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Abstract: Although log processing of network equipment is a common technique in cellular network
management, several factors make said task challenging, especially during mass attendance events.
The present paper assesses classic methods for cellular network measurement and acquisition,
showing how the use of on-the-field user probes can provide relevant capabilities to the analysis of
cellular network performance. Therefore, a framework for the deployment of this kind of system
is proposed here based on the development of a new hardware virtualization platform with radio
frequency capabilities. Accordingly, an analysis of the characteristics and requirements for the use of
virtual probes was performed. Moreover, the impact that social events (e.g., sports matches) may
have on the service provision was evaluated through a real cellular scenario. For this purpose, a
long-term measurement study during crowded events (i.e., football matches) in a stadium has been
conducted, and the performances of different services and operators under realistic settings has been
evaluated. As a result, several considerations are presented that can be used for better management
of future networks.

Keywords: cellular performance; operators; measurements; probe; crowds

1. Introduction

Modern mobile network management systems have undergone numerous develop-
ments and advances in recent years. The heterogeneity and the ever-increasing flexibility of
the resources delivered in 5G networks, driven by the virtualization of network functions
(NFV) [1] allow integrating big data tools into operational support systems (OSS) under
the paradigm of the software-defined networks (SDN) orchestration. Thus, the functions of
self organizing networks (SON) [2] that intended to automate many of the tasks performed
by network engineers are becoming increasingly plausible. Despite all these innovations,
some problems persist and make the management of cellular networks a complicated
task. This fact is evidenced by incidents that cellular network monitoring systems may
not notice. That is the case for sleeping cells, i.e., areas that, either due to interference,
low coverage or any other radio problem, cause a low quality of experience (QoE) for the
user. Such unnoticed incidents are especially significant in places where events with large
concentrations of people (i.e., crowds) are held. Besides, troubleshooting issues in such
locations can be challenging without a user terminal identifying the root causes and when
using exclusively network performance indicator traces. Although it is known from field
experience that the inclusion of user traces is very beneficial [3] for any task of the network
operations, administration and maintenance (OAM), it has not yet been possible to make
a systematic compilation to serve as a regular input for the SON system. In this context,
drive tests carried out to map network deployments represent the state of the network in a
specific time framework and do not capture the network evolution. Although minimization
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of drive test techniques (MDT) [4] can reduce the high cost of these tests, it is still very
expensive to have periodic monitoring that reflects the conditions at any given moment.
On the other hand, operators prefer probing methods that prevent the active intervention
of the users.

The technological advancement of development hardware based on general-purpose
platforms (GPPs) and software defined radio (SDR) makes possible the integration of
flexible network elements that can be managed and configured by means of container-
based virtualization applications such as Docker [5]. This availability is becoming a trend
towards the use of open-source base stations replacing small cells that could be deployed
by users and integrated into the 5G network [6,7]. With this approach, it would also be
possible to enable these GPPs and SDR platforms as virtualized User Equipment (UE)
probes (or vUE probes) to assist in network management, especially in conflicting places
in a city, such as crowded events [8,9]. Thus, the advantages of this functionality are
multiple: from testing new standards and configurations or assisting in troubleshooting
to regular logging for traffic/usage profiling purposes, among many others. Significantly,
the scenarios involving crowds lack traceability at the locations where they appear.

In this regard, the contributions of this work include:

1. A novel framework for the inclusion of user side trace information based on virtual
UE probes (vUE probes) in OAM systems.

2. A case study based on crowded events illustrating the capabilities of these probes by
characterizing their cross-layer/multi-operator acquisition of data. The combination
of radio network layer information and different user application-level measurements
goes beyond the previous studies.

3. A novel assessment of a crowded scenario (Stadium) based on a long-term measure-
ment campaign, including the deployment of several probes connected to different
operators, provides innovative insighte into how social events impact the network
(before, during and after an event). From this case, the shortcomings, challenges
and further applications of the proposed framework and the use of vUE probes
were identified.

This paper is divided as follows: In Section 2, the related works and the classical ap-
proach of SON management are presented. In Section 3, the presentation of the framework
of the use of vUE probing and its possible applications are discussed. Section 4 details a
real crowded scenario (i.e., a football stadium) where the proposed framework was applied,
thereby characterizing the capabilities of the approach and showing the insights into the
impact of such events from a cross-layer perspective. From this, Section 5 focuses on
the identification of the applications, challenges and ways forward for future vUE probe
systems. Finally, Section 6 presents the conclusions of this work.

2. Related Work

While the support of novel technologies, such as the SDR and GPP platforms men-
tioned above, would make vUE probes possible, the current literature has not yet explored
this topic in depth. However, plenty of previous works on the general concept of network
monitoring are associated with the present work. In this way, the use of UE traces is
a resource used very frequently, and numerous sources use it in network management
literature. However, no systematization of its collection is yet specified, and multiple
purposes in different campaigns are explained. This fact confirms the assumption that
regularly obtained user data are valuable inputs. The following summarized articles are
several examples of its many applications.

The work in [10] presents the design of a new measurement tool for Android capable of
working with multiple radio technologies: 3G, WiFi (wireless fidelity) and LTE (long term
evolution). The results analyzed include the round trip time (RTT), power consumption,
throughput and delay under different circumstances and taking into account the different
UE states.
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The paper [11] also used monitoring applications at the UEs for quantifying net-
work quality parameters, such as data rate, web page loading speed, voice quality and
network coverage. However, no further assessment of the gathered data was provided.
Similarly, the paper [12] focused on the comparison of the accuracy of UEs and sniffers
for measuring the data rates of LTE and WiFi networks in burst or isolated transmission
conditions. Based on these results, the work proposed an environmental model with some
software alternatives for providing these measurement capabilities on mobile phones and
base stations.

Likewise, the primary purpose in [13] was to improve the visibility and understanding
of the complex mobile network performance. Differences across carriers, access technolo-
gies, geographic regions and over time were assessed. The associated details of mobile
networks were very heterogeneous, making it challenging to detect service degradations
properly. Additional parameters such as RTT, throughput or DNS resolutions and tracer-
outes were studied, allowing them to identify reasons behind some persistent problems.
Despite the relevant information collected, the need for more monitoring and diagnosis to
improve network performance was noted.

Other machine learning (ML) techniques were explored to map key performance
indicators (KPI) to key quality indicators (KQIs) in [14]. From a campaign of measurements
from the user terminal in a live LTE network, predictive modeling of FTP was performed
and later extended to a video service [15]. In a similar way [16], an ML system was proposed
to analyze the enormous amounts of data generated to monitor network performance.
The work is considered preliminary, emphasizing the challenges and importance of latency
prediction on operational mobile networks.

Besides, as mentioned in the introduction, virtualized probes as a tool for network
monitoring and management as a framework are also scarce. In this way, different ap-
proaches have been proposed: In [17] the authors described the need to implement probes
based on mobile edge computing technology for QoE monitoring without descriptively
going into implementation details. Likewise, the contribution [11] describes the use of
UE probes that are compiled in a crowdsourced manner. Although it proposes a possible
architecture for their collection and uses in network management, its implementation can
be difficult and costly and requires the users’ collaboration, which is not always possible.

The work in [18] introduced ORCA: An “operator classifier” for identifying patterns
and disclosing exclusive aspects of mobile network operators in noisy crowdsourced
datasets. That study was focused on a set of parameters commonly found on such datasets,
contrary to the rest of related works that focused only on one or very few parameters.
The gathered data, fundamentally the latency, allowed them to identify of different opera-
tors, although using all available features increased the accuracy of the classifier. In addition,
the quality of experience of web services has been experimentally measured with probes
by collecting user traces, some examples being [19,20].

Moreover, during the last few years, there has been a growing interest in developing
tools that allow the capture of packets from the radio layers to deepen the influence of the
configurations at this level. In [21], a software tool that allows access to the scheduling
information by decoding the LTE control channel, OWL, was introduced. This work
showed a one-day data collection campaign: radio network temporary identifier (RNTI)
data-rates and MCS (modulation and coding scheme) assignments were shown.

Later, Ref [22] presented a complete open source solution (Mobil Insight) capable of
obtaining messages from the cellular network protocol stack capable of being installed
on any mobile commercial-off-the-shelf (COTS) platform. This software was tested in the
present work as a complement to the virtual probe. Other commercial tools available on
the market offer similar features to those mentioned above, although they are not open
source [23,24].
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It is also worth noting that the aforementioned softwarized environments are giving
rise to a renewed interest in benchmarking the possible scenarios that will take place in 5G
networks, such as those shown in [25]. This work demonstrates at a computational level
the effects of some of the IoT protocols.

In terms of social crowds/events analysis, which will focus on the application of
vUE probes in the present study, the studies done so far on the impact on the cellular
network are limited. The work in [26] focused on optimizing the performance of networks
during crowded events. Here, Transport Control Protocol (TCP) metrics, such as round trip
time (RTT) and packet loss, are inferred to evaluate network performance. Based on this
data, features like dropped calls are reduced to improve Internet user throughput. In this
way, two possible solutions for mitigating those problems were proposed: on one hand,
radio network parameter tuning and opportunistic connection sharing, and on the other,
a selected set of UEs could act as WiFi hotspots for other UEs in their vicinity, thereby
reducing the already occupied radio channels.

A similar work presented in [27], studied the use of contextual information [28,29] for
cellular network management in social events. Furthermore, a framework for using such
contextual information that could be applied to the vUE use case was described. However,
unlike the present work, it was not supported by an extensive measurement campaign.

3. Framework

Since the management systems of 5G and next-generation mobile networks are likely
to be user-centric [30], it will be necessary to include mechanisms capable of capturing
and processing data from the user plane complementing network side log collection.
Additionally, given the future network layers, split architectures will make this analysis
more necessary [31].

Although the measurement of user data has been carried out in the scientific literature
with applications to network management [18,32,33], there is still no consensus in the form
of a standardized, unified proposal for its integration on OSS. Thus, although such integra-
tion has so far not been possible on a large scale in real deployments, the challenge of its
complex management and maintenance rendered it expensive and unfeasible. The advent
of virtualization, however, has led to a rethinking that could allow operators to manage
and assimilate the virtual probes as part of the cellular network management systems [17].

In this sense, Figure 1 presents an overview of cell management in which vUE probing
would be applied. Starting from the classical approach that would combine human exper-
tise with automatic management (in the center of the scheme), monitoring performance
indicators are derived from specific actions on the network. These actions can have various
purposes ranging from fault management to optimization, and are applied according to
multiple scenarios (top). In this specific management, direct information management of
the probes comes into play, which in turn must also be managed (bottom left). Finally,
the probes themselves can be instantiated to obtain scheduled or real-time information
on the performance of the services or the radio environment (top right). The following
subsections explain the architecture required to integrate both the vUE probes and the
information contained therein for automatic cellular management.

3.1. Architecture

This section presents and details the proposed architecture for the use of the vUE
probes. First of all, it assumes the complete virtualization of all network functions and
separation of the data and user planes. In this way, the physical infrastructure (in the form
of several GPPs and base band units or BBUs) can be mapped according to a slicing model
of dynamic resource reservation on demand from the network manager [34].
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Figure 1. A high level diagram of the vUE probe framework.

3.1.1. vUE Probes

Open radio access network (RAN) technologies will allow the resources to be con-
verted into base stations or user terminals. The first step is to create containers with the
execution of base stations or UEs. For this, software implementations of such elements are
available, making use of the SDR platform where all the RF and PHY-related functions take
place [35,36]. In this way, through configuration files, different virtual interfaces where the
instantiated entity must connect (i.e., core functions [37]; IP address in the case of gNodeB)
are set and all the necessary parameters (Mobile Country Code (MCC), Mobile Network
Code (MNC), access point name (APN), eSIM, encryption type, frequencies, etc.) in the
case of a UE. Therefore, the deployment of vUE probes is performed by instantiating the
necessary hardware resources (including signal and computing processing units) selected
to take the measurements with a proper parameter configuration to connect to the RAN.

Once established and tested, the operation of the vUE, including the connection to
the container-based management system, can launch isolated virtualized scripts to take
samples as needed.

Therefore, it is necessary to develop scripts to run on the vUEs and schedule them
accordingly or on-demand, depending on whether a specific situation is found where
the operator wants to troubleshoot more deeply from a UE perspective. Additionally,
the inclusion of virtualization software in the probes (such as Docker [5]) allows instances
to use the different radio functions to connect to different operators. Similarly, the use of a
sniffer of the radio interface of the user could be instantiated to obtain a detailed capture of
the signaling exchanged with the base station (using some of the above-mentioned open
source tools such as Mobile Insight [22]).

3.1.2. Experiments and Measurements

Several services can be launched as test scripts or experiments, depending on the
application that needs to be dived into. Then, the vUE logs will have to be attached and
timestamps matched and merged. In Table 1 the most relevant KQIs (describing quality of
an end-to-end service in parameters that an end-user may directly experience) for various
types of services (File Transfer Protocol (FTP), web (HyperText Transfer Protocol or HTTP),
NetTest speed test [38] and video streaming) are shown. Each experiment could collect
several of these services and indicators, or parts of them, depending on the relevant needs.
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Such samples could optionally be labeled based on learning algorithms and based on
previous samples. However this is not necessary in the first instance and could be used
offline in both supervised and unsupervised learning algorithms.

Table 1. Key quality indicators of the service tests.

Application KQIs Other Parameters

Hyper Text Transfer Protocol (HTTP)
First Paint (ms) Page Timings

Navigation Timings
Resource Timings
Ping

Page Load Time (ms)

Fully Loaded Time (ms)

File Transfer Protocol (FTP)
Setup Time (s)

N/ATotal time (s)

Speed Download (Mbps)

NetTest
DL/UL Throughput (kbps)

N/AResolution Time DL/UL (ns)

Total bytes DL/UL

Ping RTT (ms) N/A

Video Streaming

Initial Delay (s)

Highest quality used
Most used quality
Time spent per quality

Goodput (Mbps)

Number of Stallings

Number of up down quality switch

Buffer size (bits)

In this way, the Web KQI parameters are defined as follows:

• First Paint: Time since the browser starts to render the page and shows the first hint
of content on the screen. This is a good front-end benchmark of when a page appears
to be starting to load.

• Page Load Time: Time it takes for the entire content of a web page to be downloaded
and displayed in the browser.

• Fully Loaded Time: Time until there is 1.5 s of network inactivity after on-load, waiting
up to a maximum of 5 s.

Regarding the FTP, the main KQI definitions are the following:

• Setup Time: denotes the time period needed to establish a connection to the FTP
server, from sending the initial query to a server until the first data packet is received.

• Speed download: capacity to fully transmit a file of a given size per time unit.

Finally the ping service would have a single KQI:

• RTT: round trip time (RTT) or round trip latency, or simply response time, is the time
from the sending of an ICMP packet to it being received again.

With respect with radio environment parameters, the most important parameters
that could be obtained from a MODEM log are summarized in Table 2. Among these,
the highlighted parameters are defined as follows.

• RSRP is the power of a reference received signal at the userside. Its value range is
between −140 and −40 dBm approximately.

• RSRQ is a quality metric of the radio channel that is a ratio of RSRP and the total
received signal power (as the sum of interference and noise) ranging between −19.5
and −3 dB.
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Table 2. MODEM log parameters.

MODEM Log

Identifiers

Integrated Circuit Card Identifier (ICCID)
Physical Cell Identifier (PCI)
Location Area Code (LAC)
Cell ID (CID)
eNodeB ID

Radio Parameters

Frequency
Band
Received Signal Code Power (RSCP)
Reference Signal Received Power (RSRP)
Reference Signal Received Quality (RSRQ)
Received Signal Strength Indicator (RSSI)
ratio of Signal to Interference (ECIO)

The experiments can be scheduled according to specific purposes (for instance, to re-
produce a logging error at a given base station or to check for a sudden drop in performance
at a specified time) or periodically according to a survey plan. Hence, these configurations
can be set depending on the specific needs for the purposes intended.

Then the corresponding logs are sent by Secure SHell (SSH) to a Structured Query
Language (SQL) database where they can be aggregated or examined online. From a
control plane perspective, the data collected from the vUE probes can be gathered for
several purposes, such as detecting anomalies and enhancing the channel selection process,
learning about users behavior (mobility patterns, connection time, data usage, etc.) and
extracting context information (number of users, number of base stations among others).
Accordingly, concerning the user plane, data collected from vUE experiment campaigns
could be incorporated to improve the service. In this way, supervised learning has been
proposed for the QoE correlation model [15].

4. Assessment

In order to assess its capabilities with the current available technologies, the proposed
framework has been implemented in a real scenario characterized by the appearance of
huge crowds associated with sport events (football matches). Although only the program-
ming, start-up and periodic data collection function were tested, with subsequent analysis
of the data, it was not possible to act on the operator’s network, since they were carried
out on a real network. Thus, it has not been possible to test the corrective actions on the
network derived from the data collected.

4.1. Setup

The technology that has been used for implementation and the crowded events mea-
surement campaign is from the open experimentation platform MONROE (Measuring
Mobile Broadband Networks in Europe) [39]. The MONROE platform is a software envi-
ronment created from an H2020 project that manages more than 300 virtualized probes
distributed across Europe. It offers an isolated environment for running applications by
wrapping the software in a complete file system containing everything needed for execu-
tion (i.e., virtual containers). In this way, containers share the underlying host resources
but only include what they need to run applications. It is, therefore, possible to schedule
multiple experiments and measurements to run on a probe to compare the performances
of different mobile networks.

The measurement campaigns have been executed by programming two probes equipped
with LTE Cat6 radio interfaces and integrated with a container-based virtualization system de-
veloped by MONROE consortium [40]. These probes or nodes have been placed in Lerkendal
Stadium of the Rosenborg BK team, located in Trondheim (Norway). In this area, two different



Sensors 2021, 21, 3404 8 of 21

operators A and B, have their base stations placed around the stadium, which enables the
study of the influence of crowded events on the user-perceived service quality. In Figure 2,
the approximate distribution of the base stations is shown according to a crowdsourced
database online [41].

400 m

300 m

Stadium

Operator A. enodeB
Operator B. enodeB
Nodes 361, 371

Figure 2. Approximate locations [41] of network elements in the stadium scenario.

Beyond assessing the capabilities of the proposed framework, the research aimed to
answer in this specific scenario whether the development of an event affects the quality
of the service, and if it does, to determine the most influential factors and to which
extent they have an impact. Additionally, it was of interest to find behavioral differences
between operators.

4.2. Measurements Acquisition and Characterization

In order to carry out a study that was as detailed as possible on the impact of public
attendance on the service performance, measurements at different layers were gathered.
As described in Section 3.1.2, in the scenario, two probes were deployed at the same site
within the data-center of the stadium where LTE coverage exists. The probes were node
371, equipped with two radio interfaces connected to both operator A and operator B,
and node 361 with one interface connected to operator B.

This deployment was carried out in such a way that, despite being physically in the
same place, two different average values of the signal received from operator B could
be used for comparison. Furthermore, the existing hardware resources in both nodes
were identical in terms of RAM (4 GB), Ethernet connection for management (1000 MBps)
and available hard disk (16 GB), terebys emulating the same configuration (instantiation
in the case of vUE probes). These settings emulate two possibilities of use under the
same resources.

In addition to the MODEM parameters described in the previous section, an open-
source traffic sniffer Mobile Insight [22] was used to incorporate the signalization packets
from all LTE radio layers: Packet Data Convergence Protocol (PDCP), Network Access
Stratum (NAS), Radio Resource Management (RRM), Radio Resource Control (RRC), Media
Access Control (MAC) and physical (PHY). Based on these traces, radio layer indicators
were extracted to help deepen the understanding of the influences on service performance
and cross-layer effects.

Two measurement campaigns have been conducted over 16 months between
August 2018 and December 2019, capturing the event days. oporator 1 recorded the
impact of the Web service in 12 soccer matches every hour from 10:00 to 00:00 jointly with
full-day MODEM Logs. In campaign 2, the impacts on FTP, NetTest and ping services
(jointly with MODEM and Mobile Insight Logs) of 6 matches were captured with a finer
granularity (15 min) from 2 h before and until 2 h after. The Table 3 shows the average
number of samples captured per node.
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Table 3. Descriptions of measurement campaigns.

Match Date Event Hour Attendance MI Samples MODEM Samples Ping Samples Web Samples NetTest Samples FTP Samples

Campaign 1

Match 1 16/8/18 20:45 8028.0 0 2194 0 144.0 0 0

Match 2 26/8/18 18:00 16,519.0 0 2345 0 143.0 0 0

Match 3 2/9/18 18:00 15,427.0 0 2521 0 144.0 0 0

Match 4 26/9/18 20:00 6579.0 0 2143 0 136.0 0 0

Match 5 4/10/18 18:55 11,484.0 0 2006 0 170.0 0 0

Match 6 1/11/18 19:05 7908.0 0 2380 0 171.0 0 0

Match 7 4/11/18 18:00 13,983.0 0 2447 0 240.0 0 0

Match 8 8/11/18 21:00 12,386.0 0 2226 0 175.0 0 0

Match 9 29/11/18 18:55 14,061.0 0 2276 0 180.0 0 0

Match 10 5/5/19 20:00 10,040.0 0 2959 0 56.0 0 0

Match 11 16/5/19 18:00 15,427.0 0 2651 0 118.0 0 0

Match 12 19/5/19 18:00 13,038.0 0 2728 0 132.0 0 0

Campaign 2

Match 1 14/9/19 18:00 12183.0 71 4356 145 48.0 8.0 182

Match 2 28/9/19 20:00 12,578.0 32 3286 196 48.0 0 42

Match 3 3/10/19 21:00 10,296.0 139 2478 107 131 134 118

Match 4 27/10/19 20:00 14,093.0 150 3894 184 0 162 647

Match 5 10/11/19 20:00 12,039.0 90 3621 191 0 641 710

Match 6 1/12/19 18:00 11,026.0 124 2139 192 0 444 190
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4.3. Crowd Impact Analysis

Once the data were collected in both campaigns, analysis was required in order to
showcase the capabilities of the proposed approach. Additionally, additional insights into
the cross-layer and multi-operator nature of the impact of crowd-events are provided. In this
way, an evaluation of the data previously described is shown from a top-down approach:

1. The temporal behavior is described from the point of view of the service KQIs.
2. The radio environment is analyzed based on the information obtained from the

MODEM logs. A vision of the evolution of the physical signals can be obtained at a
cell level.

3. A more specific analysis of all the radio communication with a much higher level of
granularity and detail is given by processing the Mobile Insight traces.

4. The application of the multi-layer gathering of data is showcased based on the analysis of
the correlations between the parameters of the radio layers and the service performance
indicators, identifying the most relevant parameters for event management.

4.4. Service KQIs

Firstly, an evaluation of the performance parameters (i.e., KQIs) for each of the services
tested in the experiments has been carried out. The purpose was to test whether there was
a substantial difference in behavior or characterization of behavior before/during/after
each event. To this end, experimental cumulative probability distribution functions (CDF)
have been obtained by filtering two hours before, during the match (approximately two
hours) and two hours after. The performances of the FTP service for 1 and 10 MB file size,
including the end-user throughput and the setup time, are presented in Figure 3.

0.00

0.25

0.50

0.75

1.00
Node 371 Op.A FTP 1MB

During

Before

After

Node 371 Op.B FTP 1MB Node 361 Op.B FTP 1MB

0 10 20 30 40
Throughput (kbps)

0.00

0.25

0.50

0.75

1.00
Node 371 Op.A FTP 10MB

During

Before

After

0 10 20 30 40
Throughput (kbps)

Node 371 Op.B FTP 10MB

0 10 20 30 40
Throughput (kbps)

Node 361 Op.B FTP 10MB

Figure 3. CDF of FTP throughput behavior before/during/after the match.

A clear differentiation can be inferred in each of these time intervals that presents
small variations depending on the operator. Additionally, it can be observed from the
figures that there were distinct behaviors for the two operators. Notably, for operator A,
the phases of the match are easily distinguished, while operator B shows more consistent
performance. Notwithstanding, it can be inferred that generally, after the game, the FTP
service performs better. This fact might be due to people arriving early to the game and
leaving right after the game often. Thus it was observed that the network remained loaded
before and during the game.

Regarding the second KQI of the FTP service (i.e., the setup time), the corresponding
CDFs are shown in Figure 4, for each node and operator logged in the second campaign.
In these, it can be seen that the distinction of the different phases of the match is not clear.
However, according to previous studies, this result is expected because it depends more on
variables related to the processing capacity than on the state of the radio network.
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Figure 4. CDF of FTP setup time behavior before/during/after the match.

Concerning the NetTest speed test experiment Figure 5, there was also a clear dif-
ference in performance, although in this case, the download and upload patterns were
different. Such phenomena can be explained by the types of applications typically em-
ployed by users connected to the same base station and their demand for resources. As was
the case with FTP, we can observe the pattern of behavior of users loading the cell in terms
of download capacity before and during the match with greater intensity than after in
almost all cases. That is the case, for example, for the node 371 operator A interface where
the performance after the event is better in downloading, unlike uploading where the best
result is obtained before the event.
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Figure 5. CDF of NetTest throughput behavior before/during/after the match; the upper row
corresponds to uploading and lower to downloading.

In the case of a web service (which includes Flicker, Twitter, Google, Twitter, Etsy, tmall,
eBay, Facebook, LinkedIn, Instagram, the guardian, stack overflow, Reddit, Yelp, Wikipedia
or Microsoft pages), it can be seen from the CDF representations that it is not possible to
clearly distinguish each of the phases shown in Figure 6. In addition, the behavior between
operators cannot be characterized either.

This could be explained in part by the asynchronous nature of the service and con-
sidering the performances of different web pages. Thus, in order to have a more accurate
view, it is necessary to filter a specific site (i.e., Wikipedia), as shown in the Figure 7. Ac-
cording to this graph, although the separation between the time phases is somewhat better
appreciated, it is not possible to determine consistent patterns, with results being different
for each node. In this case it is easier to see a stage differentiation, thereby confirming the
previous hypothesis about the consistency of the data. It can be established that in order to
obtain an adequate pattern it is necessary to test by comparing a single site and if possible
obtained from the same server.
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Figure 6. CDF of HTTP KQI behavior before/during/after the match.
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Figure 7. CDF of HTTP page load time (Wikipedia main page) before/during/after the match.

To conclude this section, the results obtained for the KQI of the ping service (i.e., RTT)
corroborate the hypothesis that there is different behavior in each of the phases of the game,
degrading especially during and before it, and improving afterwards. Figure 8 shows the
CDF for each of the phases, and unlike the previous cases, the behaviors of both operators
were fairly similar.
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0 50 100
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Figure 8. CDF of ping behavior before/during/after the match.

As can be deduced from the figure, during the course of the match a higher delay was
noticed, probably due to a higher network load. The behavior before and after the match
resulted in a lower latency, although in the post-match period the best overall performance
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in this sense. This common pattern was replicated in the same way for all the services
studied regardless of node and operator.

4.5. Radio Environment Modem Analysis

Once KQI performance ranges have been identified for various services, it becomes
necessary to illustrate the conditions of the radio environment in which they have taken
place. For this purpose, a MODEM Log data collection of 10 days without events (Normal
day) has been performed to compare with the data collected in campaigns 1 and 2.

Thus, Figure 9 shows in the form of an hourly boxplot the RSRP values over an entire
day, the upper part corresponding to a “normal” day and the lower part to the events.
Likewise, Figure 10 shows the values corresponding to RSRQ.
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Figure 9. RSRP boxplot comparison.
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Figure 10. RSRQ boxplot comparison.

It is possible to visualize if there is a consistency across matches compared to the
behavior of a “normal” (without event) day. By observing the time series of relevant radio
parameters, a clear difference in each operator’s behavior in relation to the course of a
match can be noticed. Here the operator A can be seen to drop from an average RSRP
of around −80 dBm in normal conditions to values below from 16:00 on match days.
On the other hand, the RSRQ values, which for operator B remain above −10 dB in normal
conditions, are significantly lower in the afternoon at both nodes. Lastly, it is evident that
the graph concerning the parameters obtained on a “normal” day shows a pattern with
less variability compared to match days.

4.6. Radio Layers’ Packet Granularity

Given the diverse nature of the data sources, a wide range of heterogeneous tempo-
ral granularities can be found. Experiments can be performed with a sampling period
within the range of minutes. At the same time, the radio interface provides updates with
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the logs approximately every second. Therefore, the variation over time is an essential
consideration for the correlation between samples and overlapping the time series of the
different parameters.

The Figure 11 shows an example of how the temporal granularity varies in the case of
the packets contained within the Mobile Insight traces. The bars show the average time
between packets captured, with the arrow indicating the standard deviation.

0 200 400 600 800
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LTE PHY PDSCH Packet
LTE PHY PDSCH Stat Indication

LTE PHY PUCCH Tx Report
LTE PHY PUSCH CSF

LTE PHY PUSCH Tx Report
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LTE RRC CDRX Events Info

LTE RRC OTA Packet
LTE RRC Serv Cell Info

LTE NAS EMM OTA Incoming Packet
LTE NAS EMM OTA Outgoing Packet

LTE NAS EMM State
LTE NAS ESM State

Time Granularity (per packet)

Figure 11. Mobile insight trace packet time granularity.

An apparent disparity between the packets in the case of the physical layer, and for
example, those collected in the RRC layer can be appreciated. For the correlation analysis
with the NetTest service, the PDSCH LTE Packet’s content has been chosen, since it corre-
sponds to the highest granularity of all the information collected by Mobile Insight traces.
It also contains the key PHY layer parameters, such as MCS, transport block size (TBS) and
carrier index used (coded as primary or secondary component carrier).

4.7. KQI and Radio Logs Correlations

Once the impacts of the development of a social event (in this case a football match)
on the QoE and radio behavior patterns of the environment have been observed, the next
step is to find out which physical parameters have been relevant for said influence.

First of all, a correlation matrix between the parameters obtained in the MODEM log
and the KQI corresponding to the NetTest [42] is captured in Figure 12. This matrix shows
the correlations between pairs of parameters in a color code that varies in intensity from
red (negative correlation with value −1) to dark blue (positive correlation with value 1).
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Figure 12. MODEM log parameter–KQI correlations for NetTest.

By looking at the radio parameters obtained from the MODEM log, the correlations of
these parameters present different fluctuations depending on the operator configuration.
This fact is exemplified in 371 Op, a case where it can be deduced that there is a negative
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correlation between cell identification and upload time, while in the rest of the cases,
a higher RSRP value means a better throughput (direct correlation). Based on the results,
a higher correlation with CID is shown in node 371 operator B. This fact likely means that
the node changes the serving cell with the performance varying depending on its RSRP
and RSRQ. Concerning operator A, the RSRP and RSRQ show a relatively appreciable
correlation factor for the UL/DL throughput (above 30%). Additionally, noteworthy,
although somewhat expected, is the high correlation of the RSSI with the KQI, even
higher than that obtained with RSRP, since it is not an averaged value that better reflects
the received signal. In this sense, when the selected band has a negative influence on
the received signal RSSI (as in node 371, operator A), there is a negative impact on the
download throughput (−0.73). For the case of the band for operator B, both node 361
(−0.096) and node 371 (−0.19) present a relatively smoothed influence, even though the
latter had its operator A interface in the same device.

Remarkably, both throughputs are closely correlated, especially in operator B (nodes
361 and 371). This fact is related to the effect of the load on the mobile network, which means
that when there are many users connected, both upstream and downstream resources are
limited at the same time. In other words, when the cell is unloaded, there is a greater
probability of finding available resources in both directions.

A further step in exploring the factors most involved in the degradation of NetTest
performance indicators is the study of the correlations with some of the physical layer
parameters obtained from the Mobile Insight traces. These parameters are the MCS and
TBS in layers 0 and 1.

As shown in the Figure 13, the correlations between KQI and such parameters are not
very strong given the low intensity of the correlations (graphically represented with softer
colors). This is possibly because there is a more significant interaction with the radio signal
conditions that depend on weather directly, and not so much on the performance of the
service that is the result of long-term averaging.
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Figure 13. PHY layer parameter–KQI correlations for NetTest.

In any case, the analysis provided by matrices shown in Figure 12 together with
Figure 13 allows identifying patterns of influence between KQIs, and between KQIs and
the radio parameters that may be negatively affecting them. That is the case for operator B,
where it can be deduced that the change of cell may be the cause of a degraded performance.

5. Applications and Research Challenges

The use of the data obtained by the vUE probes either from periodic pre-programming
or from direct access through the SSH interface has many different applications, as envis-
aged in the evaluation section and summarized in Figure 14.

Under the self-healing paradigm, the use of vUE probes can help in detecting problems
in the network that are being unnoticed by the OSS system. An example of this is what
is known as partial outage or sleeping cells that occur when there is a degradation of a
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key performance indicator (KPI) without an alarm. The only way for operators to become
aware of this type of problem is when the users report low performance. Furthermore, it is
necessary to send a qualified technician to the site to determine the cause of the problem.
The application of vUE probes would make it possible to detect the degradation process
through periodic campaigns of experiments. Additionally, the availability of a temporary
database of the user plane performance under normal load conditions represents a valuable
input for all the ML algorithms proposed for fault management.

For cell optimization, when operators make changes to the radio network configura-
tion, it is not always feasible for them to assess the consequences. Due to the dynamism
of the radio environment and the effects between network layers, it is necessary to have
a view from the user end to verify the impact. Additionally, the efficient use of radio
resources is another aspect of optimization in which vUEs can play a crucial role. Having a
detailed map of the radio environment (with interferers affecting certain areas or parts of
the spectrum underutilized in others), such time-stamped information can be leveraged for
much more efficient and dynamic management. The heterogeneity of radio technologies
that are likely to coexist in the future makes this an essential point to be addressed. Addi-
tionally, in relation to physical signal processing, some of the paradigms associated with
the simultaneous transmission and reception of signals will have to be tackled in order to
design systems capable of managing data of different nature in real time.

Besides, traffic profiling using the most advanced deep learning techniques can serve
as input for better resource planning. It can also get a more accurate picture of how many
resources are consumed depending on the application the user gives them. Moreover,
from a QoE management perspective, having a user interface integrated into the network
management system makes it possible to better manage the quality of service without
invading data privacy.

The security of mobile networks, including identity management and privacy protec-
tion, would benefit significantly from the presence of vUE. Among the many threats that
could be detected is the possible presence of rogue stations attempting to impersonate the
network. Furthermore, through the use of vUEs, periodic pen-testing could be carried out
to check the vulnerability of network access.

In the same manner, the use of the probes could be extended to other use cases
still under study by the 5G standardization bodies. For example, the vUE probes could
communicate with other user devices that are out of coverage by acting as relays. Thus,
some of the experimental features proposed at the forefront of standard development could
be piloted to test their operational feasibility in commercial networks. Enabling these tests
would result in a shorter time to market that would boost the revenue of operators and
foster competition.
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R&D LINES
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Availability
Industry 
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Optimization
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Figure 14. Applications, challenges and identified R&D lines.

However, as identified by the evaluation section, the present implementations of vUE
probes present relevant challenges. First of all, the efforts of strategic alliances aimed at
joining forces for an open mobile radio technology must converge in a solution of wide
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dissemination that suits all parties, as happened with the WiFi alliance. To make this a
reality, the SDR technologies would have make a to leap in capacity compared to what they
offer now, since at the moment, the bands they are capable of covering do not yet include
millimeter wave (mmWave) and bandwidths beyond 20 MHz. Therefore, there is still a
critical hardware development challenge to be overcome.

Furthermore, even if large pools capable of supporting the instantiation of vUEs
are available, their management should be integrated with the actual OSS. Therefore,
the heterogeneity present in the ecosystem of network management technologies would be
increased along with its complexity. Linked to this challenge is the necessity to consider
the products currently performing similar tasks of study of mobile networks through drive
tests, which would constitute direct competition for the entry of vUEs into the market.
Third parties must enter the business so that this type of service could be outsourced.

A further important consideration is the diverse nature of the information to complete
the contextual sources, such as sensors and the easiness of its availability. In this way,
the expected increase of computing capabilities in the cloud (or on the cloud edge) could
provide resources for the vast amount of information that a massive deployment of vUEs
would imply. Therefore, a horizon is opening up in which all the aspects, as mentioned
earlier, will gradually come together for an automatic management setup capable of
tackling the most challenging problems with a precision never seen before.

Last but not least, there would be a multitude of technical challenges to overcome
in order to integrate the output in the form of logs into the big data platforms that feed
the machine learning algorithms under development [43]. Among them, the diversity of
periodicities of each of the measurements can be highlighted [44] as a field to be explored
with the implementation of vUE probes. Besides, and based on the timestamped mea-
surements gathered, specific novel time-series processing techniques would have to be
applied [45,46] to obtain greater precision in the analysis and its inclusion in the network
management algorithms.

6. Conclusions

The present work has presented the primary information sources and key approaches
for monitoring in current cellular network OAM, while identifying their shortcomings.
As a means to solve them, vUE probes have been demonstrated to be a very relevant tool.
From this, an integrated framework for its application has been designed, establishing its
capabilities to support advanced monitoring and management tasks.

The different parts that would be necessary for integration with the network man-
agement system have been described, along with the mechanisms for their operation
and implementation.

Then, a summary of all the efforts made so far to be able to integrate the data ob-
tained from the user in the automatic network management for various purposes has been
presented in addition to the works that propose the virtualization of probes in any of
its conceptions.

A real-world implementation of this framework has demonstrated the capabilities of
the proposed approach for advanced QoE analysis and the identification of the relations
between the large number of parameters involved in the service provision, and provided
novel insights on how crowd-events can affect the network performance.

In this sense, it has been studied how the occurrence of an event, by its nature,
produces a pattern of degradation in specific time periods. It has also been shown how
the correlations of the radio parameters with the performance indicators or KQI can
vary depending on the configuration or strategy of the operator for users in the same
relative positions.

Thus, the benefits of using vUE have been synthesized by taking advantage of the
technological momentum of the co-evolution of virtualization and open radio platform
technologies, together with the rapid development of new user applications.
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The identified open research areas and challenges pave the way for further research and
developments in the field to guide future tools for advanced cellular network management.

As future work, a more extensive study of the measurement campaign, including
analysis of variance (ANOVA) and the inclusion of the MAC and RRC network layers,
would complete the analysis provided here.
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5G Fifth Generation of Mobile Networks
ANOVA Analysis of the Variance
APN Access Point Name
BBU Base Band Unit
BS Base Station
CDF Cumulative Distribution Function
CID Cell ID
COTS Commercial Off-The-Shelf
DNS Domain Name System
eNodeB Evolved Node B
FTP File Transfer Protocol
gNodeB next Generation Node B
GPP General Processing Platform
HTTP Hyper Text Transfer Protocol
ICMP Internet Control Message Protocol
LTE Long Term Evolution
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KQI Key Quality Indicator
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MCC Mobile Country Code
MCS Modulation and Coding Scheme
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NAS Network Access Stratum
NET NETwork Layer
NFV Network Virtualization Function
NWDAF Network Data Analytics Function
OAM Operation, Administration and Maintenance
OSS Operational Support Systems
PDSCH Physical Downlink Shared Channel
PHY Physical Radio Layer
QoE Quality of Experience
RAN Radio Access Network
RLC Radio Link Control
RRC Radio Resource Control
RSRP Reference Signal Received Power
RSRQ Reference Signal Received Quality
RTT Round Trip Time
RRM Radio Resource Management
PDCP Packet Convergence Control Protocol
SDN Software Defined Network
SDR Software Defined Radio
SIM Subscriber Identity Module
SSH Secure SHell
SQL Structured Query Language
TBS Transport Block Size
TCP Transport Control Protocol
UE User Equipment
vUE Virtual UE probe
WiFi Wireless Fidelity
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