algorithm
relies on building a probabilistic model (using the Gaussian process) of the function,
mapping hyperparameter values to the objective function evaluated on a validation set,

https://keras.io/


Sensors 2021, 21, 3459 6 of 19

updating the probabilistic model based on new evaluations, and then exploiting this model
to decide the next hyperparameter values to evaluate in the true objective function. An
acquisition function [50] is used to evaluate the “goodness” of candidate points in the true
objective function. In particular, the Gaussian process selects the next hyperparameter
values by finding the maximum of the acquisition function; then, the model is updated
to take the new data into account. At each iteration, the model is progressively refined.
The final aim is to find the input hyperparameter values that provide the best possible
output value.
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Table 2. Bayesian optimization hyperparameter settings.

Hyperparameter Range Values

Convolution layer 1—number of filters (#Filters 1) 5–256
Convolution layer 1—kernel size 1 3–100
Convolution layer 2—number of Filters (#Filters 2) 5–256
Convolution layer 2—kernel size 2 3–100
Dense No. of neurons (neurons) 4–256
Dropout rate (dropout 1/2) 0.1–0.6
Learning rate (LR) 0.01–0.06
Batch size 8–260

The algorithm was implemented in Python using the package scikit-optimize version
0.7.4 (https://scikit-optimize.github.io accessed on 25 March 2021). The optimization was
initialized using 20 random hyperparameter sets followed by up to 200 iterations of the
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Gaussian process, using the expected improvement (EI) as the acquisition function [49]. In
each iteration, a new 1D CNN was built from the hyperparameter set selected and trained
according to the architecture specified in Section 2.3. Final training of the 1D CNN was
done with the identified best hyperparameter values.

2.5. Model Training, Validation, and Test Methodology

In order to perform each task presented in Section 1, the acquired hyperspectral data
were divided into training, validation, and test sets, using a stratified scheme based on the
percentiles described below. Tasks (i) and (ii) used the same pair of training and validation
sets, differing only in the independent test set.

For task (i), i.e., the effect of different preprocessing spectral data, all samples of
Touriga Franca (from 2012 to 2018) were used to create the 1D CNN model using the
Bayesian optimization described in Section 2.4. Thus, the reference measurements for each
Touriga Franca vintage were grouped into five intervals according to the 20th, 40th, 60th,
and 80th percentiles. In each group of percentile intervals, 10% of samples were set aside
for the independent test set, another 10% were set aside for the validation set, and the
remaining samples were used for the training set. Each final dataset (training, validation,
and independent test sets) was formed by collecting the respective TF samples partitioned
for each vintage (from 2012 to 2018). The training and validation sets were used to find
the best set of hyperparameter values. In addition, the validation set was used to tune
the network weights. Lastly, the optimized models were evaluated and compared with
the independent test set using the root-mean-square error of predictions (RMSEP) as the
evaluation criterion.

Regarding task (ii), i.e., the generalization ability using different varieties, the best 1D
CNN models created in task (i) for sugar and pH parameters were fed without training
with a new independent test set composed of TB and TN varieties of all years (2013 to 2017).

Lastly, concerning task (iii), i.e., the generalization ability using different vintage,
samples of TF from 2012 to 2017 vintages were used for training. The final training and
validation sets were created using the stratified scheme based on percentiles, following the
same procedure for task (i). Bayesian optimization with a Gaussian process was also used
to find the best set of hyperparameters and to create the final model. The generalization
ability of the established 1D CNN model was evaluated using all samples from TF 2018
vintage as an independent test set.

The root-mean-squared error of prediction (RMSEP) for the independent test set was
used to assess the generalization capacity of the models.

3. Results
3.1. Sampling Characterization

The boxplots of reference measurements obtained for sugar content and pH by the
conventional analytical techniques are presented in Figure 2. The boxes represent the 25th,
50th, and 75th percentiles, the whiskers represent the fifth and 95th percentiles, the lower
and upper open circles represent the minimum and maximum values, respectively, and
the plus symbol denotes the mean values. These enological values were used as reference
values to create and test the proposed models. From Figure 2, it is possible to verify the
difference between grape varieties within a vintage and between vintages for each grape
variety, which complicates the prediction for new vintages and/or varieties.
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Figure 2. Sampling characterization for each vintage and variety: (a) sugar reference measurements; (b) pH reference measurements.

Regarding sugar content, TB presented a 95th percentile much larger than TF and TN
for most vintages, with the exception of 2014, which presented slightly higher values than
TN and TF varieties. The same can be verified for the fifth percentile, with the exception of
2014 samples (slightly lower than TF and TN) and TN 2013 samples (which showed a much
larger fifth percentile, with a similar value to the 25th percentile of TF 2013). The amplitude
of the box representing the 25th, 50th, and 75th percentiles was also larger for TB and TN.
Overall, within varieties and all vintages, TF values ranged from 7.87 to 30.26 ◦Brix, while,
in TN and TB, the minimum values were 6.95 and 5.48 ◦Brix and the maximum values
were 29.66 and 29.95 ◦Brix, respectively.

Concerning pH, TN and TB displayed lower values for the 95th and fifth percentiles
when compared with TF, except for the 2013 vintage that showed similar values for the
fifth percentile. Within varieties and considering all samples, TF values of pH ranged from
2.85 to 4.97, TN values varied from 2.58 to 4.26, and TB values ranged between 2.76 and
4.48. For more information regarding the descriptive statistics of the datasets used in the
subsections below, see the boxplots presented in Appendix A.

3.2. Effect of Spectral Preprocessing in 1D CNN Model

The best hyperparameters achieved through Bayesian optimization with a Gaussian
process are presented in Table 3. The difference obtained between the best sets of hyperpa-
rameters for different preprocessing techniques can be explained by the difference in the
input spectra (after preprocessing) resulting in different extracted features. We can also
observe from Table 3 that BOGP selected the same number of neurons for the FCN (it did
not depend upon the extracted features but on the feature vector dimension) and the same
batch size for the different preprocessing techniques (the regularization of the learning
process relied mainly in the input dimension and network architecture). Regarding the
number of filters, kernel size, and dropout and learning rates, the best values selected
varied for each technique. The best configuration achieved was the same for sugar content
and pH data.

Table 3. Optimized hyperparameters of 1D CNN for each preprocessing method using BOGP.

Preprocessing #Filters 1 Kernel Size 1 #Filters 2 Kernel Size 2 Neurons Dropout 1/2 LR Batch Size

MSC 39 40 60 7 128 0.20/0.15 0.050 8
Norm 34 50 47 9 128 0.15/0.15 0.039 8

SG 60 50 60 3 128 0.40/0.20 0.033 8

Table 4 shows the results obtained for the validation and test sets, using the resulting
1D CNN for each preprocessing method. The low RMSE values in the independent
test set demonstrate the good predictive capacity of the developed models using each
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preprocessing technique, with Savitzky–Golay being the best preprocessing technique
for both enological parameters, presenting RMSEP values of 0.755 ◦Brix and 0.110 for
sugar and pH, respectively. In addition, the use of SG preprocessing resulted in the need
for fewer epochs (120) to train the model (SG + 1D CNN) than the use of the other two
techniques (230 epochs for MSC and 200 epochs for min–max normalization). The best
hyperparameter configuration achieved for SG preprocessing was also used with MSC and
min–max normalization, confirming that the use of these preprocessing techniques led to
worse results with RMSEP values of 1.058 ◦Brix and 0.164 for MSC and 1.019 ◦Brix and
0.156 for min–max normalization in sugar content and pH, respectively.

Table 4. Model performance of the optimized 1D CNN for each preprocessing method.

Parameter Preprocessing
Validation Set Test Set

RMSEV RMSEP

Sugar
MSC 0.765 ◦Brix 0.806 ◦Brix
Norm 0.743 ◦Brix 0.791 ◦Brix

SG 0.726 ◦Brix 0.755 ◦Brix

pH
MSC 0.150 0.146
Norm 0.127 0.124

SG 0.119 0.110

Figure 3 illustrates the boxplots of the absolute percentage errors (APE) for the in-
dependent test set prediction and for each preprocessing technique, concerning each
enological parameter. Regarding the sugar content predictions, the 95th percentiles for SG
and min–max normalization were similar and smaller than 9.1%, and the 75th percentiles
were smaller than 4.5%, denoting the good predictive capacity of both techniques in combi-
nation with the proposed 1D CNN model. On the other hand, the MSC technique seemed
to present a slightly inferior performance when compared with the other two, showing
95th and 75th percentiles of APE smaller than 11% and 5%. For pH, the 95th percentile was
higher for the MSC technique with an APE value of 9.1%, and better for Norm and SG,
with APE values slighter than 7% and 6%, respectively. Concerning the 75th percentiles,
MSC presented APE values of 4.1%, while Norm and SG techniques presented APE values
similar to or smaller than 3.5%.
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ated when applied to independent test samples for (a) sugar measurements and (b) pH measurements. 

Figure 3. Absolute percentage error of each preprocessing technique regarding the 1D CNN created
when applied to independent test samples for (a) sugar measurements and (b) pH measurements.

Nevertheless, in order to verify that the good performance presented in Table 4
was not a question of the “good” splitting of that dataset, another 10 random training,
validation, and test sets (using the same stratified scheme as before) were created and used
to evaluate the performance of the 1D CNN model (Figure 4.). It is clear from the results
illustrated in Figure 4 that SG preprocessing presented better results for the prediction of
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both parameters—sugar content and pH. Consequently, Savitzky–Golay preprocessing
was used as the preprocessing method for the remaining tasks.
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3.3. Generalization Ability: Testing with Different Varieties

For the model generalization ability assessment, the 1D CNN with the spectral data
after preprocessing with the SG technique was employed, and an independent test set with
the hyperspectral data from TB and TN varieties was used. Figure 5 shows the prediction
results obtained for sugar content and pH parameters. These results in terms of RMSEP for
the independent test set were 1.118 ◦Brix and 0.199 for sugar content and pH, respectively.
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Figure 5. Prediction results of the independent test set with samples of the varieties TN (green points) and TB (orange
points) when introduced into the 1D CNN model created with TF samples, regarding (a) sugar measurements and (b)
pH measurements.

Figure 6 shows the percentile curves for the absolute percentage errors, regarding
sugar (blue curve) and pH (red curve) values. One can notice that the APE values for 95th
percentiles in sugar and pH were approximately 12.4% and 11.4%, respectively, while the
APE values for the 75th percentile were smaller than 6% for sugar content and smaller
than 6.7% for pH. Furthermore, in order to characterize the performance for each variety, a
summary of the root-mean-square errors of predictions obtained is presented in Table 5.
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Table 5. Predictive results of sugar and pH for 1D CNN tested with samples of TN and TB varieties.

Parameter
TN TB

RMSEP RMSEP

Sugar 1.025 ◦Brix 1.203 ◦Brix
pH 0.234 0.158

3.4. Generalization Ability: Testing with a Different Vintage

As mentioned in Section 2.5, samples of TF from 2012 to 2017 were used to train and
validate the proposed 1D CNN (TF Model (2012–2017)), while samples from TF 2018 (TF
Test (2018)) were employed in order to evaluate the generalization ability regarding a (differ-
ent) vintage not employed during the training process. The Savitzky–Golay first derivative
was applied to the spectra as the preprocessing technique. The best hyperparameters
obtained through BOGP optimization are summarized in Table 6.

Table 6. Optimized hyperparameters of 1D CNN for training process with samples of TF from 2012 until 2017 using BOGP.

Preprocessing #Filters 1 Kernel Size 1 #Filters 2 Kernel Size 2 Neurons Dropout 1/2 LR Batch Size

SG 15 32 29 19 90 0.41/0.20 0.043 8

In Table 7 the predicted results for each enological parameter are shown. The trained
1D CNN, using all samples of TF except for the 2018 vintage, presented a RMSEVs of
1.227 ◦Brix and 0.182 for sugar content and pH, respectively. For the independent test set,
the obtained results in terms of RMSEP were 1.396 ◦Brix for sugar content and 0.223 for pH.

Table 7. Results obtained by the 1D CNN TF Model (2012–2017).

Parameter RMSEV RMSEP

Sugar 1.227 ◦Brix 1.396 ◦Brix
pH 0.182 0.223

The authors decided to verify if any improvements could be obtained using a transfer
learning mechanism (TL) and carried out an experiment using samples of TF from 2012
to 2016 to pretrain a 1D CNN model (TF Model (2012–2016)). The weights obtained were
then used as a weight initialization scheme for training a new model with samples of TF
2017 (TL-TF Model (2017)), corresponding to the fine-tuning of the weights. Visualization
of the prediction’s performance for the independent test set, TF Test (2018), obtained for
the TL-TF Model (2017), is shown in Figure 7. Here, the new 1D CNN presented an RMSEP
of 1.085 ◦Brix for sugar content and 0.183 for pH, evidencing the improvement of the
methodology using a pretrained model.
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Figure 7. Prediction results of the TL-TF Model (2017) for (a) sugar measurements and (b) pH measurements.

In Figure 8, it is possible to see the boxplots of the absolute percentage errors for the
independent test set TF Test (2018) when employed in the created TF Model (2012–2017)
and in the new TL-TF Model (2017). Thus, the 95th percentiles were smaller in the new
TL-TF Model (2017) than in the original TF Model (2012–2017), with APEs less than 11.5%
for both enological parameters. In addition, the 75th percentiles were around 6% for APEs
in both enological parameters. For the test set in the original TF Model (2012–2017), the
95th and 75th percentiles were below 16% and 8% for sugar and below 14% and 8% for pH.
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4. Discussion

Our study expands existing approaches to predict important enological parameters
in order to evaluate the wine grape maturation stage through hyperspectral imaging
technology. This is a complex problem with data presenting high variability due to the large
differences in terroir, climate, and grape varieties. Overall, the obtained results outperform
those published in the literature, demonstrating the effectiveness and robustness of our
methodology, particularly in terms of the model’s generalization ability using different
varieties and different vintages than those employed in training. This is an important
achievement, indicating that it might be not necessary to train models for every single
vintage or variety. Furthermore, as the grapes were in various ripening stages and presented
different values of enological parameters (due to the large differences mentioned before),
our results suggest that the developed deep learning models were able to capture most
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of the variations presented in the data, unlike the traditional machine learning models
applications presented in the literature.

Analyzing the results obtained for the different preprocessing techniques in Section 3.2,
it is possible to verify that Savitzky–Golay was the best technique working in combination
with the proposed 1D CNN architecture for predicting sugar content and pH, obtaining
the lowest root-mean-squared error (Table 4) and best overall performance (Figure 4).
Comparing with the existing literature, [9] employed different preprocessing techniques
but for the prediction of anthocyanin concentration using a PLS regression model, and they
also found a better performance for the SG preprocessing technique. On the other hand, [11]
compared two different preprocessing approaches, using PLS, PCR, and MLR models for
the prediction of sugar content, and they concluded that performance was case-dependent.
Other authors [4] found that the use of derivatives (SG) revealed an improvement in the
prediction results, with MSC showing the worst results, whereas some authors found that
the preprocessing techniques did not lead to an improvement in results [7,13].

From the analysis of the results obtained in Section 3.3, in which the model was
tested with samples of TB and TN varieties, it is possible to verify an increase from the
RMSEP (Table 4) for the TF test set (2012–2018) to the RMSEP (Figure 5) for the test set
with other varieties. This increase might be related to the different distributions in sugar
content and pH, as shown in Figures A1 and A2 (Appendix A), respectively. Moreover,
it is clear that the model performed better for sugar content than for pH, with a minor
increase in the RMSEP for the independent test set (TB and TN). In fact, looking at the
distribution of the absolute errors of sugar content as a function of the reference values
(Figure A3a, Appendix A), one may see that the model could better handle sugar values
between 17 and 21 ◦Brix (25th and 50th percentiles in TB and TN set), which belong to
the sample points within the range of values delimited by 25th and 75th percentiles of the
TF training set, but it was still able to satisfactorily predict most of the remaining sample
points that fell outside the range of values between the 25th and 75th percentiles. This
means that, despite the TB and TN test set for sugar content presenting larger variability
than the training set (Figure A1, Appendix A), the overall impact on the performance of
the created model seems not to be problematic. On the other hand, for pH (Figure A3b,
Appendix A), it is clear that the model had a better fit to values larger than 3.5 since the
sample points above the 50th percentile for the independent test set fell within the existing
values above the 25th percentile for the training set. The increase in RMSE for pH might
be related to the distribution of the remaining sample points and to the genetic proximity
or distance between varieties, as reported in [8]. Furthermore, this can also be justified by
the fact that the acidity seems to be a sensitive case, with small changes in the range of
the reference measurements, which may increase the difficulty of the model to learn, thus
needing more training samples to capture the patterns present in the data. For the results
obtained individually for each variety (Table 5), it can be denoted that the model created
with TF (2012–2018) samples generalized better for TN samples and worse for TB samples
in terms of sugar content, and the opposite was true for pH. Again, these differences might
be justified by the different distributions shown in Figures A1 and A2 (Appendix A), which
might result from their different genetic structure along with the differences in terroir, such
as temperature, sun exposition, water availability, soil quality, and altitude resulting from
the vineyard locations where the samples were collected.

Concerning whether a model created with samples of TF from 2012 to 2017 was able
to successfully generalize when a different vintage (TF 2018) was used as independent test
set, we observed that, when we built the first model (TF Model (2012–2017)), the results
in terms of RMSE were significantly worse (Table 7), which can be related to the fact that
fewer samples were used for training, and the 1D CNN was probably unable to properly
train the model. However, when a second experiment was done, using a transfer learning
mechanism, the results showed a significant improvement (Figure 7) with a drop in RMSE
values of approximately 22% for the independent test set. Moreover, the results suggest
that the use of pretrained weights can be a plus to improve the performance of our models,
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indicating that significant improvements can be obtained when using a pretrained model
and then fine-tuning such a model with a new small set. This means that we may not
need to fully train a new model with all vintages every single year, but only fine-tune a
previously trained one with the new vintage.

Concerning our previously published works, in [15], a neural network was trained and
tested using TF samples from 2012 which revealed RMSEP values of 0.95 ◦Brix for sugar
content and 0.18 for pH with respective APE values for 95th percentiles of approximately
11%. Moreover, in [3], the model created in [15] was used to test the generalization ability
for three independent test sets (each comprising TF, TN, and TB varieties from the 2013
vintage), obtaining RMSEP values of 0.191, 0.170, and 0.176, respectively, and APE values
for the 95th percentile larger than 10% for pH. In [4], the study was only conducted using
TF 2013 but two approaches (neural networks and PLS) were compared for sugar content
prediction, presenting results of 1.350 ◦Brix and 1.340 ◦Brix in terms of RMSEP with 86%
and 83% of samples having APEs smaller than 10%, respectively, for the NN and PLS
approaches. In addition, [8] obtained RMSEP values for sugar and pH of 1.411 ◦Brix and
0.144, using TF samples from 2012 to 2014 to train and test an SVR algorithm, whereas
the model’s generalization capacity was also tested for samples of TN and TB from 2013.
The RMSEPs obtained for sugar content were 2.443 and 3.186 ◦Brix, respectively, while
pH presented RMSEP values of 0.253 and 0.303, for the model’s generalization ability.
In the present work, in general, the results obtained were better in terms of RMSE and
APE, updating our state-of-the art results [3,4,8,15]. Considering other works published
in the literature, the results obtained for sugar content in the present work were better
than those obtained in [1,2,5,7,10,11]. On the other hand, [12,13] revealed results similar to
ours for sugar content but better than ours for pH. However, the authors of those works
used homogenates or a larger number of berries per sample compared with the six or
12 berries per sample used in this work, which reduced the problem’s complexity, as well
as applicability. As mentioned in [4,15], the use of a larger number of berries reduces the
variability in both the acquired spectra and the reference enological values measured, with
positive bias in the final results. Herein, the decision to use a small number of grapes offers
new possibilities for the selection of the best berries from each bunch to produce specific
high-quality wines [3,8]. To highlight the results obtained in the present work, a comparison
with other published works in the literature is presented in Table A1 (Appendix A). Most
of the published works in Table A1 (Appendix A) only took into account samples from no
more than one or two harvested years, except for [5,8] that used three different vintages to
create the models. As shown in Section 3.1, the use of more vintages implies larger data
variability, which makes it harder to obtain good results using traditional machine learning
models. However, deep learning can capture these variations and learn valuable features to
make the predictions robust. In addition, another benefit of our 1D CNN over the machine
learning methods employed in the literature is its ability to automatically perform feature
extraction (through learning), which improves both the model’s accuracy and the model’s
generalization ability.

5. Conclusions

In this work, we presented a methodology for predicting two important enological
parameters through hyperspectral imaging, focusing on the following main issues: the
effect of spectral preprocessing and generalization ability for different varieties and for
different vintages not employed in training. To do so, a 1D convolutional neural network
architecture was designed, and the corresponding hyperparameters were optimized using
Bayesian optimization with a Gaussian process. Moreover, a transfer learning mechanism
was also employed.

An important feature of this work relies on the robustness and effectiveness of the
proposed 1D CNN models that revealed excellent overall performance, even for different
varieties or vintages not employed during training, thereby improving and expanding the
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current state of the art. Regarding the effect of preprocessing techniques, Savitzky–Golay
was the most suitable technique in combination with the proposed 1D CNN model.

This study proves that the combination of hyperspectral imaging with appropriate
predictive learning methods (e.g., 1D CNN) can be a rapid, nondestructive, and efficient
alternative to the conventional analytical techniques, representing an important step toward
a more sustainable grape quality assessment.

Nevertheless, we believe that the proposed approach can still improve with the
addition of new samples, e.g., including more vintages and/or blending the TF, TB, and TN
data into a unique dataset, using a random sampling method to split the data into training,
validation, and test sets. Furthermore, an increase in the number of convolution layers or
the use of different deep learning models should also be the subject of future research, as
well as the identification of important spectral features by studying potential mechanisms
of influence for sugar content and pH in the reflectance spectra. Lastly, the novel prediction
model presented here is highly suitable for a rapid and nondestructive wine grape ripeness
assessment using laboratory-acquired data. It is important for future research to undertake
field hyperspectral data acquisition to upscale this model to field conditions.
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Figure A3. Absolute errors obtained for the independent test set comprising TF (blue point), TB
(orange points), and TN (green points) varieties in (a) sugar measurements and (b) pH measurements.

Table A1. Comparison of results from the present work and from other works published in the literature for the prediction
of sugar content and pH using spectroscopic techniques in reflectance mode.

RMSE

Present Work Results: Sugar (◦Brix) pH

Different vintages (six) 0.755 0.110
Testing with a different vintage 1.085 0.183
Testing with different varieties 1.025/1.203 0.234/0.158

Published works that Algorithm

Used more than
two vintages [8] SVM 1.411

worse than the present results
0.144

worse than the present results

Tested with a
different vintage

[3] ANN - 0.191
similar to the present results

[4]
PLS 1.344

worse than the present results -

ANN 1.355
worse than the present results -
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Table A1. Cont.

RMSE

Present Work Results: Sugar (◦Brix) pH

Used a small
number of
berries per
sample and
(as in the

present work)

Tested with
different varieties

[3] ANN - 0.170/0.176
similar to the present results

[8] SVM 2.443/3.186
worse than the present results

0.303/0.253
worse than the present results

Used one vintage

[1] PLS 1.270
worse than the present results -

[4]
PLS 0.939

worse than the present results

ANN 0.955
worse than the present results

[11] PLS 1.150
worse than the present results -

[15] ANN 0.950
worse than the present results

0.180
worse than the present results

Used one vintage +
blending varieties

[2]
LS-SVM * 0.960

worse than the present results Different range of pH values

PLS 0.930
worse than the present results

Used
homogenate
samples and

Used more than
two vintages [5] MPLS ** 1.000

worse than the present results
0.120

similar to the present results

Used one vintage
[7] MPLS ** 1.370

worse than the present results
0.120

similar to the present results

[10] MPLS ** - 0.150
worse than the present results

Tested with a
different vintage [12,13] PLS 1.090

similar to the present results
0.060

better than the present results
Used one vintage +
blending varieties [12,13] PLS 0.650

similar to the present results
0.050

better than the present results

* Least-squares support vector machines; ** modified partial least squares.
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