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Abstract: Precise localization and pose estimation in indoor environments are commonly employed
in a wide range of applications, including robotics, augmented reality, and navigation and positioning
services. Such applications can be solved via visual-based localization using a pre-built 3D model.
The increase in searching space associated with large scenes can be overcome by retrieving images
in advance and subsequently estimating the pose. The majority of current deep learning-based
image retrieval methods require labeled data, which increase data annotation costs and complicate
the acquisition of data. In this paper, we propose an unsupervised hierarchical indoor localization
framework that integrates an unsupervised network variational autoencoder (VAE) with a visual-
based Structure-from-Motion (SfM) approach in order to extract global and local features. During
the localization process, global features are applied for the image retrieval at the level of the scene
map in order to obtain candidate images, and are subsequently used to estimate the pose from
2D-3D matches between query and candidate images. RGB images only are used as the input of
the proposed localization system, which is both convenient and challenging. Experimental results
reveal that the proposed method can localize images within 0.16 m and 4◦ in the 7-Scenes data sets
and 32.8% within 5 m and 20◦ in the Baidu data set. Furthermore, our proposed method achieves a
higher precision compared to advanced methods.

Keywords: indoor localization; computer vision (CV); variational autoencoder (VAE)

1. Introduction

Indoor localization has recently been the focus of much attention due to its wide com-
mercial application value, providing services such as navigation and positioning [1], search
and rescue [2], advertising pushing, and location socialization in large and complex indoor
environments (e.g., museums, airports, and supermarkets). Unlike outdoor positioning,
the use of GPS in indoor environments is generally highly limited due to signal occlusion,
thus making accurate positioning a complicated task. Therefore, researchers employ indoor
signal transceiving devices such as Bluetooth beacons [3], Wireless Fidelity (Wi-Fi) [4], Digi-
tal Enhance Cordless Telephone (DECT) [5], and Radio Frequency Identification (RFID) [6];
however, these external devices are required to be placed in the environment in advance,
resulting in additional installation and maintenance costs. If the external device of the
system is altered, the entire system must also be updated. Visual-based localization is an
alternative localization method that can be positioned using just a pre-built model and a
single camera without any other external devices required. Vision-based localization can
be applied to 3 Degree of Freedom (3DoF) positioning services, as well as additional appli-
cations such as intelligent robots [7] and virtual reality [8] that require high-precision 6DoF
pose estimation. This can typically be accomplished by direct image-based localization via
a 3D model based on sparse feature points from simultaneous localization and mapping
(SLAM) [9,10] or Structure from Motion (SfM) [11].

Direct image-based localization initially extracts the local features (e.g., edge, corner,
and line) of the database images and calculates their 3D positions. This is followed by the
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matching of the 2D local features of the query image with the 3D points in the model, also
known as 2D-3D matching, which is frequently achieved by using a nearest neighbor search
in the descriptor space. Such algorithms perform well for small-scale scenes, yet for larger
scales such as airports, the descriptor space in the database increases, and the matching
process requires an excessive amount of computing resources. This presents difficulties for
platforms with limited resources. Moreover, indoor environments contain a large number
of repetitive appearances and elements such as corridors, doors, and windows, and are
thus prone to mismatches, resulting in poor pose estimation results.

In order to overcome the aforementioned limitations, numerous methods [12,13] have
been proposed with a particular focus on reducing the amount of 2D-3D matching. These
include making use of global features such as color, texture, and shape. For example, the
two-stage localization approach first employs an image retrieval procedure to determine
candidate images in the database similar to the query image and subsequently performs
2D-3D matching to calculate the 6DoF camera pose. Such a method is efficient due to the
reduced space required for the nearest neighbor search. The development of convolutional
neural networks (CNNs) has greatly improved the performance of image retrieval pro-
cedures, yet these systems still cannot directly estimate the camera pose with centimeter
accuracy. The majority of current image retrieval tasks [14,15] often use supervised or
weakly supervised networks for training. However, this results in difficulties in obtain-
ing data labels (e.g., GPS information) for indoor environments, with manual labeling
increasing labor costs. Therefore, based on its convenience and simple implementation, we
employed an unsupervised training network variational autoencoder for the prior image
retrieval in our system.

In particular, in the current paper, our hierarchical localization framework learned
global and powerful local features for visual-based localization in order to achieve large-
scale indoor and accurate 6DoF pose estimation tasks. Similar to humans inferring their
position in the natural environment, we initially applied the overall appearance character-
istics to infer the approximate location, and subsequently determined where we were by
using some local and notable visual cues. Therefore, we used hierarchical localization [16]
(Figure 1) for large-scale indoor scenes, where we used global features to achieve the rough
localization and local features to achieve accurate pose estimation. The key contributions
of this paper are summarized as follows:

• We designed a hierarchical localization framework that utilizes an unsupervised
network VAE and SfM, which only requires RGB images as the input.

• We demonstrated that our proposed method can achieve 6DoF pose estimation and
has higher localization accuracy than most deep learned methods.
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Figure 1. Hierarchical localization. Candidate images are retrieved from the database, and then the 
2D key points of the query image are matched with the corresponding 3D points of the candidate 
images in model. 
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Visual-based localization methods can generally be categorized into regression-
based, structure-based, and image retrieval-based methods. Regression-based methods 
include end-to-end visual localization models trained by deep learning that are able to 
directly obtain the regressed 6DoF camera pose [17–20]. However, such methods are not 
applicable for the visual localization of large-scale scenes and are associated with low ac-
curacies [21]. Although some methods [22,23] have made improvements and the accuracy 
has been greatly improved, these kinds of method all need to use camera pose data. 

Structure-based methods use feature matching between query image and map to ob-
tain the 6DoF pose. The 3D map is mostly constructed by SfM methods [11,24,25]. The 
pose of image query is computed by matching key points in the query image and 3D 
points in the 3D map, and then solving the Perspective-n-Points (PnP) problem. In this 
type of method, in addition to traditional pose calculating methods, most methods also 
need to use labeled data for training. For example, DSAC (differentiable RANSAC (Ran-
dom Sample Consensus)) [26] and DSAC++ [27] need RGB-D data, and BTBRF (Backtrack-
ing Regression Forests for Accurate Camera Relocalization) [28] also needs camera pose 
for training. However, the searching and matching calculations increase with the points 
increase in the 3D map. In order to improve the efficiency of such approaches, researchers 
have proposed several solutions including vocabulary trees [29], prioritized searches [30], 
and remote server calculations [31]. However, the benefits of these methods are limited 
and they are not suitable for resource-constrained mobile platforms and large-scale sce-
narios. In addition, local features lack the ability to capture the global context of the image 
and require the robust aggregation of points to effectively achieve pose estimation. 

Image retrieval-based methods use either global features or visual vocabulary to 
match query and database images, and subsequently obtain the approximate position of 
the image from visually similar images. The implementation of such methods is carried 
out based on global descriptors, traditionally defined as aggregated artificial features such 
as Scale Invariant Feature Transform (SIFT) [32], Bag-of-Visual-Words (BoVW) [33], and 
vector of locally aggregated descriptors (VLAD) [34,35]. Although these methods only 
need RGB images, they have complex computation and are not competitive with deep 
learning methods [36,37]. With the development of deep learning, the learned global fea-
tures DEep Local Features (DELF) [14] and NetVLAD [38] have greatly improved the per-
formance of image retrieval tasks, principally due to the establishment of large labeled 
visual data sets. The retrieved position can be directly used to calculate the pose between 

Figure 1. Hierarchical localization. Candidate images are retrieved from the database, and then the
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The rest of the paper is organized as follows. We first briefly review the related
literature in Section 2. Section 3 presents the framework of the proposed unsupervised
indoor localization system. Section 4 presents the specific methods, including using the SfM
pipeline to build 3D models, constructing a VAE model and the corresponding optimization
scheme for training, calculating the pose, and selecting the best pose. Section 5 presents
the experimental results, which show that our method stands out. Finally, we present a
discussion and conclude the paper in Section 6.

2. Related Work
2.1. Visual-Based Localization

Visual-based localization methods can generally be categorized into regression-based,
structure-based, and image retrieval-based methods. Regression-based methods include
end-to-end visual localization models trained by deep learning that are able to directly
obtain the regressed 6DoF camera pose [17–20]. However, such methods are not applicable
for the visual localization of large-scale scenes and are associated with low accuracies [21].
Although some methods [22,23] have made improvements and the accuracy has been
greatly improved, these kinds of method all need to use camera pose data.

Structure-based methods use feature matching between query image and map to
obtain the 6DoF pose. The 3D map is mostly constructed by SfM methods [11,24,25]. The
pose of image query is computed by matching key points in the query image and 3D points
in the 3D map, and then solving the Perspective-n-Points (PnP) problem. In this type
of method, in addition to traditional pose calculating methods, most methods also need
to use labeled data for training. For example, DSAC (differentiable RANSAC (Random
Sample Consensus)) [26] and DSAC++ [27] need RGB-D data, and BTBRF (Backtracking
Regression Forests for Accurate Camera Relocalization) [28] also needs camera pose for
training. However, the searching and matching calculations increase with the points
increase in the 3D map. In order to improve the efficiency of such approaches, researchers
have proposed several solutions including vocabulary trees [29], prioritized searches [30],
and remote server calculations [31]. However, the benefits of these methods are limited and
they are not suitable for resource-constrained mobile platforms and large-scale scenarios.
In addition, local features lack the ability to capture the global context of the image and
require the robust aggregation of points to effectively achieve pose estimation.

Image retrieval-based methods use either global features or visual vocabulary to
match query and database images, and subsequently obtain the approximate position of
the image from visually similar images. The implementation of such methods is carried
out based on global descriptors, traditionally defined as aggregated artificial features such
as Scale Invariant Feature Transform (SIFT) [32], Bag-of-Visual-Words (BoVW) [33], and
vector of locally aggregated descriptors (VLAD) [34,35]. Although these methods only need
RGB images, they have complex computation and are not competitive with deep learning
methods [36,37]. With the development of deep learning, the learned global features DEep
Local Features (DELF) [14] and NetVLAD [38] have greatly improved the performance of
image retrieval tasks, principally due to the establishment of large labeled visual data sets.
The retrieved position can be directly used to calculate the pose between the query and
the retrieved image, yet the discretization of the database means that the pose can only be
approximated.

Moreover, the retrieved images can be further used to restrict the search space of large
maps for the structure-based method [39,40]. The fusion of hierarchical localization [41]
and knowledge distillation [42] can successfully realize large-scale localization on platforms
with limited computing resources. InLoc [12] is the latest image retrieval scheme based
on dense information, using depth features to first retrieve the most similar images and
subsequently estimate the 6DoF camera pose. The aforementioned methods combine image
retrieval-based and structure-based methods in order to overcome these shortcomings,
determining the approximate position of the query image instead of the precise 6DOF pose.
However, these methods require labeled data for training, such as camera pose, which
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increase the cost of annotation, and some methods need special data such as depth image,
which increases the difficulty of data collection.

2.2. Variational Autoencoder

A variational autoencoder [43] is an unsupervised deep generative model that embeds
high-dimensional information such as images or text into low-dimensional latent variables
through encoder and decoder networks.

Denote the model input as x and the latent variable as z. A VAE learns stochastic
mappings between an observed x-space and a latent z-space, where the input distribution
is typically complicated while the latent variable distribution can be relatively simple. The
encoder network is used to encode an image to latent variable z, where the stochastic
encoder is denoted as the inference model, qϕ(z|x), with parameters ϕ. The decoder
network aids in the decoding of latent variable z to an image similar to the input image.
The decoder is an integral intractable posterior and denoted as pθ(x|z) with parameters
θ. The generative model on x can be determined by marginalizing out latent variable z
as follows:

pθ(x) =
∫

p(z)pθ(x|z)dz. (1)

Such an implicit distribution over x can be quite flexible. If z is discrete and pθ(x|z) is
a Gaussian distribution, then pθ is a mixture-of-Gaussians distribution [44]. Similar to other
variational methods, the optimization object of the variational autoencoder is the evidence
lower bound (ELBO), also known as the variational lower bound. The log-likelihood ELBO
of the data set is calculated using the approximate posterior and the Kullback–Leibler (KL)
divergence between the true and approximate posterior:
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where the second term in Equation (2) is the KL divergence and is non-negative. Thus, the
ELBO is a lower bound of the log-likelihood of the data set:

log pθ(x) ≥ Lθ,ϕ(x)
= log pθ(x)− DKL

(
qϕ(z|x) || pθ(z|x)

) (3)

Therefore, the VAE can be trained by maximizing the ELBO. The first term on the
right-hand side of Equation (3) can be considered as a reconstruction term that aims to
maximize the expected data log-likelihood pθ(x|z) and the posterior estimate qϕ(z|x). The
second KL divergence determines the gap between the ELBO and the likelihood log pθ(x),
and the smaller the gap, the better the approximation of the true (posterior) distribution
pθ(z|x) by qϕ(z|x). KL divergence can be treated as a regularization term in network
training and can prevent qϕ(z|x) from collapsing to a single point.

Unlike autoencoders (AEs), VAE does not encode the training data as an isolated
vector, rather it can force the latent variable to fill the space [45]. Therefore, the input
images can be encoded in latent variables via the encoder network, which is useful for
image retrieval [46] and clustering [47,48] tasks. The semantic visual localization [49]
encodes the semantic 3D voxel volumes into latent variables and chooses latent code µ as
global descriptor for city-level visual localization.

3. System Overview

Our proposed unsupervised hierarchical indoor localization method only requires
RGB images. The localization process is similar to the way in which humans determine
their position in the natural environment. More specifically, we initially apply the overall
appearance characteristics to infer the approximate location and subsequently determine
where we are by using some local and notable visual cues. Figure 2 presents the workflow
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of our localization system, which consists of two key processes: the preprocessing and
the localization.
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For the preprocessing, we use the database images to train the VAE network, and the
trained network is then applied to generate global features of the database images and
query image for subsequent image retrieval tasks. We simultaneously extract the local
features from the database images and use SfM to reconstruct a sparse 3D model of the
scene. The local features and the 3D model are crucial for the pose estimation. For the
localization process, given a query image, we first generate the global features through the
trained VAE network and subsequently perform a global retrieval to determine similar
images in the database. These images are denoted as candidate images and are clustered
into different clusters by covisibility clustering [41]. We then perform 2D-3D local feature
matching between the key points of the query image and 3D points of each cluster in order
to calculate the camera pose through these matches. The 6DoF pose that comes from the
cluster with the most inliers is selected as the best pose.

4. Methods
4.1. Preprocessing

Offline preprocessing includes image collection, 3D modeling, VAE designing and
training. At this stage, we collect the images from the scene to form the image database.
Next we use the images to reconstruct the 3D model, which is the key point during the
localization process. At the same time, we will design a VAE network and use a reasonable
training scheme to train.

4.1.1. 3D Modeling

Accurate pose calculation and localization tasks require a pre-built 3D map. Compared
to other types of data such as depth and infrared data, an RGB image is easy to obtain, even
using a simple smartphone. Thus, we only use RGB images to achieve 3D modeling. We
employ the open source COLMAP [11,24], currently the most widely adopted incremental
SfM scheme, and use unordered and ordered images to build a sparse point cloud model.
COLMAP employs siftGPU (the graphics processing unit (GPU) version of SIFT) as the
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local feature. Moreover, the local features of each image and all 3D points can be stored in
a database for their efficient management.

4.1.2. VAE Structure Design

Figure 3 depicts the VAE structure design. The convolutional VAE network takes an
image as the input and encodes it in latent variable z, then it will be decoded back to an
image. The encoder network contains four convolutional layers with 3× 3 kernel and 2 × 2
stride to achieve downsampling. Note that maxpooling and other deterministic spatial
functions are not performed here. A hyperbolic tangent activation layer is followed by each
convolutional layer. At the end of the encoder network, two fully connected layers are used
to output mean µ and standard deviation σ, which represent the posterior distributions
of the latent variables. The re-parameterization trick is then adopted to generate samples
from µ and σ, where ε ∼ N(0, I). These samples are pushed into the decoder network as
inputs, where the decoder network maintains the same kernel size and number of strides,
while the convolutional layers are replaced by deconvolutional layers.
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4.1.3. Training and Optimization

Our model aims to learn global latent representations of images. We can optimize the
variational lower bound objective in Equation (3) to achieve global feature learning for our
system. The bound can be grouped into two terms: the reconstruction term and the KL
divergence term:

Lrecon = − log pθ(x), (4)

LKL = DKL
(
qϕ(z|x)||pθ(z|x)

)
, (5)

Lloss = Lrecon + LKL. (6)

The VAE model can be trained by optimizing Lloss in Equation (6) via the gradient
descent method. A fine trained model can encode useful information from images into
latent variable z and will have a non-zero KL divergence term and a relatively small recon-
struction term. However, the straightforward training of VAE can suffer from posterior
collapse [45,50], and it fails to make use of enough information. When the posterior collapse
phenomenon occurs, the model ends up relying solely on the auto-regressive properties of
the decoder while ignoring the latent variables, which become uninformative. This means
that the latent variables will no longer represent the features of input image and the latent
space will be inaccurate for each latent variable. This phenomenon often occurs when
encoding high-dimensional information such as images and texts into the latent space by
using the VAE. This occurs when the variational distribution closely matches the prior for
a subset of latent variables, that is, the variational distribution collapses toward the prior.
It can be represented as ∃i s.t. ∀x qϕ(zi|x) ≈ p(zi). The phenomenon can occur during
training that the KL divergence vanishes and the cost function value tends to zero. This
means that the latent variables will no longer represent the feature of input image, and the
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latent space will be inaccurate for each latent variable. Thus, the distance between latent
variables cannot be used to measure differences between input images.

Therefore, we adopt KL annealing [51] and free bits [52] to overcome posterior collapse.
During the training process, the KL divergence term is multiplied by weight β, which
ranges from 0 to 1. When the training begins, β is set to zero, such that the network can
learn more information from the input images and encode this into the latent variables. The
weight is then linearly increased at a certain training step until it reaches 1, where the cost
function becomes the original VAE cost function. The free bits method is a modification of
ELBO, with a minimum information constraint applied to the latent variable. This ensures
that each latent variable dimension can keep a minimum number of bits of information
and allows for a greater amount of information to be encoded. The latent dimensions are
divided into K groups andMminibatches. Equation (7) describes the modified objective,
demonstrating that using fewer than λ nats of information per subset j is not advantageous.

LKL = β ∗
K

∑
j=1

max
(
λ,Ex∼M

[
DKL

(
qϕ(zj|x)||pθ(zj|x)

)])
. (7)

where β ∈ [0, 1] during the training processing. K is generally set to equal its individual
dimension, and for all j there exists Ex∼M

[
DKL

(
qϕ(zj|x)||pθ(zj|x)

)]
≥ λ, with the KL

annealing effectively preventing the posterior collapse.

4.2. Localization
4.2.1. Prior Image Retrieval

We employ the VAE to perform the prior image retrieval task as it does not require
labels and data preparation is minimal. The VAE encodes the images into the latent space
and the mean µ of latent variable is then used as the descriptor of the global features for the
prior image retrievals. After the VAE network is trained, it can be used as a global feature
extractor to perform unified feature extraction on the images stored in the database to build
a feature database. When calculating pose, the VAE network is used to extract the global
features of the query image, and the extracted global features are used as the judgment
basis to perform similarity matching with the image features stored in the database. When
performing image retrieval tasks, the feature database has been established, we use NN
(nearest neighbors) search to achieve it.

4.2.2. Pose Estimation

After prior image retrieval, we obtain the candidate images through image retrieval
achieved by the VAE network. We use the local features of these candidate images to
calculate the precise 6DoF pose. The construction of the 3D model and the subsequent pose
estimation are based on siftGPU. However, despite its strong performance in pose calcu-
lation, its computational costs are high, particularly in large-scale indoor environments,
where the increased 3D model points may result in mismatching and long computation.
Thus, in order to speed up the localization and increase its accuracy, we restrict the search
space of the local 2D-3D matches by reducing the number of 3D points considered. Prior
image retrieval can achieve this, but the number of 3D points of candidate images is still
excessive. As indoor environments exhibit similar and repetitive features, the retrieved can-
didate images may belong to different locations having the same global features. Therefore,
we cluster the candidate images into different clusters according to covisibility clustering
in order to reduce the number of 3D points. As shown in Figure 4, cameras that can see the
same 3D points are clustered into the same cluster [13]. The 3D points of each cluster are
the sum of the points of their images (camera).
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We extract the 2D key points of the query image and match them with the 3D points
included in each cluster. The 2D-3D matching is a PnP problem that is solved via RANSAC.
This outputs a robust pose estimation and an evaluation of the geometric consistency of
the resulting 2D-3D matches. The RANSAC scheme outputs a robust pose estimation and
an inlier number. The inlier number is used for the evaluation of the geometric consistency
of the resulting 2D-3D matches. If the inlier number is less than the set threshold, it is
considered as a failed pose estimation and the localization is failed. Now we can get the
camera pose and inlier number through each cluster, after all clusters are iterated, the one
with the largest inlier number is selected as the optimal cluster, and the corresponding
camera pose is the optimal 6DoF pose of the query image.

5. Implementations and Evaluation

In this section we evaluate our proposed method on the 7-Scenes data set and Baidu
localization data set.

5.1. Implementations

We describe the experiments performed using the two data sets to evaluate the pro-
posed localization system. We aim to prove the high localization accuracy and efficiency of
our scheme for large-scale indoor environments. The parameter setting in different stages
of different data sets is shown in Table 1.

(1) Data sets
The 7-Scenes data set [53] is a collection of tracked RGB-D camera frames in seven

small indoor scenes, where each sequence set is split into distinct training and testing sets.
The images were captured using a Kinect RGB-D camera with a 640 × 480 resolution. The
spatial size of the 7-Scenes data set is small, the images are all from small indoor spaces,
and the model size is smaller than about 4 cubic meters. Here, we only utilized the RGB
images for 3D model building and global descriptor extraction. As the images were camera
frames, consecutive images were highly similar and had a short baseline, resulting in high
computational costs and a complicated initialization. Therefore, we selected an image from
every five frames as the training set.

The Baidu Institute of Deep Learning (IDL) indoor localization data set [54] contains
images captured in a Chinese mall. It occupies over 5000 square meters and the length is
around 240 m. These images are challenging for visual localization due to objects in motion,
repetitive scenes, and reflective structures. The data set contains 689 RGB images captured
from a Digital Single Lens Reflex (DSLR) camera as the training set and over 2000 query
images captured from different types of cell phones as the testing set. We used the provided
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images and corresponding camera, while the LIDAR data were omitted from our work.
The training images had a fixed 2992 × 2000 resolution, which was distinct from those of
the testing images, such as 2064 × 1161, 1632 × 1224, 2104 × 1560 and 2104 × 1184.

Table 1. Parameter settings in different stages of different data sets.

Parameters
Data Sets

7-Scenes Data Set Baidu Data Set

Training images resolution (pixel) 640 × 480 2992 × 2000

Testing images resolution (pixel) 640 × 480

2064 × 1161,
1632 × 1224
2104 × 1560,
2104 × 1184

Downsize resolution (pixel) 64 × 64 × 3 128 × 96 × 3

Input size of VAE (pixel) 64 × 64 × 3

Cropped into four
corners and a center

with a size of
64 × 64 × 3
(5 images)

Dimension of global descriptor (dimension) 128 640
Batch size 50 50

learning rate 1 × 10−4 1 × 10−4

λ 1 1
KL annealing beginning

Moment (iteration) 20 k 20 k

Number of retrieved images 50 50 (or 100)
P3P-RANSAC

reprojection error (pixel) 10 10

Note the input data from the two data sets were images and camera poses from the
training and testing sets. In order to evaluate our methods, we used the known poses
reconstruction method in COLMAP to establish the models in our experiment. The training
data and testing data in the data set were registered in the same world coordinate system
O1 at the time of collection. Using the conventional image reconstruction method in
COLMAP, the training data were registered in a different world coordinate system O2.
However, the testing data were still registered in the O1 coordinate system and could not
be used as ground-truths. In the localization application, there was no need to evaluate
the performance of the method, and the conventional image reconstruction method could
be used, which only required RGB images. The camera poses from the testing set were
employed as the ground-truths for the results.

(2) Data preprocessing
Prior to the training of the model, we performed several preprocessing steps on the

input images. The input size of the network described in Section 4.1.2 was 64× 64× 3, thus
we downsized the 7-Scenes images to the same size. The Baidu images were downsized
to 128 × 96 × 3, cropped into four corners and a center with a size of 64 × 64 × 3. This
cropping approach increased the amount of data for network training and did not influence
the global features. Before being fed into the network, the images were normalized to range
from 0 to 1 in order to prevent an ill-conditioned model and to facilitate convergence.

(3) Training
We implemented the proposed model using TensorFlow and trained the network for

80 k (k refers to 1000 and 80 k is 80000) iterations with a batch size of 50. Following 20 k
iterations, we performed the KL annealing mentioned in Section 4.1.2, and at 40 k the
weight β reached 1. According to paper [52], common values of λ include [0.125, 0.25, 0.5,
1, 2], and here we set λ = 1, which allowed for the model to preserve enough information.
We adopted Adaptive Moment Estimation (Adam) [55] to optimize and set the learning
rate as 1 × 10−4, with other parameters based on recommended settings. The model was
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implemented on a desktop with Intel i7-7700k CPU, 16G RAM, and 6 GB GPU memory
with NVIDIA GTX1060.

(4) Metrics
We evaluated the localization accuracy by comparing the estimated and reference

poses that were derived from the ground-truth of the data set. We used the positional (m)
and angular (◦) parameters to represents the differences. We also compared the run time in
seconds with different localization methods.

(5) Methods
During the prior image retrieval step, the trained VAE model generated 128-dimensional

descriptor vectors, while for the Baidu data set this value was 640. We used the nearest
neighbors search to retrieve 50 or 100 database images as candidate images. In the covisi-
bility clustering step, we clustered the candidate images into different clusters according to
the image covisibility relationship in the COLMAP database. In the pose estimation step,
we employed the P3P-RANSAC implementation and set the reprojection error to 10 pixels.
The one having the largest number of inliers was selected as the optimal cluster, and the
corresponding camera pose was the optimal 6DoF pose of the query image.

5.2. Evaluation Results
5.2.1. 7-Scenes Data Set

The 7-Scenes data set consisted of seven small indoor scenes. In order to verify the
localization performance of our method for large scenes, we assumed that these scenes came
from the same building. However, as the scenes had distinct world coordinate systems, we
established seven 3D models respectively rather than integrate them into a global model.
Then we put all training images together to train the VAE network, thus it could extract
all global features. Taking the Stairs data set as an example, given a query image, first
we retrieved the top 50 images from all training images and only selected those images
belonging to the Stairs training set as the candidate images (because we established seven
models, it was convenient to carry out covisibility clustering and visualize retrieval results).
We then clustered these candidate images, calculated the camera pose, and compared the
result with the ground-truth data.

Figure 5 depicts the behavior of the KL divergence term during the 7-Scenes training
with KL annealing. The loss exhibited an early drop in training corresponding to the cheap
encoding of information into latent variables by the model, followed by a marked rise as
the full KL divergence penalty was paid, and the subsequent gradual reduction as more
information was encoded into latent variables.
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VAE exhibited a good data clustering performance, with the higher dimension features
extracted by its convolutional layers reduced to a lower dimension. The images from the
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same cluster were generally mapped to the same area of latent space. Figure 6 depicts the
t-SNE plot of the latent variables determined from 7-Scenes. The categories exhibited clear
boundaries, and similar images, particularly the sequence frames, were clustered together.
This indicated the effective extraction of low-dimensional features by the model, allowing
the latent variables to be used for the image retrieval. In order to show the image retrieval
effect intuitively, we made a cumulative proportion plot for each separate testing set in
Figure 7. For example, as for the Stairs testing set, taking one of the test images as the
query image, in the prior image retrieval stage, the top 50 images were retrieved from the
7-Scenes training set. The number of images belonging to the Stairs data set (candidate
images) was recorded. We localized each image in the Stairs testing set and recorded the
corresponding number of retrieved candidate images; the cumulative proportion is plotted
in the blue line in Figure 7. Other data sets are plotted in the same way, and concave lines
have better retrieval results than convex lines.
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Figure 8 is a visualization display of the localization results on 7-Scenes. In order to
display it conveniently, we visualized the localization results every five images.
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In addition to using the methods mentioned above, we also added a comparative
experiment that used the basic VAE (no optimized training scheme). Then we compared
our approaches to the deep learned methods, with the localization results reported in
Table 2. The reported results of baselines of other methods were directly transferred
from their papers. Following the reasonable image retrieval and covisibility clustering,
the search space for local feature matching was reduced, and P3P-RANSAC presented a
good pose estimation result. Our method exhibited a high accuracy with centimeter-level
position errors and single-digit angle errors. Furthermore, it had lower position error
and orientation error and performed better than most advanced deep learned methods,
and could localize images within an average of 0.16 m and 4◦. The results showed that
without the optimized training scheme, the basic VAE applied in our pipeline showed
lower localization accuracy compared to the optimized training VAE.

Table 2. Comparison of accuracy under the 7-Scenes data set using the mean position/orientation error (m/◦). Ours (Basic
VAE, 50) means we did not use an optimized training scheme in the VAE training stage and retrieved 50 images. Ours (50)
means we used the optimized training scheme and retrieved 50 images in the prior image retrieval stage.

Data Sets

Methods

Relative PN
[18]

RelocNet
[19]

Dense-
VLAD

[35]

Mobile-
PoseNet

[20]

Improved
CNN-Based Pose

Estimation
[22]

Image-
Similarity-

Based Method
[23]

Ours
(Basic

VAE, 50)
Ours (50)

Chess 0.13/6.46 0.12/4.14 0.21/12.5 0.17/6.78 0.17/5.34 0.21/5.73 0.42/7.25 0.12/2.32
Fire 0.26/12.7 0.26/10.4 0.33/13.8 0.36/13.0 0.30/10.36 0.40/12.11 0.55/8.72 0.15/3.07

Heads 0.14/12.3 0.14/10.5 0.15/14.9 0.19/15.3 0.15/11.73 0.25/14.38 0.44/10.26 0.11/3.64
Offices 0.21/7.35 0.18/5.32 0.28/11.2 0.26/8.50 0.27/7.10 0.30/7.58 0.53/8.57 0.16/2.54

Pumpkin 0.24/6.35 0.26/4.17 0.31/11.3 0.31/7.53 0.23/5.83 0.37/7.46 0.59/9.38 0.16/2.33
Kitchen 0.24/8.03 0.23/5.08 0.30/12.3 0.33/7.72 0.29/ 6.95 0.42/7.11 0.55/8.65 0.14/2.37
Stairs 0.27/11.8 0.28/7.53 0.25/15.8 0.41/13.6 0.30/8.30 0.36/11.82 0.62/12.53 0.16/2.34

5.2.2. Baidu Data Set

The Baidu data set contained realistic, large-scale and challenging indoor scenes.
There were few training images (689 images), the training and testing images came from
different cameras with varying viewpoints, and environments included scenes with light
changes and reflective structures. Deep state-of-the-art approaches performed poorly
and it was difficult to improve localization results using deep learning methods based
on Objects-of-Interest (OOIs) [56], and it successfully localized 23% of the images at 1 m
and 5◦, and 40% within 5 m and 20◦. However, OOIs required manual annotated planes.
Structure-based COLMAP was able to localize more images, with approximately 45% at
1 m and 5◦, and 58% at 5 m and 20◦. Figure 9 compares our method with the current
advanced methods. PoseNet [17] and DSAC++ [27] could not localize enough images due
to a lack of training data. Our method successfully located 17.4% images at 1 m and 5◦, and
24% at 5 m and 20◦ when retrieving 50 candidate images. When the retrieved images were
increased to 100, the localization success rates increased to 22.6% and 32.8%, respectively,
as shown in Ours (100). If we did not use the mentioned training scheme, our proposed
methods with basic VAE had lower localization success rates.

Figure 10 presents the image retrieval results from the Baidu data set. Once similar
images were retrieved, our method successfully localized the query images with a high
accuracy comparable to current advanced supervised depth regression methods. Our
methods performed slightly worse than the structure-based method as the majority of
images were not successfully retrieved. Unlike the 7-Scenes data set, the Baidu data set did
not contain frame sequences and had fewer training images. This consequently resulted in
a poor retrieval performance. Although COLMAP exhibited a higher localization accuracy,
it was not competitive in terms of running time, with our proposed method running faster
(Table 3). Moreover, our method was associated with a rapid global search time, which
also proved its feasibility in localization tasks for large-scale environments.
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Figure 9. Percentages of localized images from the Baidu data set across position error thresholds.
The reported results partly come from paper [56]. The orientation error threshold is 5◦, 10◦, and 20◦

for position errors below 1 m, between 1 m and 2.5 m, and above 2.5 m, respectively. Ours (50) means
we used the optimized training scheme and retrieved 50 images in prior image retrieval stage. Ours
(100) means we used the optimized training scheme and retrieved 100 images in prior image retrieval
stage. Ours (Basic VAE, 50) means we did not use the optimized training scheme in the VAE training
stage and retrieved 50 images. Ours (Basic VAE, 100) means we did not use the optimized training
scheme in the VAE training stage and retrieved 100 images.
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Figure 10. Image retrieval results from the Baidu data set. The first column includes the query
images, followed by the top five retrieved images.

Table 3. Comparison of running time in second. Ours (50) means retrieval of 50 images in prior
image retrieval stage, and Ours (100) means retrieval of 100. Record of the running time of the entire
localization of COLMAP and running time in different stages of our methods.

Methods

Processes Global
Search

Covisibility
Clustering

Feature
Match

P3P-
RANSAC Total

Ours (50) 0.12 0.07 0.98 1.53 2.70
Ours (Basic VAE, 50) 0.12 0.07 0.98 1.53 2.70

Ours (100) 0.24 0.14 2.26 1.49 4.13
Ours (Basic VAE, 100) 0.24 0.14 2.26 1.49 4.13

COLMAP 47.61

6. Conclusions

In the current paper, we proposed a novel unsupervised hierarchical localization
method that integrated learned global features with handcrafted local features. The system
had a good accuracy for indoor scenes and performed better in large-scale scenes, and
was convenient and easy to implement. The key contribution of this paper is the unsuper-
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vised network VAE and traditional pose calculation that only require RGB images as the
input. This localization scheme provided a new approach for the advancement of indoor
localization. Since the localization accuracy of our method depends on the performance
of the image retrieval, a lack of training images limited the performance of our method.
Constructing a new VAE model with a good retrieval accuracy will be the focus of future
research. In addition, artificial features are still the main basis for pose calculation. They
occupy a larger memory and computation will also consume a lot of time. Therefore, the
problem of deployment on mobile platforms was not completely solved, so in the next step
we will consider using deep learned local features or line features that occupy less memory
to further optimize the algorithm.
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