
sensors

Article

Non-Orthogonal Multiple Access for Unicast and Multicast
D2D: Channel Assignment, Power Allocation and
Energy Efficiency

Mariem Hmila * , Manuel Fernández-Veiga , Miguel Rodríguez-Pérez and Sergio Herrería-Alonso

����������
�������

Citation: Hmila, M.;

Fernández-Veiga, M.;

Rodríguez-Pérez, M.;

Herrería-Alonso, S. Non-Orthogonal

Multiple Access for Unicast and

Multicast D2D: Channel Assignment,

Power Allocation and Energy

Efficiency. Sensors 2021, 21, 3436.

https://doi.org/10.3390/s21103436

Academic Editor: Redha Radaydeh

Received: 22 April 2021

Accepted: 11 May 2021

Published: 14 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atlanTTic Laboratory, Faculty of Telecommunications Engineering, Universidade de Vigo, 36310 Vigo, Spain;
mveiga@det.uvigo.es (M.F.-V.); miguel@det.uvigo.gal (M.R.-P.); sha@det.uvigo.es (S.H.-A.)
* Correspondence: meriame@det.uvigo.es

Abstract: Non-orthogonal multiple access (NOMA) techniques have emerged in the past years
as a solution to approximate the throughput performance of wireless communications systems
to their theoretical capacity region. We consider in this paper an optimization-based model for
multicast device-to-device (MD2D) communications where the channels are not orthogonal and may
be (partially or fully) shared among the transmitters in each cluster. This setting leads naturally to
the introduction of NOMA transmitters and receivers who use successive interference cancellation
(SIC) to separate the superposed signals. To analyze the role of NOMA in MD2D, its performance
impact, potential performance gains and possible shortcomings, we formulate a model that includes
SIC operations in the decoders, so that higher rates can be attained when several sources transmit on
the same channel(s). We also investigate the energy efficiency of the network (global and max-min)
through a dynamic power control algorithm and present a centralized and a semi-distributed solution
to these optimization problems. Through numerical simulations, we show that NOMA is able to
improve both the sum-rate and the max-min rate of a MD2D network even from a small degree of
resource sharing. Furthermore, these gains also improve the global energy efficiency on the network,
but not always the max-min energy efficiency of the devices.

Keywords: multicast device-to-device communication; 5G and beyond; non-orthogonal communica-
tions

1. Introduction

5G and beyond networks are poised to achieve spectrum efficiency increases from
five to fifteen times compared to current 4G technology and densities around a million
devices per square kilometer [1]. Multicast Device-to-Device (MD2D) communication is a
conceptually simple technique that allows users in close proximity to communicate directly
without the intervention of a third party, such as a base station (BS) or an access point. These
short-range communications incur lower latencies and require less transmission power or,
conversely, achieve higher transmission rates for the same power, thus increasing energy
efficiency. As a result, both the energy efficiency and the system capacity are improved,
and MD2D can contribute significantly to meet the requirements of vast 5G infrastructures.

However, in underlay MD2D communications, simultaneous transmissions over the
same resource blocks (RBs) increase interference and may limit the network performance
in both metrics, sum-rate and energy efficiency. An engineered allocation of resources
(i.e., frequency channels and power levels) is thus necessary to mitigate interference and
maximize network performance, ideally in a distributed manner, so as to also minimize
the overhead and the computation load at any central site. Since the spectrum bands in
MD2D are heavily reused by multiple transmitters, including the normal cellular users
(CUs), the channel between these and the receivers in different clusters/groups can be
modeled as a multi-user broadcast channel (MU-BC) using orthogonal multiple access
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(OMA) by the transmitters. Interference management in this setting has been extensively
investigated both through separate or joint channel allocation and power control techniques,
i.e., treating the interference at the receivers as noise (e.g., [2–5]). In contrast, with Non-
Orthogonal Multiple Access (NOMA) [6,7], receivers are able to separate superposed
signals distinguishing them in the power domain, by forcing some users to use Successive
Interference Cancellation (SIC). By SIC, a user fully and sequentially decodes the signals
intended for other weaker users, subtracts these from the received signal, and finally
recovers its own signal with much lower noise. Thus, NOMA offers high prospects to
suppress interference at the receivers, and has been thoroughly studied in the 5G design
stage (and since much earlier in the information theory literature [8]) with remarkable
success for achieving high efficiency [9–14]. Therefore, NOMA appears to be a promising
solution to the problems of high spectral and energy efficiencies for 5G and beyond, given
its provable benefits over OMA [15,16].

In this work, we address the problem of joint power allocation and channel assignment
in underlay MD2D communications when the receivers can exploit NOMA, a channel/RB
can be used by multiple MD2D groups and a MD2D group needs to simultaneously trans-
mit over several channels to meet its rate constraint. Although the use of NOMA and
SIC receivers has already been analyzed in several works [17,18] for unicast D2D com-
munications, this paper considers the performance evaluation of NOMA for MD2D, so it
generalizes previous assumptions. We formulate the optimization problem of energy effi-
ciency (EE) under throughput constraints either for network EE or for max-min fair (MMF)
EE maximization, since aggregate network performance does not capture adequately the
notion of individual fairness. To that end, we extend our prior mathematical framework
in [4,19] and explicitly model the existence of SIC receivers in the system. In addition, the
degree of resource sharing can be adapted by design through two simple parameters: the
maximum number of MD2D groups per RB (the reuse degree) and the maximum number
of RBs assigned to a MD2D group (the split factor). This resource allocation problem under
NOMA and SIC is solved with a two-stage approach in a semi-distributed form, much
as in [4], by a combination of mathematical optimization (fractional programming) and
game theory. Our results quantify the improvements gains associated to NOMA and SIC
in MD2D communications, showing that NOMA is able to attain higher sum-rate, global
energy efficiency and max-min rate (all simultaneously) than orthogonal transmission
modes, even though it does not systematically achieve better max-min energy efficiency.
Moreover, the benefits of NOMA start to appear only when there is enough contention for
the shared channels and are clearer if the degrees of freedom in using the shared channels
are larger.

The rest of the paper is organized as follows. Section 2 discusses the relevant literature
in the context of Device-to-Device (D2D) pair/groups, MD2D and NOMA. Section 3
illustrates the system model. Then, optimal power allocation is detailed in Section 4,
followed by the description of both the centralized and the distributed channel assignment
solutions. Numerical results for the proposed schemes are given in Section 5. Section 6
contains some discussion and considerations on the role of NOMA in MD2D systems.
Finally, concluding remarks are presented in Section 7.

2. Related Work

Both NOMA techniques and D2D communications have the potential to significantly
improve energy and spectral efficiency (EE and SE, respectively) in 5G networks and
beyond without demanding any modification to the deployed infrastructure [20]. However,
integrating D2D technology into 5G comes with a set of technical hurdles, mainly, the
co-channel interference between D2D communications and between D2D and other CUs
served by the BS [21]. In a scenario where both D2D technology and NOMA are in use, the
co-channel interference caused by D2D transmissions adds new challenges to the power
allocation of CU transmissions.
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Joint power control and channel allocation is investigated in [17] for maximizing the
sum-rate of D2D pairs in a unicast transmission mode, where D2D nodes underlay a coex-
istent NOMA-based cellular network. A dual-based iterative decomposition approach of
the optimization problem is developed to simplify the solution and determine the optimal
transmission power for a set of CUs over the channels, and next the power of D2D transmit-
ters and their allocated channels are selected. The combination of NOMA for the cellular
users and D2D has also been explored in the mobile edge context (e.g., [22]) as a strategy
to offload computing tasks from the edge servers. The goal is to minimize the weighted
sum of users’ energy consumption and the computation delay. As another example, Wang
et al. [23] incorporated NOMA-based D2D in the design of an advanced H-CRAN for 5G.
Other works extend the setting to the case wherein both CUs and D2D receivers can exploit
NOMA to improve system performance metrics, as in [24] (maximization of the sum rate)
and [25] (minimization of the sum-power in the network). However, Zhao et al. [24] used
a fixed power allocation, hence it does not realize all the potential gains, while Yoon et al.
[25] relied on heuristics to solve the channel assignment problem.An efficient solution for
power control and channel allocation is presented in [26,27], limited to the case in which
a set of D2D pairs (D2D groups) is assigned to only one resource block. An alternative is
to separate the regimes based on the aggregate interference level in the network, and use
D2D with SIC only when the interference is low. This is explored in [28], but the model
turns out to be an impractical combinatorial problem hard to solve that needs substantial
simplifications. A mixed communication system that restricts NOMA to the D2D pairs and
continues to use OMA for the transmissions between CUs and the BS is analyzed in [29]
and solved used matching theory. Multicast D2D groups with NOMA are the focus of the
works in [18,30], but they only consider groups with two receivers in order to simplify the
analysis of the rates.

Compared with the state-of-the-art, the work presented in this paper introduces the
following contributions:

1. The investigated system models in the literature assume a single/group of D2D pairs
can share CUs resource blocks. In this unicast communication model, a transmitter
sends data to a single receiver. However, in our system model, devices with a common
interest form a group, where a single transmitter multicasts data to a set of receivers
(the MD2D group). Note that the MD2D mode also includes the particular case of
unicast D2D communications (when the groups just include one receiver).

2. In multicast communications, group data rate is determined according to the receiver
with the poorest channel quality (CQ). Therefore, we assume that the receivers in a
MD2D group as well as the CUs are able to apply SIC to the stronger interference
signal. This would reduce the received interference to a minimum value leading to
enhancements in MD2D communication quality.

3. We model the resource allocation sub-problem in underlay MD2D using matching
theory and overlapping coalition formation game to minimize harmful mutual inter-
ference as the means to maximize energy efficiency for both the system as a whole
and for individual users, metrics not considered in other related works.

4. The resource allocation approach involves two design parameters (the reuse degree
and the split factor) which allow considering all the possible RB sharing variants
when analyzing the system behavior.

5. The power control sub-problem is optimally solved using fractional programming.
In this work, we assume that a central entity is in charge of assigning transmission
power to each transmitter in the network.

6. We evaluate the performance of NOMA-based systems under a broad range of re-
source sharing scenarios. As performance metrics, we analyze both EE and transmis-
sion rate for the whole system (global EE and sum-rate). A potential drawback of this
approach is that global performance measures do not properly capture the service
fairness among users. Thus, we also formulate and analyze the MMF EE and the rate
for individual users.
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As stated, the sharing of resources includes the possibility that a user transmits over
multiple channels and that a channel may be accessed by several transmitters. Assume
that r, the reuse degree, represents the maximum number of transmitters per RB, and that s,
the split factor, is the maximum number of allowed channels that a transmitter can use to
increase its throughput. Both r and s are system parameters, which variations yield four
distinguishable resource sharing scenarios:

Scenario 1 (r = s = 1): Each CU shares its communication channel with a single D2D
pair/MD2D group. Similarly, each D2D pair/MD2D group uses only one channel.

Scenario 2 (s > 1, r = 1): A D2D pair/MD2D group takes advantage of multiple cellular
channels and distributes its message over them. Here, a D2D pair/MD2D group
may disperse its transmission power budget or rate among the occupied channels.
However, a channel cannot support more than one D2D pair/MD2D group.

Scenario 3 (s = 1, r > 1): Each cellular communication channel can support up to r
D2D pairs/MD2D groups, which are allowed to use one cellular channel, at most.
Compared to the previous scenarios, having r devices using the same channel leads
to mutual interference accumulation over the CU and each D2D pair/MD2D group
per channel.

Scenario 4 (s > 1, r > 1): Each D2D pair/MD2D group uses up to s different cellular
channels. Moreover, each channel can support r D2D pairs/MD2D groups. As
in Scenario 3, the accumulated mutual interference among the channel’s devices
may negatively affect both type of communications and limit the benefits of D2D
pairs/MD2D groups in term of spectral and energy efficiency.

For clarity purpose, we give each scenario a descriptive name: Scenario 1 (Dedicated
CUs), Scenario 2 (Distributed Groups), Scenario 3 (Shared CUs) and Scenario 4 (General
Case). We refer the reader to Table 1 for a summary of the related work explored in this
Section using the proposed taxonomy.

Table 1. D2D pair/groups, MD2D and NOMA: State of the art.

Ref. Scenario Approach Model Problem Objective NOMA

[17] Dedicated CUs Optimization D2D pair PC,RA D2D sum rate CU
[22] Distributed Groups Matching Theory D2D group PC,RA Energy consumption, delay CU
[25] Distributed Groups Optimization D2D pair RA,PC Min transmission power D2D + CUs
[26] Dedicated CUs Graph Theory D2D group PC,RA D2D EE D2D
[24] Distributed Groups Match Theory D2D group RA Network sum rate D2D + CUs
[28] Dedicated CUs Optimization D2D pair RA + System sum rate CU

Mode Selection
[29] Dedicated CUs Matching Theory D2D group RA System sum rate D2D
[30] Dedicated CUs Game Theory D2D group RA CUs throughput D2D
[18] Dedicated CUs Matching Theory D2D group PC,RA Maximum users SINR D2D
[27] Dedicated CUs Hungarian Algorithm D2D pairs PC,RA D2D energy D2D

3. Problem Formulation
3.1. System Model

We consider a single-cell MD2D communications scenario with K ≥ 2 MD2D groups
of users and M ≥ 2 CUs (see Figure 1). The BS communicates with the associated CUs
over M orthogonal downlink channels. We identify each channel with an active CU in
the downlink, thus the set of channels/CUs is denoted as C = {C1, . . . , CM}. The set of
receivers in group k is denoted by Dk, so D = {D1, . . . ,DK} is the set of K MD2D groups.
Any MD2D group, to increase its throughput, can simultaneously transmit over multiple
channels up to a maximum of s channels, where s is the split factor; additionally, multiple
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MD2D groups can share the access to the same channel, up to a maximum of r groups per
channel, where r is the reuse degree [4].

Figure 1. System model.

In this setting, the receivers in a given MD2D group have to cope with two kinds of
interference:

• The CU interference is caused by the BS transmissions to the CU(s) over the channel(s)
used by the MD2D group at the same time.

• The inter-groups interference is caused by the transmitters on those MD2D groups
that are reusing the channel(s) the MD2D group is also accessing.

Interference cancellation of superposed signals in the same time–frequency resource is
possible through SIC, where at least one user is forced to fully decode the messages of the
other co-channel users, subtract them from the received signal, and decode its own message
afterwards. In information theory, receiver-side SIC and superposition coding (NOMA) are
known to achieve the capacity region of the Single-Input Single-Output Gaussian Broadcast
Channel (SISO-BC), which is strictly larger than the capacity region achieved by orthogonal
transmissions [31]. This increase in the rate is attained through increased complexity in the
SIC receivers, since a subset of these have to fully recover messages directed to other users,
as illustrated in Figure 2.
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Figure 2. Communications architecture for the NOMA-SIC MD2D network.
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3.2. Channel Model

The signal to interference and noise ratio (SINR) observed by each CU user Ci is

Γi =
hi pi

N0 + ∑k∈D ck,ihk,i pk,i
, ∀Ci ∈ C, (1)

where hi is the channel gain between user Ci and the BS, hk,i is the link gain between
the transmitter in MD2D group Dk and the BS on channel i, pi (respectively, pk,i) is the
transmission power used for user Ci (by the transmitter in Dk on channel i), N0 is the noise
density and

ck,i =

{
bk,i, if |hk,i pk,i| < |hi pi|,
0, otherwise,

(2)

where bk,i = 1 if the MD2D group Dk uses channel i (and 0 otherwise). Note that power-
domain NOMA [6,7] is applied in (2), since the interference caused by stronger interferers—
those having |hk,i pk,i| > |hi pi|—is suppressed. Recall that, with SIC, the receiver decodes
first the stronger signals, subtracts them from the received signals, and reduces the interfer-
ence to that caused by the weaker transmitters.

Similarly, the SINR observed in channel i for each receiver node j ∈ Dk is given by

Γk:j,i =
gk:j,i pk,i

N0 + τk:j,i piβk:j,i + ∑` 6=k δ`,i p`,ig`:j,i
. (3)

In this case, the channel link gains are gk:j,i (the gain between transmitter k and
receiver j ∈ Dk over channel i), and βk:j,i, the gain between user Ci and receiver j ∈ Dk.
The indicator variables at the denominator are

τk:j,i =

{
1, if |piβk:j,i| < |gk:j,i pk,i|,
0, otherwise;

(4)

and

δ`,i =

{
bk,i, if |g`:j,i p`,i| < |gk:j,i pk,i|,
0, otherwise.

(5)

To simplify notation, we denote the total observed interference as Ik:j,i = τk:j,i piβk:j,i +

∑` 6=k δ`,i p`,ig`:j,i, so that Γk:j,i =
gk:j,i pk,i
N0+Ik:j,i

.
Note that, in (2), (4) and (5), we assume perfect knowledge of channel state information

(CSI). Further, the transmitters follow a distributed NOMA strategy, as shown in Figure 2,
since different transmitters (the BS in each of the CUs’ resource blocks or transmitters in
other MD2D groups) encode their signals independently but with a common codebook.
For the receivers, (2), (4) and (5) imply that those in different groups can use different SIC
orderings for decoding, since the channel qualities vary.

3.3. Resource Allocation Problem

Our objective in this work is to maximize the energy efficiency of both the MD2D
groups and the CUs under the constraint of a minimum rate requirement for every user.
This minimum rate may be different for each group or CU, since individual groups or CU
users may have diverse data rate requirements depending on the type of their applications.

The (normalized) energy efficiency, measured in bit/Hz/J, is defined for each CU user
Cm as the ratio of its normalized transmission rate to the energy consumed:

EEC(m) :=
rm

um + pm
=

log2(1 + Γm)

um + pm
, ∀Cm ∈ C, (6)
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where rm denotes the transmission rate in bit/s/Hz of user Cm, um is the residual power
consumed by user Cm when there are no data to transmit (a constant) and pm is its trans-
mission power. For the MD2D group Dk, its energy efficiency is given by

EED(k) :=
Rk

vk + ∑m∈C P(m)
k

=
|Dk|∑m∈C minj∈Dk log2(1 + Γk:j,m)

vk + ∑m∈C P(m)
k

, ∀Dk ∈ D, (7)

where vk denotes the used power by the transmitter and the receivers in Dk group at rest
and P(m)

k is the assigned transmission power to the transmitter in group Dk over channel
Cm. Note that the rate Rk supportable in group k (the numerator in (7)) is limited by the
receiver with the poorest channel quality, and scales with the size of the group.

The global energy efficiency (GEE) of the cellular network is the ratio between the ag-
gregated rate and the total power needed. Thus, the optimization problem for maximizing
the GEE is formulated as

max
p, Pk ,B

∑m∈C log2(1 + Γm) + ∑k∈D |Dk|∑m∈C minj∈Dk log2(1 + Γk:j,m)

τ ∑m∈C pm + ∑k∈D ∑m bk,mP(m)
k

(8)

subject to bk,m ∈ {0, 1}, ∑
m∈C

bk,m ≤ s, ∑
k∈D

bk,m ≤ r, k ∈ D, m ∈ C (9a)

pm ≤ p, m ∈ C (9b)

∑
m∈C

P(m)
k ≤ Pk, k ∈ D (9c)

log2(1 + Γm) ≥ rm, m ∈ C (9d)

|Dk| ∑
m∈C

min
j∈Dk

log2(1 + Γk:j,m) ≥ Rk, k ∈ D (9e)

over the variables p = (p1, . . . , pM) (the power vector allocated to the CUs), Pk =

(P(1)
k , . . . , P(M)

k ), k = 1, . . . , K, (the power vector allocated to the designated transmit-
ter of group Dk over the M channels) and B = [bk,m], the K×M channel allocation matrix.
The constant τ = ∑m∈C um + ∑k∈D vk is just the power consumption of all the devices
when there is nothing to transmit. Observe that both CU users and MD2D groups must
satisfy individual average power and minimum transmission rate constraints (9b)–(9e).

A second system performance metric is the max-min fair energy efficiency (MMF-EE),
which is defined as EEmmf = min{minm EEC(m), mink EED(k)}. Clearly, the MMF-EE
uniformly lower bounds the individual EE of all the users, so it provides a common quality
of service to all the devices in the network. The corresponding optimization problem is,
therefore, to maximize this minimum EE:

max
p, Pk ,B

EEmmf (10)

over the same variables as (8) and constraints (9a)–(9e).
The joint power control and resource allocation is a mixed integer non-linear problem

(MINLP) which is NP-hard as proved in [19]. Therefore, we decompose it into two sub-
problems: (i) resource allocation; and (ii) power control. In our approach, a (sub-optimal,
in general) feasible allocation of channels to MD2D groups is calculated in the first stage;
then, in the second or inner stage, the optimal power for each transmitter in the system
that maximizes the EE is obtained by successive convexification of the objective function
and solving fractional programming problem. This process is iterated until convergence,
which is guaranteed and, in our numerical tests, is reached in just a few rounds.
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4. Resource Allocation: Power Control and Channel Assignment

Our schema to solve the joint power control and channel assignment problem is an
alternating optimization between the discrete part and the continuous part. The latter is
solved optimally given a fixed channel allocation, and, once the transmission power have
been determined, the channels and users (UEs and MD2Ds) are paired. This process is
repeated until convergence.

4.1. Power Control Algorithm

Suppose a fixed, static channel allocation matrix B. Under this condition, both prob-
lems (8) and (10) seem standard convex optimizations, since (9b)–(9e) define a convex
solution space, but on closer inspection it can be seen that the objective function is really
not concave in p. However, a two-step transformation suffices for converting (8) into a con-
vex problem, and then any classical interior point method is applied to efficiently obtain its
solution. Specifically, (8) is first written as maxp∈P f (p)/g(p), where g(p) is affine. Should
the numerator be concave, the well known Dinkelbach’s algorithm [32] (reproduced here
for completeness as Algorithm 1) could readily be used to find the solution, but concavity
does not hold in this case as pointed. Thus, at every iteration of Algorithm 1 (Line 3), a
concave local approximation f̃ (·) is used in place of the true f (·). Specifically, let pk(B) be
the current approximation at iteration k to the optimal vector of transmission powers p∗(B)
when the channels are shared as B dictates. Then, f (p) is substituted by a concave f̃ (·) such
that f̃ (pk(B)) = f (pk(B)) and a new vector pk+1(B) of power values is obtained as the
maximizer point. We refer to the work in [4,33] for the proof that this procedure converges
and finishes in linear time. Note that, for the optimal power vector and multiplier (p∗, λ∗),
we have f (p∗)− λ∗g(p∗) = 0.

We conclude our discussion of the power control algorithm with the observation that,
although the procedure is unchanged with respect to Hmila et al. [4], the outcome of the
algorithm is different with OMA and NOMA for a fixed channel usage matrix B, because
the effective interference appearing in (1)–(3) is lower with NOMA, and the corresponding
SINR is higher. The impact of this is discussed below when the numerical results are
presented.

Algorithm 1 Optimal power control for GEE and MMF-EE (Dinkelbach’s algorithm).

1: ε > 0, λ = 0, F = ∞

2: while F > ε do

3: p? = arg maxp∈P{ f (p)− λg(p)}
4: F = f (p?)− λg(p?)

5: λ = f (p?)/g(p?)

6: end while

4.2. Centralized Channel Assignment: Matching Theory

We present two complementary methods to calculate the assignment of channels to
users. The first resorts to matching theory and is centralized, a single entity (e.g., the BS)
is in charge of selecting the best pairs CUs-MD2Ds on a given channel. Matching theory
has been previously applied to this setting [34,35], but mostly in the one-to-one and one-to-
many variants. In this paper, we also need to consider a many-to-many matching between
CUs and MD2D groups in order to capture the General Case introduced in Section 2. The
simpler resource sharing policies of Dedicated CUs and Distributed Groups are adequately
covered by one-to-one and one-to-many matchings, respectively.

The preference function used to compute the matching is key for the accuracy of the
solution. Heuristically, we use for this purpose the aggregate interference level measured
at MD2D receivers and CUs. Our rationale is that mitigating the interference entails less
power for a given transmission rate. In the interference-limited regime (low or medium



Sensors 2021, 21, 3436 9 of 20

SINR), the rate is approximately linear in the SINR level, so we expect that the matching
selected on the basis of less accumulated interference is close to optimal. Our numerical
simulations confirm this observation (see also [4,19]).

4.2.1. Channel Assignment Algorithm

Formally, a channel assignment is a function between the set of MD2D groups Dk ∈ D
and the downlink channels, here identified with the set C. Pairings that cause the minimum
possible mutual interference are preferred, according to the following relationships.

One-to-One Matching: A one-to-one match µ is a mapping from D ∪ C to itself such
that, for any Dk ∈ D, if µ(Dk) 6= Dk, then µ(Dk) ∈ C, and, if µ(Cm) 6= Cm for some
Cm ∈ C, then µ(Cm) ∈ D. The partner Dk is referred to as µ(Cm) if µ(Cm) = Dk. The
preference function for setting the matching uses the received aggregate interference
on each MD2D group Dk given by

α
(m)
k = max

j∈Dk
Ik:j,m, ∀Dk ∈ D, (11)

for channel m. In an analogous form, the aggregated interference seen by each CU
user Cm is

Γm = ∑
k∈D

ck,mhk,m pk,m, ∀Cm ∈ C. (12)

Since Γm is additive, we isolate the contribution of the MD2D group Di by denoting
ΓDi

m = hi,m pi,m, or, equivalently, setting ci,m = 1 and ck,m = 0, ∀k 6= i, in (12). Then,
the preference relationship is defined as follows: (i) group Dk prefers channel Ci to

Cj if α
(i)
k < α

(j)
k ; and (ii) user Cm prefers group Di to Dj if ΓDi

m < Γ
Dj
m . Note that, if a

channel m is empty, then µ(Cm) = Cm, and, when group Dk is forbidden to transmit
on any channel, µ(Dk) = Dk.

Many-to-One Matching: A many-to-one match µ is a mapping from D ∪ C to itself such
that, for each Dk ∈ D, if µ(Dk) 6= Dk, then µ(Dk) ∈ C, and, if µ(Cm) 6= Cm for some
Cm ∈ C, then µ(Cm) ∈ D. The partner Dk is referred to as µ(Cm) if µ(Cm) = Dk.
For many-to-one matches, the preference relationship is similarly defined as follows:
(i) transmitter in Dk prefers channel Ci to channel Cj if α

(i)
k < α

(j)
k ; and (ii) user Cm

prefers Di to Dj if ΓDi
m < Γ

Dj
m ; (iii) |µ(Cm)| ≤ r, where r is channel m’s reuse factor.

Many-to-Many Matching: For matches between arbitrary subsets of D and C, the follow-
ing preference relationship is defined by: (i) Dk prefers channel Ci to Cj if α

(i)
k < α

(j)
k ;

(ii) user Cm prefers Di to Dj if ΓDi
m < Γ

Dj
m ; (iii) |µ(Cm)| ≤ r, where r is channel m’s

reuse factor; and (iv) |µ(Dk)| ≤ s, where s is group Dk’s split factor.

In the centralized approach, a single controller entity first sets a preference list of
the transmitters over C and a preference list of the channels/CUs over the K groups. If
there is no sharing (this corresponds to r = s = 1, or dedicated CUs), then the central
entity simply applies the Gale–Shapley algorithm to obtain a stable matching between
channels and MD2D groups [35]. For the resource sharing cases given when r > 1 or
s > 1, multiple transmitters can share a channel and multiple channels can be used by
a transmitter, and a many-to-one matching or many-to-many matching is decided with
Algorithm 2. Now, in contrast to the dedicated case, the decision to put MD2D group Dk
into channel Cm depends on the co-channel inter-group interference produced by CU Cm
and possibly other groups Dj, j 6= k, already using the same RB. Likewise, the acceptance
or rejection of a channel Cm for a new MD2D group may differ according to the aggregated
interference (12). Thus, Algorithm 2 executes the Gale–Shapley exchange iteratively, and
in each round one MD2D group is selected and assigned. To that end, the controller first
calculates interference as if it would in a one-to-one matching. During the round, those
groups whose rank in the channels’ preference lists is not the highest are deferred until
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some next iteration, and the SINR are recalculated based on the current assignment to
evaluate the increase on channel Cm due to the addition of some of the unmatched groups.
Actually, all the values of the aggregated interference are re-evaluated, irrespective of the
status of the group, matched or unmateched. Note that, through the use of (11) and (12), the
matching algorithm is considering the SIC decoding for the evaluation of the interference
levels. This is an important difference with the previous literature on the use of matching
theory for wireless networks [18].

Algorithm 2 NOMA interference-based matching algorithm.

1: Set up preference list D2MDPL, ∀Dk ∈ D, from (11)

2: Set up preference list CUEPL, ∀Cm ∈ C, from (12)

3: Initial unmatched groups list L = D
4: Free groups list F = ∅

5: r ← 1

6: while Cm occupancy < r do

7: while L 6= ∅ do

8: repeat

9: if Cm occupancy < r then

10: Allocate Cm to group Dk;

11: else if Cm is allocated to Dk′ and Dk is preferred over Dk′ then

12: Reject Dk′

13: Keep Dk

14: L ← L∪ {Dk′}
15: else

16: Keep Dk′ and reject Dk

17: end if

18: Update |Dk| and |Dk′ |
19: if |Dk| = s then

20: L ← L \ {Dk}
21: else if ∀Ci ∈ C, Dk is rejected then

22: F ← F ∪ {Dk}
23: end if

24: until all preferences of group Dk are tested or |Dk| = s

25: end while

26: Calculate interference values (11) and (12)

27: L = F
28: r ← r + 1

29: end while
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4.2.2. Stability

The matching algorithm produces a stable outcome if no two pairs of agents (c1, d1)
and (c2, d2) can be found such that the global utility function increases by swapping the
pairings, namely using (c1, d2) and (c2, d1) instead. If some pair with this property exists, it
is called a blocking pair, so the partnership µ is stable if none pair (Dk, Cm) forms a blocking
pair for any Dk ∈ D and Cm ∈ C that are not currently matched to each other. This means
that both group Dk and channel Cm prefer each other more than their current partners in
the matching. To prove the stability we need to show that these two conditions cannot
hold simultaneously. Assume that Dk′ prefers Cm, so it sends a preference message to Cm
based on its individual preferences µ(·). Consequently, µ(Dk) 6= Cm as Dk has a lower
priority by Cm according to µ. This shows that, even though Cm is Dk’s favorite partner, Cm
does not have incentives toward being matched to Dk. Thus, the first condition fails. The
second condition can be proved along the same argument, and the pair (Dk, Cm) cannot be
a blocking pair for µ, too. Therefore, the relationship and pairings chosen by the matching
algorithm are stable.

4.3. Distributed Channel Assignment: Coalition Formation

In Section 4.2, we suppose that a central entity has perfect CSI and uses that for running
the matching algorithms. In this section, we show that channel assignment problem can be
solved almost optimally using coalitional game-theoretic approach. Consider a coalition
game G, which is defined by the triplet (N , v,S):
1. N = C ∪ D is the set of players, with C and D denoting the sets of CUs and MD2D

groups.
2. v is the valuation function that gives the value of a coalition in a game. This is a

set function that maps each Si ⊆ N to real non-negative number interpreted as the
absolute value of the coalition.

3. S = {S1,S2, . . . ,Sn} is the set of formed coalitions namely the coalition structure.
Here, each coalition Si is a subset of N (Si ⊆ N , for i = 1, . . . , n).

In particular, the definition does not imply that two coalitions are disjoint or that all
the agents (CUs and MD2D groups) are part of a coalition. Without loss of generality,
every singleton can be regarded as a coalition itself. We further recall some basic notions in
coalitional game theory, which are useful below for our discussion. First, agents can have
transferable utilities if they are allowed to transfer in a lossless way part of their individual
utility to other agents. A transferable utility implies that the coalition structure determines
completely the value of the coalition, and this value is totally independent of how the
remaining players cooperate. A second important consequence for our purposes is that
this class of coalition games have a non-superadditive valuation function. In turn, one can
conclude from this that the game will never end up forming a grand coalition containing
all the players, because a partition would attain a higher aggregated value. In our case,
a grand coalition would lead to a high level of interference which would limit the rates.
Hence, using interference for payoffs, utilities and valuations provides the correct signals
to promote more efficient solutions.

The proposed coalition game applies repeatedly, in an asynchronous and distributed
manner, the following two rules for merging new coalitions or dividing existing ones:

Merge coalitions Any subset of coalitions {S1, . . . ,Sl} may be merged whenever the
merged form is preferred by the players. The preference relationship is the same
defined in Section 4.2.1 for the centralized solution approach.

Split coalitions Any coalition
⋃l

j=1 Sj may be split whenever the split form is preferred
by the players.

The principle that lies under the rule for coalition formation is that some MD2D group
Dk can depart from coalition Si and become a new member of coalition Sj only if these
conditions are met:
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1. The weakest receiver in group Dk suffers less individual interference if the group is
moved to Sj (recall the the receiver with the poorest channel sets the transmission
rate for the group).

2. The total mutual interference of coalition Sj ∪ Dk does not increase: v(Sj ∪ Dk) ≤
v(Sj). This condition is essential for guaranteeing convergence of the algorithm. It
simply states that movements among coalitions are allowed only if they improve the
local value of the coalition.

3. The new coalition structure S ′ results in less total interference than the current one:
v(S ′) ≤ v(S) ⇒ S ′ is preferred to S . In other words, only movements that also
improve the total value of the network are approved.

The splitting of some formed coalition follows exactly the same three conditions, but
reversing the direction (or the indices).

In Algorithm 3, we initially assume that each coalition has either one CU or one
MD2D group with no other members. Then, these individual players take actions i.e, to
merge and/or split until M coalitions emerge where each coalition has a single CUs and
multiple MD2D. According to the constraints (see Algorithm 3), every coalition can host
a maximum of r MD2D groups, and conversely a maximum of s coalitions have a given
group as one of its members. In view of the conditions for the formation of cooperative
coalitions, their members will likely be a subset of users whose co-channel interference
(both intra- and inter-group) is a local minimum. Although minimizing interference is
not equivalent to maximizing energy efficiency, two reasons support this choice. Firstly, it
is clear that a lower interference level from transmitters in other groups will lead to use
potentially less transmission power in a given group sharing the same channel(s) (for a
given target rate). Keeping the rate constant (or increasing it) with less consumption of
energy gives obviously improved EE. Note that this is basically a greedy argument, since
the EE is increased locally, but it is plausible that the global EE also improves in a majority
of the network configurations. Secondly, the minimum transmission rates are more easily
achievable when the interference level is kept under tight control. This implies that the
outcome of the coalition game is less sensitive and more robust to imperfect or delayed
CSI. Algorithm 3 always converges to a stable set of coalitions. Here, a stable coalition is
defined as one in which the coalition structure cannot be further changed by the merge
or split actions presented above, and such that it maximizes the sum of utilities for the
players. We refer the readers to the work of Hmila et al. [4] for a proof of this result.

4.4. Algorithmic Complexity

The resource allocation sub-problem algorithms, both the semi-distributed and the
centralized, terminate after at most r rounds, where r is the reuse degree. In each round,
the semi-distributed algorithm performs a merge and/or split move, while the centralized
accepts or rejects a new member. This is repeated for at most M channels for all the
coalitions or the free groups, so the complexity is no larger than O(MK2). The power
control sub-problem is solved through the Dinkelbach’s algorithm, which has a sublinear
complexity, i.e., superlinear convergence rate [36], and the evaluation of the EE functions
takes constant time. The number of variables/constraints is O(M + K) (rate and power for
each user). Therefore, the overall worst-case complexity is O(rMK2(M + K)).
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Algorithm 3 NOMA based merge-and-split for the coalitional game.

1: rt ← 1; Sm ← {}, m = 1, . . . , M

2: repeat

3: while rt ≤ r do

4: Identify a feasible p(m)
k , pm, k = 1, . . . , K, m = 1, . . . , M.

5: Set Rk = ∑m∈C log2(1 + Γm) + ∑k∈D |Dk|∑m∈C minj∈Dk log2(1 + Γk:j,m)

6: Set rm = log(1 + Γm), m = 1, . . . , M

7: Sort Sm in ascending order using (11)

8: repeat

9: for m = 1, . . . , M do

10: Choose Dk ∈ Sm

11: if v(Sm \ Dk) < v(Sm \ Dk′) for some Dk′ then

12: Sm ← Sm \ Dk

13: end if

14: Choose Dk 6∈ Sm

15: if v(Sm ∪Dk) < v(Sm ∪Dk′) for some Dk′ then

16: Sm ← Sm ∪Dk

17: end if

18: end for

19: Update aggregate interference values with (11) and (12)

20: until all Dk ∈ Sm are tried or |{Dk : Dk ∈ Sm}| = s

21: rt ← rt + 1

22: end while

23: until S = {S1, . . . ,SM} is a stable coalition structure

24: Optimize p(m)
k , pm, k = 1, . . . , K, m = 1, . . . , M, using Algorithm 1

5. Numerical Results

In this section, we numerically evaluate the performance of both the centralized
and the semi-distributed resource allocation approaches when NOMA is involved using
MATLAB and the CVX mathematical optimization package.

We simulated a cell of radius equal to 500 m with λ = 250 users (CUs and D2D
users). Users are spatially distributed following a standard homogeneous Poisson point
process (PPP) [37,38]. Different from other works in the literature, we used two different
clustering techniques to form the groups: K-Nearest Neighbor (KNN) and Distance Limit
(DL) algorithms. Initially, head clusters (the transmitters per group) are randomly selected
with both techniques. However, whereas KNN permits to form homogeneous (equal sized)
groups, DL defines the group area as a disk around the group transmitter, so it allows us to
consider groups of different sizes, including unicast transmissions as a special case. Based
on previous results [39], we remark that the clustering technique (i.e., using KNN or DL)
usually has little impact on the individual or aggregate behavior [39]. Therefore, we mostly
present our results for only one of the algorithms, with similar conclusions being valid for
the other one. For resource sharing, CUs having the best channel qualities are selected to
share their RBs with MD2D groups. The received signals are assumed to weaken with path
loss according to Pr = Pt(1 + (d/d0)

α) where Pr is the received power, Pt is the transmitted
power, d0 is a reference distance (100 m in our case) and α ≥ 2 is the path loss exponent.
The rest of physical system parameters are summarized in Table 2.
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Table 2. Simulation parameters.

Parameter Value

Cell radius 500 m
Reuse factor (r) {2, 3}
Network density 250 devices/cell
Split factor (s) {3, 4}
Path loss exponent 2.5
Minimum transmission rate {0.1, 0.5} bit/s/Hz
Number of CU users (M) {5, 6, 8}
Maximum transmission powers [−5, 25] dBm
Number of MD2D groups (K) {4, 10, 15}
Number of receivers Dj {3, 4, 5}
Circuit power 10 dBm

5.1. Distributed Resource Allocation

Figure 3 illustrates the impact of NOMA in the semi-distributed (coalition-based)
approach for the GEE and the aggregated rate. The spatial configuration used K = 4 and
K = 5 groups, a number of CUs between 2 and 5, and a minimum rate of 0.1 bit/s/Hz. As
shown, NOMA improves the GEE within the various resource sharing settings. Similarly,
the aggregated rate significantly increases with NOMA (when compared to treating inter-
ference as noise), around a 30% in the general sharing case where the reuse of channels
implies that receivers can exploit SIC for decoding weak signals. Note that, since the
GEE remains almost constant, this means that the higher consumed energy is effectively
converted into communication rate, as is expected with NOMA.
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Figure 3. Global energy efficiency and aggregated rate using KNN clustering.

The minimum rate and EEmmf are depicted in Figure 4 for the coalition-based approach
when NOMA is used in a shared CUs setting with r = 2 and r = 3. This time, the clusters
are formed using DL, with the average number of receivers set to 3. NOMA helps to
increase EEmmf and the transmission rate simultaneously, but the gain is clearly larger
if the reuse factor r grows, since this allows for more degrees of freedom when sharing
the channels. Therefore, NOMA can only realize its full potential when the co-channel
interference level prevents the system to attain the target transmission rates, while it just
provides a marginal gain in the high SNR regime. As a consequence, NOMA is mostly
useful in dense wireless systems when the number of active users is high, even if the
transmission rate required by the devices is not particularly high (e.g., mMTC in 5G).

For the general sharing scenario (r = 2, s = 3, 4), Figure 5 shows that using NOMA
is not detrimental to the EEmmf or the worst rate for any receiver. We used 6–8 CUs and
4 MD2D groups in both simulation cases. Further, note that the minimum rate per channel
was set to 0.5 bit/s/Hz. Thus, although using NOMA leads the network to consume more
power for transmitting, this is again not wasted; it is instead used to achieve the spatial
degrees of freedom of the multi-user channels. Figure 6 shows precisely the increase in the
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consumed power between the partial sharing (shared CUs) and the full sharing (general)
cases, confirming that aggregate interference is not only well controlled by the allocation
algorithm (right), but also used to extract information under receiver SIC.

The impact of NOMA is also positive as the group sizes increase in the general sharing
scenario (Figure 7). Both the GEE and the achieved sum-rate improve substantially with
more receivers per group, and the increase is faster in the low SNR region. We emphasize
that the results are shown for an average number of receivers per group, since the device
locations and the cluster formation are random. With the parameters listed in Table 2, the
maximum distance between the receiver and the transmitter happens to be within 50–80 m.
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Figure 7. Global energy efficiency and aggregated rate with NOMA and the distributed coalition
game for the general case with different group sizes.

5.2. Comparison to Optimal Resource Allocation

We now analyze the performance of NOMA compared to the optimal centralized
resource allocation solution. Although the centralized approach is not generally applicable
in large networks, its performance results set a baseline to assess the achievable gains with
NOMA and SIC with respect to the system parameters (i.e., the number of groups and
receivers per group).

First, we show in Figure 8 that NOMA is able to simultaneously attain better global
energy efficiency and higher sum-rate than OMA in the network. This implies that NOMA
better approaches the capacity region of the MD2D cell with similar or lower consumption
of energy, thus demonstrating that this communication strategy clearly outperforms OMA
in this scenario. However, the optimality of NOMA is still unclear since we do not currently
know the exact capacity region of the system for arbitrary sizes. Accordingly, the plots
in Figure 8 must be considered as an achievable inner approximation, yet with a gap to
the theoretically optimal system performance. We discuss below whether NOMA alone
can reasonably be the best encoding and decoding strategy for optimizing multi-user
communication systems. The gain over OMA is also notable in the case of shared CUs, or
partial sharing, in both of the metrics (see Figure 9). In addition, observe that the difference
between NOMA and OMA (referred to as the matching approach) increases with r, the
reuse factor.
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NOMA for the general case.
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Figure 9. Global energy efficiency and aggregated rate with the matching theory based solution vs.
NOMA for the shared CUs case.

Nevertheless, for the max-min performance metrics, the conclusions are slightly
different. As shown in Figure 10, EEmmf is actually worse with NOMA than with OMA for
a given number of channel sharing degrees of freedom (only the cases of r = 2 and r = 3
are shown). We recall that NOMA can use more power in the transmitters, since part of the
interference is removed by SIC processing at the receivers, but, even under perfect SIC and
strict power control, the receivers with stronger channels can experience lower Emmf . This
is not as unfavorable as it appears, because Figure 10 (right) shows that the max-min rate
actually increases with NOMA.
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Figure 10. EEmmf and max-min rate with the proposed matching theory based solution vs. NOMA
for the shared CUs case.

6. Discussion

The results presented in the previous section show that, when channel reuse is allowed
in MD2D communications, NOMA and SIC-enabled receivers can attain higher sum-rate
than OMA in a consistent manner, i.e., almost independently of the number of groups and
the number of receivers per group. This is possible at the same energy efficiency for the
network, but not generally for the MMF energy efficiency, which can be worse in some
cases. However, the max-min rate is still improved with NOMA, although at the cost of
consuming more energy.

In modern wireless communication systems, transmitters and receivers come equipped
with multiple antennas. Our model only considers single-antenna sources and receivers,
so it is natural to investigate the role of NOMA and MIMO together, since it is well known
that NOMA is optimal from an information theoretical point for the single-user broadcast
channel. Given that MIMO and NOMA are far better than point-to-point and OMA sys-
tems, respectively, it seems plausible that their combination yields even better benefits,
at least in the sum multiplexing rate. Contrary to intuition, some recent works [40,41]
unveil several shortcomings and misconceptions about multi-antenna NOMA and show
that linear precoding (for the downlink) and/or rate-splitting can be strictly better than
NOMA in many common network settings. Moreover, both rate splitting and precoding
require less complex receivers, so their implementation is easier. In view of this, more
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research on the contexts where NOMA is preferable over the latter strategies is necessary
to determine under which conditions a receiver-only SIC approach is optimal in terms of
sum-rate and multiplexing gains. In the special case of MD2D communications, one could
consider an adaptive hybrid system where NOMA and rate-splitting are used depending
on the number of receivers in the D2D group, for instance, due to the similar complexity of
both techniques for a small number of receivers.

7. Conclusions

In this paper, we consider the inclusion of NOMA into an optimization framework for
designing multicast D2D communication systems. We show first that the base mathemat-
ical framework can be adapted without much difficulty to the non-orthogonal multiple
access case for the downlink part, and that the centralized and distributed optimization
procedures only need some technical changes to work properly. Next, we conducted a set
of numerical experiments to evaluate the performance gains achievable with NOMA in our
context, focused on global and max-min energy efficiency, and global and max-min sum
rate for the receivers. Our results suggest that NOMA is efficient for the sum rate (in both
cases) and for the global energy efficiency, but in contrast it may not be efficient for the
max-min energy efficiency. Moreover, our results were obtained under QoS constraints for
the rate, thus MD2D with NOMA can cope with high system-level throughput, reliability
and heterogeneity in 5G wireless networks. While our focus was on the downlink com-
munication, the same model and techniques can be used for the uplink direction, where
the BS applies SIC for separating the signals. Nevertheless, this is a single-receiver model
which has already received much attention in the literature.

While the results in the paper highlight the performance improvements that NOMA
can offer for reusing the transmission channels among disjoint groups of co-located (or
nearby) transmitters–receivers, there are still many issues worth investigating before fully
understanding the interplay between NOMA and D2D, such as the role (architectural and
related to performance) of NOMA in enhanced mMTC and eMBB services, massive IoT
with short-packet communications and D2D networks. Performance analysis of NOMA in
D2D and MD2D with full-duplex nodes is also a promising research direction.
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