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Abstract: We address the accuracy of wideband direct position estimation of a radio transmitter via a
distributed antenna array in 5G cellular systems. Our derivations are based only on the presence
of spatially coherent line-of-sight (LoS) signal components, which is a realistic assumption in small
cells, especially in the mmWave range. The system model considers collocated time and phase
synchronized receiving front-ends with antennas distributed in 3D space at known locations and
connected to the front-ends via calibrated coaxial cables or analog radio-frequency-over-fiber links.
Furthermore, the signal model assumes spherical wavefronts. We derive the Cramér-Rao bounds
(CRBs) for two implementations of the system: with (a) known signals and (b) random Gaussian
signals. The results show how the bounds depend on the carrier frequency, number of samples used
for estimation, and signal-to-noise ratios. They also show that increasing the number of antennas
(such as in massive MIMO systems) considerably improves the accuracy and lowers the signal-to-
noise threshold for localization even for non-cooperative transmitters. Finally, our derivations show
that the square roots of the bounds are two to three orders of magnitude below the carrier wavelength
for realistic system parameters.

Keywords: 5G; wideband direct position estimation; distributed antenna array; Cramér-Rao bounds;
mmWave; massive MIMO

1. Introduction

Recently, there has been a growing interest in massive multiple-input multiple-output
(MIMO) systems [1] and millimeter-wave communication (mmWave) technology [2–7].
These systems are already finding their place in future 5th generation (5G) cellular systems.
A very important application of 5G systems is indoor localization and tracking [8]. Their
key objective is to achieve a localization accuracy of about 1 cm [9], which is satisfactory
for location-based services in cellular systems. In this paper, we aim to obtain the limits
of the accuracy of these systems and answer the question of whether, in theory, it is
possible to achieve localization accuracy significantly better than the carrier wavelength.
The vision is that if such localization accuracy is possible, one could exploit it for location-
aided communications. We derived the Cramér–Rao bounds (CRBs) for models that
admit only LoS signal components. We addressed two implementations of the system:
(a) with deterministic sequences known to the receiver system and (b) with random
Gaussian sequences.

The analysis of localization accuracy is important for various reasons [10]. They
include location-aided communication (LAC) and coordinated multipoint (CoMP)
transmission. For example, CRBs describe local properties for CoMP, and they are much
more important than integer carrier wavelength ambiguity. The authors in [11] analyze the
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performance limits of multiple source localization for known and unknown signals and
propose an iterative localization method that breaks the search down into multiple single-
source searches. By analyzing the CRB with simulations, one can show that exploiting the
coherence between different signal snapshots at the same receiver improves localization
accuracy [12]. We explore a different kind of coherence than in [12]—the coherence between
signals in different receiving channels in the same signal segment (snapshot). The CRBs
for 2D localization of a transmitter that is time-synchronized to the receiving system in a
spatially non-coherent scenario with dense multipath propagation is derived in [13].

Few papers have addressed localization in spatially coherent scenarios, and much less
the accuracy bounds of such localization. In [14] (RFID—radio frequency identification),
Refs. [15,16] (passive source localization), and [17] (MIMO radars—active target localization),
the authors have shown that exploiting the carrier phase coupling between all receiving
antennas in spatially coherent settings can noticeably increase the localization accuracy.
Among these papers, the method in [14] achieves the best precision, which is 3.2% of
the carrier wavelength. According to the experimental results in [2], the 60 GHz range
(mmWave) has great potential for spatially coherent localization, because the non-line-of-
sight (NLoS) components are at least 10 dB below the LoS component. Methods for passive
wideband localization in spatially coherent setups have been proposed in [18], but CRBs
for them have not been addressed yet.

In [19], the authors analyze an object inside a reverberation cavity where a wave
is reflected a large number of times before arriving at a sensor (NLoS dominant over
LoS). An artificial neural network then infers the object’s location from amplitude-only
measurements. It was shown that a high dwell time of the wave inside the cavity (the
number of reflections) can lower the error even below the carrier wavelength (1/76 of
the wavelength). In scenarios that we analyze, we do not rely on a large number of
reflections in the area of interest for two reasons—the absorption in the air can have a
significant impact on NLoS components in the mmWave band (see [20]) and, besides indoor
cells (such as conference rooms, restaurants), we are also interested in small outdoor
cells (squares, parks, and so on). Instead, we depend on LoS components (the NLoS
components are either negligible or separable from the LoS ones—separable in time thanks
to the bandwidth, or separable in space thanks to orthogonal spatial signatures). Note
that, even in a small cell/area, the NLoS components with a large number of reflections
can have a long propagation distance through the air, which entails that the absorption
can be a large source of attenuation for them. As mentioned above, Ref. [2] reported
measurements at 60 GHz and showed that the NLoS components were at least 10 dB below
the LoS component. In addition to the mentioned environments (small indoor/outdoor
cells/areas), we are interested in the mmWave range of frequencies primarily (especially
around 60 GHz), where the antennas are small and can be packed more densely, which is
suitable for indoor implementations.

In [21], it has been found that the estimation accuracy based on TDoA could significantly
be increased by exploiting the carrier phase of arrival. This suggests that the localization
accuracy could also considerably benefit from the carrier phases in spatially coherent
settings. Algorithms for direct wideband coherent localization of a cooperative transmitter
by distributed phased antenna arrays have been reported in [22]. Their performance
approaches the CRB, and they solve the ambiguity problem inherent to coherent localization
in distributed massive MIMO. There are also direct wideband coherent methods for
localization of a non-cooperative transmitter via a distributed antenna array in environments
with multipath propagation and interference [18].

In [23], the authors analyzed error bounds for uplink and downlink 3D localization in
5G mmWave systems with an antenna array at the base station, as well as at the user
terminal. In the studied scenario, the localization parameters were the directions of
departure and arrival. Unlike this setting, ours has a base station array whose antennas
are distributed throughout the cell and the localization parameters are the coordinates of a
selected user antenna (a user terminal can have more than one antenna).
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Numerically less expensive methods for LoS localization in a massive MIMO ultra-
dense network are proposed in [24]. They take into account the curvature of the wavefront
at the base station arrays (spherical vs. planar). In addition to this curvature, unlike in [24],
in this paper, we also consider (1) other useful information due to spatial coherence, and (2)
the spatial-wideband effect [25,26]. The localization in our paper is suitable for networks
with centralized processing of signals received by distributed antennas such as C-RAN
networks [27]. In accordance with [28], we used a physical model for the LoS components
and a stochastic model for the NLoS components.

In this paper, we derive the CRBs of localization of an arbitrarily wideband stationary
radio frequency (RF) transmitter (Tx) in a spatially coherent scenario (such as the one
in [18]). The receiving channels are phase- and time-synchronized, but time synchronization
between the Tx and the receiving system is not required, unlike for ToA-based methods [17].
The wavefronts are spherical (the planar wave assumption is not used), contrary to the
scenario in [15]. The signals are arbitrarily wideband in the sense that any two TDoAs across
the receiving array may differ by more than the reciprocal of the bandwidth. The processing
of the received signals is coherent; we exploit the phase differences between all the receiving
channels for estimation.

We show that the CRBs are inversely proportional to the squared carrier frequency,
and their square roots are two to three orders of magnitude below the carrier wavelength
for usual system parameters, as opposed to non-coherent signal scenarios/algorithms,
where the ranging/localization CRB is inversely proportional to the squared effective
signal bandwidth. Moreover, we show that the CRB is inversely proportional to the square
of the signal-to-noise ratio (SNR) for low SNRs when the transmitted sequence is random
Gaussian and inversely proportional to the SNR for high SNRs, as well as for known
sequences (for any SNR). Finally, we found that the CRB is inversely proportional to the
number of samples used for estimation.

The localization system can use an unknown-sequence method (a method suited
to random signals) to localize a non-cooperative source in the area of interest, that is
completely independent from the system, or a known-sequence method to localize
cooperative terminals, especially if they are a part of the communication network that also
performs this localization (see different methods in [18]). Known-sequence-based methods
can be numerically more complex, but they provide a processing gain which suppresses
all interference orthogonal to the searched sequence (similar to CDMA (code-division
multiple access) systems). We point out that a system can choose to use unknown-sequence
methods in both cases. From the perspective of information theory and attainable accuracy,
of interest in this paper; if the localization system knows the sequence, then it has more
information at its disposal to localize the source. The latter is reflected in the lower error
bounds, as shown in this paper.

This paper follows the research direction of extremely large aperture arrays (a group
of antennas distributed in a large area that work coherently), [29], and analyzes them
as an enabler for highly accurate 3D positioning. The results presented in this paper
are a contribution to the idea of using distributed coherent massive MIMO systems as a
component (enabling technology) of future 6G wireless networks [30].

The paper is organized as follows. In the next section, we explain the system and
signal model used for deriving the CRBs. In Section 3, we present the main derivation
results of the paper, and in Section 4, we provide some numerical results obtained from
the derived CRBs. In the last section, we provide concluding remarks and directions for
future research. In Appendix A, we explain in detail the derivation of the CRBs when
the receiving system knows which sequence/waveform the transmitter uses, whereas in
Appendix B, we present the derivation details for random transmitted signals.

In the paper, we use the notation given in Table 1.
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Table 1. Symbols and their meaning.

Symbol — Meaning

Tx — Transmitter/transmitting/transmitted
Rx — Receiver/receiving/received
M — Number of Rx antennas and (front-end) channels
N — Number of acquired complex baseband samples in each Rx channel
m ∈ {1, 2 . . . M} — Index of an Rx channel/antenna
n ∈ {0, 1 . . . N − 1} — Time index in the digital domain (discrete time variable)
t ∈ R — Normalized continuous time variable (the unit is one sampling period, i.e., [sample])
k — DFT (discrete Fourier transform) frequency index
r = (x, y, z) — (Unknown) location of the Tx antenna
rm = (xm, ym, zm) — (Known) location of the m-th Rx antenna
dm = ‖r− rm‖ — Distance between rm and r
B — Signal bandwidth in [Hz]
νs — Sampling frequency in [Hz]
νc — Carrier frequency in [Hz]
fc — Normalized carrier frequency in [cycle/sample]
ωc — Normalized angular carrier frequency in [rad/sample]
λc — Carrier wavelength in [m]
c̃ = 3× 108[m/s] — Speed of propagation in [m/s]
c — Normalized speed of propagation in [m/sample]

τ0 ∈ R — Time shift between the Tx t-axis and the Rx system’s t-axis (the lack of
time-synchronization)

τm = dm/c ∈ R — Propagation time from Tx to Rxm

s(n) — Complex baseband transmitter sequence
s(t) — Continuous waveform corresponding to the transmitter sequence
s′(n) — The first derivative of the waveform s(t) evaluated at t = n
um(n) — Received (noisy) signal in channel m
wm(n) — Noise in channel m
σ2

m — Variance of wm(n)
am — Amplitude (attenuation) factor for the line-of-sight (LoS) component in channel m
sm(n) — The LoS component at the Rx antenna m (without the amplitude factor)
SNRm — Signal-to-noise (SNR) ratio in channel m

SNR0 — Signal-to-noise ratio in an imagined channel if its antenna were 1 m away from the Tx
(the referent SNR)

α — Vector of unknown parameters
I(α) — Fisher information matrix (FIM)
Iij — Element (i, j) of the FIM
p(um(n); α) — Probability density function (PDF) of um(n), given the value of α

L — Log-likelihood function
s̃(k), ũm(k), w̃m(k),
. . . — DFT spectrum of s(n), um(n), wm(n), . . .

I, u, . . . — Matrices and column-vectors/row-vectors
N — Gaussian (normal) distribution
CN — Circularly symmetric complex Gaussian distribution
∗ — Conjugation

Re — Real part
Im — Imaginary part
E — Expectation operator
Var — Variance
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Note that, for the most part of this paper, we use normalized time and frequency
quantities (such as fc), whereas we use quantities in physical units (non-normalized, such
as νc) only when necessary. The reason for this decision is that the transition between the
analog and the digital domain is then trivial (s(n)↔ s(t), when t = 0, 1, 2, . . .).

2. System Model
2.1. The Setup

A single stationary transmitter, Tx, is at an unknown location r = (x, y, z). A
distributed stationary receiving antenna array has M elements/channels, Rxm, m ∈
{1, 2 . . . M}, where the Rxmth antenna is at a known location rm = (xm, ym, zm), as in
Figure 1.

When the distances between adjacent antennas in an array are of the order of λc/2,
where λc is the carrier wavelength, we call the array a collocated or classical array. If some
of the antennas are separated by many wavelengths, we call such an array distributed.
Note that a distributed array does not have to contain only independent (single) antennas,
but it may also contain collocated arrays (as its subarrays). It may be cheaper to build
a distributed array from prefabricated subarrays (with densely packed, i.e., collocated,
antennas in each one) and to multiplex the signals from the antennas of the same subarray
through a single cable. (This might especially be convenient at higher frequencies.)

Next, we define the spatial coherence of a signal component (such as an LoS component)
from a transmitter Tx, wherever it may be in a given area of interest, A, across a set of
receiving (Rx) antennas, M. We say that the spatial coherence exists, if the difference,
denoted by ∆d, in the distances from Rx antennas m and ` to the Tx implies that the
difference in the phase of that component at these two Rx antennas is equal to −2πνc∆d/c̃,
for any m, ` ∈ M, where νc is the carrier frequency and c̃ is the speed of propagation in
that medium. Note that this is a weaker condition than the medium being homogenous
and isotropic. It is weaker because only the phase differences are required to follow this
law and only for signals coming from inside of A. Furthermore, note that spatial coherence
is more likely to exist in smaller cells, and especially indoors. Most importantly, note that
spatial coherence is a property of the propagation medium only—it has nothing to do with
the front-ends or the cables of the Rx system.

We also define coherent localization methods. We call them coherent if they exploit
the information in phase differences between signals in each pair of the receiving channels
to increase the accuracy of the localization. This requires (a) spatial coherence in the
medium and (b) that the Rx channels work coherently (i.e., that they are time-, frequency-,
and phase-synchronized). If they do not work coherently, the phases of the received signals
may well be scrambled and this information is lost. Non-coherent methods would still
work, because they rely only on signal envelopes. There are also semi-coherent methods,
which exploit the phase differences between the signals from the same subarray, but not
between different subarrays (because, e.g., the subarrays may be far apart from each other,
that is, spread out over a large geographical area where spatial coherence does not exist).
Note that spatial coherence, in most cases, exists across collocated arrays.

We now define direct localization methods. These methods estimate the location
directly from the raw acquired data (the signal samples), whereas indirect methods estimate
the location from some intermediate estimates (such as directions of arrival, times of arrival,
time differences of arrival, or received signal strengths). Direct methods usually have better
performance at the cost of higher numerical complexity and the need for the transference of
raw samples to the signal processor. Furthermore, a wideband localization method is able
to cope with signals whose bandwidth is large, such that the differences between envelope
delays at different Rx antennas may exceed the inverse of the bandwidth.

Next, we draw some comparisons of our model with other models. Our receiving
system model is equivalent to the one in [31,32] for a cell-free network, but the propagation
model, however, is not. Namely, the network contains antennas, placed over a wide area,
which (thanks to synchronization) work coherently to receive signals. Then, the signal
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processors process these raw signals, but, unlike in [31,32], where the phases in the Rx
signals are scrambled, we consider scenarios with spatial coherence of LoS components,
which means the information about the Tx location contained in the phases is preserved.
The network may have many more antennas, but only a subset of M of them is chosen. It
is assumed that the Tx is in LoS conditions with low path loss with each of the M antennas
and that there is spatial coherence of the LoS components across this subset (as explained
in [18]). Furthermore, this assumption is made for scalability reasons (see, e.g., [33]). The
spatial coherence condition allows coherent localization, which in turn, as we will show,
can provide a much higher accuracy. The network also chooses a central processing unit
that will run a direct localization algorithm on the acquired signals.

Figure 1. The system model.

A similar comparison can be drawn against the model in [34]. Using the terminology
from [34], we have a number of antennas in a distributed antenna system spread over the
area of interest, grouped into remote antenna units (RAUs), where the RAUs can have
different numbers of antennas; each RAU contains one or more antennas. The signals
from the antennas are fed to baseband processing units (BPUs), as separate streams, where
processing occurs (centralized processing is enabled, i.e., a direct localization algorithm can
be run). The main differences are (a) the elements of the channel matrix in [34] are random,
whereas we model the LoS components separately (from NLoS) and deterministically,
and (b) the symbols transmitted at the same time arrive at the Rx antennas also at the same
time (narrowband approximation) [34], whereas we consider wideband signals.

We also describe a contrast with [35], where a large number of low-cost low-power
sensors transmit wirelessly short messages to a fusion center. Instead of performing
coherent direct localization (which requires raw signals at the fusion center, and, therefore,
probably requires wired infrastructure), it can cooperate with a high performance network,
which performs coherent localization and advanced wireless communication (a network
which we model) to help it detect the presence of mobile transmitters.

For the receiving channels to work coherently, the cables connecting the Rx antennas
to their front-ends (Figure 1), together with the front-ends themselves, should either
induce equal delays (including phase delays) in the signals or the deviations should be
compensated for in preprocessing (this is a more likely and a more flexible solution).
The IQ (in-phase-quadrature-phase) demodulators should use a local carrier from a
common source (frequency-synchronization), the A/D converters should have a common
clock, and the corresponding samples should have the same indices (timestamps) (time-
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synchronization). Readers interested in practical implementations of synchronization
methods are referred to [36]. The Rx system receives a signal segment of N complex
samples (N in-phase samples as real plus N samples from the quadrature-phase branch
as imaginary) from each channel (starting, of course, from the same sample index in
each channel). The signal processor then runs a localization algorithm on that segment
(which contains MN samples). The SNRs are defined for each channel, and they are
expected to decrease with the square of the distance from the Tx to an Rx antennas, but we
allow them to have any values (deviations could happen because the polarizations are not
aligned perfectly, for example; especially if the antennas are distributed in 3D). The system,
of course, chooses a carrier frequency and a bandwidth appropriate for the band it wants
to monitor (to perform localization in).

Note that the Tx does not need to be either time- or phase-synchronized with the
receiving system. This means that even noncooperative transmitters can be localized. If
one hopes to estimate the Tx location with accuracy better than the carrier wavelength,
then the positions rm of the receiving antennas have to be determined with even better
accuracy before the localization algorithm is executed.

2.2. Signal Model

The Tx transmits an RF signal (approximately) bandlimited to (νc − B/2, νc + B/2),
where νc is the carrier frequency in Hz and B is the signal bandwidth in Hz. The signal
received at the Rxmth antenna at a distance dm from Tx, bandlimited to (−B/2, B/2), is
sampled at the Nyquist rate νs = B and is represented in a complex form as

um(n) = amsm(n) + uNLoS
m (n) + wm(n),

sm(n) = exp(−jωc(τ0 + τm))s(n− τ0 − τm),

uNLoS
m (n) =

Lm

∑
`=1

am,`s(n− τ0 − τm,`), (1)

where n ∈ {0, 1 . . . N − 1}; am is a real-valued attenuation factor for the LoS component,
sm(n); s(·) is the sequence/waveform; the term uNLoS

m (n) models all NLoS components;
ωc = 2π fc and fc = νc/B are the normalized angular and natural carrier frequencies,
respectively; the unknown value τ0 models the asynchronism between the Rx system and
the Tx (we use, as a reference, the Rx time axis); τm = dm/c is the propagation time from Tx
to Rxm, where dm = ‖r− rm‖ and ‖·‖ is the Euclidean norm; the normalized propagation
speed is c = c̃/νs, where c̃ = 3× 108 m/s; there are Lm NLoS paths to the Rxmth antenna
with complex-valued coefficients am,` and propagation times τm,`; wm(n) represents noise;
the acquired samples are um(n).

Note that τ0 and τm are fractional dimensionless values (the propagation time delays
do not have to be integer multiples of the sampling interval) and that the sequence/
waveform s(·) is defined on the entire (continuous) range R because it has been transformed
into a continuous waveform inside the Tx.

Unlike the signal model in [1,37], the signal model in this paper is spatially wideband.
Furthermore, the steering vectors are modeled implicitly by τm for each individual Rx
antenna. Besides the spatial-wideband effect, this also models the curvature of the
wavefronts, which cannot be neglected due to the size of the subarrays compared to
the area of interest. Furthermore, in contrast to [1,37], the coefficients am are real-valued,
thanks to the spatial coherence of the LoS components. Note that the coefficients am,`
for the NLoS components may have any phase. In [25,26], it is argued that modeling the
spatial-wideband effect is important even for collocated massive arrays and that it is critical
for distributed systems.

We scale the signal um(n), in a preprocessing step, by 1/am, because the signal-to-
noise ratios (SNRs) and noise powers are considered to be known to the receiver. Thereby,
the useful signals in all the receiving channels have the same powers. Then, we have
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um(n) = sm(n) + uNLoS
m (n) + wm(n), (2)

where uNLoS
m (n) are the (scaled) NLoS components and wm(n) is a circular-complex zero-

mean Gaussian random process with variance σ2
m, CN (0, σ2

m), independent across time
samples and channels and independent from the waveform s(n). Then, the SNR in channel
m is defined by

SNRm =
1

Nσ2
m

N−1

∑
n=0
|s(n)|2. (3)

The propagation attenuations are modeled by σ2
m, but the model considers that no

information about the transmitter location is contained in the attenuations. In practice,
location estimation based on phases is more robust than the location estimation based
on attenuations.

Our objective is to find the CRBs of the estimates of unknown parameters for the cases
of (a) known and (b) random sequences. In the former case, the unknown parameters
are α = (τ0, x, y, z) and in the latter, α = (x, y, z). Let us recall that the Tx is not time-
synchronized with the Rx system. Therefore, the parameter τ0 (the shift between the Tx and
Rx time axes) is unknown to the signal processor. Even though we are not interested (in this
context) in obtaining an estimate of τ0 (we are only interested in estimating (x, y, z)—the
Tx location), τ0 must be modeled as an unknown and, therefore, as a part of α in case
(a). Otherwise, an estimation algorithm could exploit this information to produce a better
estimate than could be possible (on average) with the given model (and that would mean
that the error bound would be different, too).

In contexts outside of the scope of this paper, an estimate of τ0 might not be irrelevant.
On the contrary, if the Rx system (such as a base station or a group of them) were
synchronized to the universal time, and it sent its estimate of τ0 to the Tx (the terminal),
the Tx could adjust its clock to match the universal time as well (as an additional service,
the system could provide to the terminal).

Another important thing to note is that, in case (b), regardless of how good or bad an
estimation algorithm is, it would be unable to estimate τ0 at all. An intuitive explanation
could be: If τ̂′0, ŝ′(t), and r̂′ were likely estimates of τ0, s(t), and the location, then the
estimates τ̂′′0 = τ̂′0 − ∆τ, ŝ′′(t) = ŝ′(t− ∆τ), and r̂′ would be equally likely, for any ∆τ,
no mater how large |∆τ| is, so the error would be unbounded. A formal explanation is
as follows: the Fisher information matrix (see the next section) in case (b), if we chose
α = (τ0, x, y, z) would be singular, and we need to invert it to obtain the CRB, which would
mean that the CRB would tend to infinity.

3. Cramér-Rao Bounds

The authors in [23,38] provide CRBs for localization when the user terminal and the
base station each have a single collocated (small aperture) antenna array. They show that,
when the number of antennas grows, the CRBs of the LoS component parameters tend
to the appropriate LoS-only CRBs, because the LoS components become separable from
the NLoS ones, thanks to the channel sparsity in mmWave. In accordance with that, we
derive the CRBs when uNLoS

m (n) = 0. This allows us to quantify the impact of the location
information in the LoS components on the attainable localization accuracy, regardless of the
model for the NLoS components (whether they are modeled as random or deterministic
and whether they are changing more slowly of quickly). Even if the NLoS components are
not negligible in some scenarios in practice, the LoS-only CRBs are useful for selecting the
resolution of a search grid for localization methods that use grids. If the system designer
cannot predict how much the NLoS components would degrade the accuracy, it seems
logical to use the resolution appropriate for the case without that degradation.
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3.1. Known Sequences (Cooperative Transmitter)

This case corresponds to a scenario where a base station allocates a sequence for
a cooperative user terminal. The terminal then transmits the sequence so that the base
station can localize the terminal. From the assumptions about wm(n) in (2), we deduce
that Rewm(n) and Imwm(n) have zero-mean Gaussian distributions with variance σ2

m/2,
N
(
0, σ2

m/2
)
, where Re and Im denote the real and imaginary parts of the argument,

respectively. It holds then, that E(um(n)) = sm(n), where E stands for the expectation
operator. Furthermore, the probability density function (PDF) of a single time sample is

p(um(n); α) =
1

πσ2
m

exp
(
− 1

σ2
m
|um(n)− sm(n)|2

)
. (4)

All the observations are given by the vector u = [u1(0), u1(1), · · · , u1(N − 1),
u2(0), · · · , uM(0), uM(1), · · · , uM(N − 1)]>. The PDF of u is given by

p(u; α) =
M

∏
m=1

N−1

∏
n=0

p(um(n); α), (5)

and thus, the loglikelihood function, L = ln p(u; α), is

L = −N
M

∑
m=1

ln(πσ2
m)−

M

∑
m=1

N−1

∑
n=0

1
σ2

m
|sm(n)− um(n)|2. (6)

The Fisher information matrix (FIM) of the unknown parameters is defined by

I(α) =
[
Iij
]

4×4, Iij = −E
(

∂2L
∂αi∂αj

)
= Iji. (7)

After taking the first partial derivatives of L with respect to the unknown parameters
given in α, we get expressions of the form

∂L
∂x

= Re
M

∑
m=1

N−1

∑
n=0

2
σ2

m
(sm(n)− um(n))

∗ x− xm

cdm

(
jωcsm(n) + spm(n)

)
, (8)

where (if we use the symbol (·)′ to denote the first derivative)

spm(n) = s′
(

n− τ0 −
dm

c

)
× exp

(
−jωc

(
τ0 +

dm

c

))
. (9)

Then, after taking the second partial derivatives of L, we obtain

∂2L
∂x∂y

= −Re
M

∑
m=1

N−1

∑
n=0

2
σ2

m

(
x− xm

cdm

y− ym

cdm

∣∣jωcsm(n) + spm(n)
∣∣2

− (sm(n)− um(n))
∗ f6(n, m, α)

)
, (10)

where f6(n, m, α) is a deterministic function without an impact on the final result (as
explained in Appendix A). These expressions depend on um(n), which we treat as random
variables (not their realizations). After applying the expectation operator to them, we get
FIM elements of the form

I23 = −E
∂2L
∂x∂y

= β
M

∑
m=1

2
σ2

m

(x− xm)(y− ym)

c2d2
m

, (11)
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where the multiplication factor is given by

β =
N−1

∑
n=0

∣∣jωcs(n) + s′(n)
∣∣2 (12)

and is common to all of the FIM elements. It is interesting to note that the first term
in β takes into account the impact of the information in the carrier phase on the error
bound, whereas the second term (the derivative of the sequence, s′(·)) takes into account
the bandwidth. Finally, we need to invert the FIM. The elements on the main diagonal
of FIM−1 are the error bounds for τ0, x, y, and z, in that order. The bound on the mean
squared localization error is then the sum of the elements (2, 2), (3, 3), and (4, 4) of FIM−1

for 3D and the sum of (2, 2) and (3, 3) for 2D localization. Appendix A provides the steps
of this derivation in more detail.

Let SNR0 be the SNR of a channel whose antenna is 1 m away from the transmitter.
Based on the derived expressions for the FIM elements, we obtain that the CRB approximately
depends on SNR0, the carrier frequency, and the number of samples is as follows:

CRB ∼ 1/SNR0, (13)

CRB ∼ 1/ω2
c , (14)

CRB ∼ 1/N. (15)

3.2. Random Gaussian Sequences (Non-Cooperative Transmitter)

This case corresponds to a scenario where a base station tries to localize a (possibly
non-cooperative) terminal transmitting a signal unknown to the base station (probably with
a compact spectrum, e.g., OFDM). We reiterate that in our derivation for random sequences,
the beginning of the period of the transmitted sequence, τ0, is unknown, but irrelevant
for the localization. The reason is that a time-shifted white Gaussian process has the
same statistical properties as its version without a time shift. The CRBs derived here are
approximate, since the signal is not periodic with period N and the DFT-based time shift
is cyclic.

Contrary to the scenario with known sequences, here, all of the MN-acquired time
samples are dependent in pairs, which makes it inconvenient to form the joint distribution.
Namely, if τ0 + τm in (1) were an integer, say 17, then sm(0), as well as um(0) in (2),
would depend only on s(17). However, in reality, τ0 + τm is not an integer, but say 17.439,
and therefore um(0) depends on all of s(0), s(1), . . . , s(N− 1) (s(n) being random variables
and um(0) being a function of them). The same is true for um(1), um(2), . . . , um(N − 1)
(for that particular channel m)—each of them depends on all s(0), s(1), . . . , s(N − 1). It
would be easier if we had groups of variables such that the groups are independent from
each other. Then, the total joint PDF would be a simple product of the PDFs of each
group individually.

An idea for addressing this is to transform the received signals into the frequency domain
(using DFT). We perform the DFT on the time domain vector [um(0), um(1), . . . , um(N − 1)]
to get a vector of DFT components, and we repeat this for each Rx channel m, m ∈
{1, 2, . . . , M}. This way, we obtain a new statistical sample, which contains MN frequency
samples, instead of the old one, which contains MN time samples, but the amount of
information in the new one and in the old one is the same (they are equivalent). Next, at a
given frequency with index k, we can group the k-th DFT component from each of the Rx
channels into an M-element vector [ũ1(k), ũ2(k), . . . , ũM(k)]. We show that these N groups
(random vectors) are independent from each other (exactly what we were looking for).
Finally, all that remains is to find the PDF of each group and calculate their product. We
proceed by explaining these steps in more detail in the following text. As a convention, we
will use the symbol ˜ to denote DFT spectra.
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The DFT spectra of the signal and noises are

s̃(k) = F (s(n)) =
N−1

∑
n=0

s(n) exp
(
−j2π

kn
N

)
, (16)

ũm(k) = F (um(n)), w̃m(k) = F (wm(n)), (17)

where F denotes the DFT operator.
In order to express time shifts in the spectral domain realistically, let the discrete

frequency be in the range k ∈
{
−N

2 ,−N
2 + 1, . . . , N

2 − 1
}

.
The reason for this choice is that the DFT components in the complex baseband domain

need to correspond correctly to the RF frequencies in the range [νc − B/2, νc + B/2]. If we
chose k to be in {0, 1, . . . , N − 1} (as in classical signal processing), that would correspond
to the frequencies in the range [νc, νc + B], which would be in conflict with the model.
Since sm(n) = exp(−jωcdm/c)s(n− dm/c), relying on the properties of the DFT operator
defined in (16), we have

s̃m(k) = s̃(k) exp(−j(ωc + 2πk/N)dm/c), (18)

ũm(k) = s̃m(k) + w̃m(k), (19)

where s̃m(k) = F (sm(n)). Since the noise signals wm(n) and the unknown useful signal
s(n) are white (uncorrelated time samples) stationary complex Gaussian random processes,
their DFT components, w̃m(k) and s̃(k), are also i.i.d. (independent and identically
distributed) complex Gaussian [39]. The fact that the samples at different frequencies
are independent is a very convenient property when we need to find the joint PDF—a
property we do not have in the time domain. Note that the time samples s(n) and wm(n)
are independent because, in the model, we consider that the sampling is performed at
the Nyquist frequency. This, however, does not restrict the analysis in this paper to
such systems. Even if a system performs oversampling (which has some advantages), it
can reduce the sampling frequency to the Nyquist frequency later in the digital domain.
Regardless, the amount of information is the same (in the band of interest), which is
important for the analysis of precision. Therefore, the model is general (it holds for
both types of systems). To summarize in a more formal way, the properties of s(n) and
wm(n) imply that Re s̃(k), Im s̃(k), Re s̃m(k), and Im s̃m(k) have Gaussian distributions,
i.e., Re s̃m(k), Im s̃m(k) ∼ N

(
0, Nσ2

s /2
)
, and Re w̃m(k), Im w̃m(k) ∼ N

(
0, Nσ2

m/2
)
.

Furthermore, the processes s̃m and w̃m are also independent, as are the random variables
s̃m(k1) and s̃m(k2) (and similarly w̃m(k1) and w̃m(k2)) for k1 6= k2. Finally, the real
components are independent from the imaginary components.

Instead of having time samples in the statistical sample, we can compute and use
the DFT samples of the received signals. So, the entire statistical sample (containing MN
complex scalars from the frequency domain) is

ũ =

 ũ1(−N/2) ũ1(−N/2 + 1) . . . ũ1(N/2− 1)
...

...
. . .

...
ũM(−N/2) ũM(−N/2 + 1) . . . ũM(N/2− 1)

. (20)

Note that the m-th row of the matrix ũ is the DFT spectrum of the signal from the m-th
channel and that the columns (viewed as random vectors) are independent from each other.
For the PDF of ũ, we can write

p(ũ) =
N/2−1

∏
k=−N/2

p(ũ1(k), ũ2(k), . . . , ũM(k)), (21)
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because the random variables for different frequencies are independent [39]. Also, we have

p(s̃(k)) =
1

πNσ2
s

exp
(
− 1

Nσ2
s
|s̃(k)|2

)
, (22)

p(w̃m(k)) =
1

πNσ2
m

exp
(
− 1

Nσ2
m
|w̃m(k)|2

)
, (23)

where s̃(k), w̃1(k), . . . , w̃M(k) are independent.
In Appendix B, first we show that we can write the loglikelihood as

L = ln p(ũ) = N ln
γπ

A
+

N/2−1

∑
k=−N/2

 1
AN2

∣∣∣∣∣ M

∑
m=1

Cm + jDm

σ2
m

∣∣∣∣∣
2

−
M

∑
m=1

|Cm + jDm|2

Nσ2
m

, (24)

where γ = 1
πNσ2

s
∏M

m=1
1

πNσ2
m

, A = 1
Nσ2

s
+ ∑M

m=1
1

Nσ2
m

, and where Cm and Dm are real and

Cm + jDm = ũm(k) exp(j(ωc + 2πk/N)dm/c). (25)

We note that γ and A do not depend on α.
The FIM of the parameters is given by

I(α) =
[
Iij
]

3×3, Iij = −E
(

∂2L
∂αi∂αj

)
= Iji. (26)

Taking the first partial derivatives of L with respect to the unknown parameters given
in α, we get expressions of the form

∂L
∂x

=
2

AN2 Re
N/2−1

∑
k=−N/2

(
M

∑
m=1

1
σ2

m
ũ∗m(k)× exp

(
−j
(

ωc +
2πk
N

)
dm

c

))

×
M

∑
m=1

1
σ2

m
ũm(k) exp

(
j
(

ωc +
2πk
N

)
dm

c

)
× j
(

ωc + 2π
k
N

)
x− xm

cdm
. (27)

Then, taking the second partial derivatives yields expressions of the form

∂2L
∂x2 =

2
AN2 × Re

N/2−1

∑
k=−N/2

(∣∣∣∣∣ M

∑
m=1

1
σ2

m
ũm(k)×

(
ωc + 2π

k
N

)

× exp
(

j
(

ωc +
2πk
N

)
dm

c

)
x− xm

cdm

∣∣∣∣2
+

(
M

∑
m=1

1
σ2

m
× ũ∗m(k)× exp

(
−j
(

ωc +
2πk
N

)
dm

c

))

×
M

∑
m=1

1
σ2

m
× ũm(k)× j

(
ωc + 2π

k
N

)
× exp

(
j
(

ωc +
2πk
N

)
dm

c

)

×
(

j
(

ωc + 2π
k
N

)
×
(

x− xm

cdm

)2
+

1
cdm
− (x− xm)2

cd3
m

). (28)

Next, we apply the expectation operator to the second derivatives (treating the DFT
components ũm(k) as random variables) to get the FIM elements, of the form

I11 = β
M

∑
m=1

M

∑
p=1

1
σ2

mσ2
p

x− xp

cdp

(
x− xp

cdp
− x− xm

cdm

)
, (29)
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where the multiplication factor

β =
2σ2

s

1
σ2

s
+

M
∑

m=1

1
σ2

m

(
Nω2

c − 2πωc +
N2 + 2

3N
π2
)

, (30)

is common to all of the FIM elements. Since the FIM in the random sequence case does not
have a row/column that corresponds to τ0, the bound on the mean squared localization
error is simply the trace of FIM−1 for 3D and the sum of the elements (1, 1) and (2, 2) for
2D localization. Appendix B provides the steps of this derivation in more detail.

Based on the expressions for the FIM elements, the CRB approximately depends on
SNR0, the carrier frequency, and the number of samples as follows:

CRB ∼ 1/SNR2
0, low SNRs, (31)

CRB ∼ 1/SNR0, high SNRs, (32)

CRB ∼ 1/ω2
c , (33)

CRB ∼ 1/N. (34)

4. Discussion

In this section, we present experimental results that provide further insights on the
localization performance of the studied system. Figure 2 shows a 3D slice representation
of the CRB for 3D localization inside a room of size 6 m× 4 m× 2.5 m, with 18 antennas
on each wall and the ceiling (90 in total), marked with triangles, for SNR0 = 25 dB,
N = 1024, fc = 60 GHz/100 MHz, and a random Gaussian sequence. For convenience,
the parameters are also displayed in Table 2, case 1. In the figure, we plotted

√
CRB/λc

as a function of the 3D space, where λc = c/ fc = c̃/νc is the carrier wavelength. We
imagined that a distributed array would come in prefabricated panels with subarrays
of antennas for easy installation. So, we modeled four smaller subarrays (but still with
inter-antenna distances considerably larger than λc/2) on the walls, and a larger one (with
a larger aperture) on the ceiling.

Figure 2.
√

CRB/λc of 3D localization inside a room of size 6 m× 4 m× 2.5 m with 18 antennas on
each wall and the ceiling, all marked with triangles. The obtained CRB is for a random Gaussian
sequence and parameters SNR0 = 25 dB, N = 1024, fc = 60 GHz/100 MHz.

Note that the cuboid frame is only a rough model of the room—There would be
furniture and people inside and the walls are not expected to be completely flat in
practice. Furthermore, they would not be ideal reflective surfaces, but the wave would
penetrate the walls to an unknown depth, depending on their conductance and other
parameters, changing the carrier phase by a significant amount. Using the information
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in NLoS components in coherent localization would be much more challenging than LoS
components, because ray-tracing-based localization algorithms would have to know the
depth, whereas fingerprinting-based methods might require the frequent retraining of their
databases (since variations in the phases have to be taken into account here). However, this
remains an interesting topic for plausibility studies in future research—Could the obstacles
be anchored in space with high enough precision as well (as the Rx antennas are) to enable
the gains of coherent localization from their reflected components? This is outside the
scope of this paper, so we discard the NLoS components in this error-bound analysis.

Figure 3 shows the CRB for a distributed array with five randomly placed antennas
for 2D localization in the plain of the array, for SNR0 = 10 dB, N = 64, and a random
Gaussian sequence (Table 2, case 2). Since the CRB is much lower inside the array aperture,
this suggests that a distributed array should be placed in such a way that its aperture
encompasses the area where one expects the transmitters.

It is worth noting that both of these example antenna array geometries were chosen to
be irregular. An impact on localization performance could be seen as analogous to classical
arrays, where nonuniform or sparse arrays perform better than uniform ones for a given
number of antennas. In [40], a uniform antenna array with a large number of elements
was optimized by reducing the number of used elements greatly (a more cost-effective
solution), effectively creating a sparse array with performance comparable to that of the
original array. The optimization of an array geometry is also out of scope here, but is an
interesting topic for further research. Our idea is that this analysis would also be applicable
to geometries that would be set up as ad hoc and then the antenna positions measured.

Table 2. Parameters used for the numerical results.

Case SNR0 N Sequence νc νs

1 (90-ant. array, 3D loc.) 25 dB 1024 random 60 GHz 100 MHz
2 (5-ant. array, 2D loc.) 10 dB 64 random 60 GHz 100 MHz
3 (5-ant. array, 2D loc.) variable variable random variable 100 MHz

4 (square arrays) 15 dB 1024 known 60 GHz 100 MHz
5 (square arrays) variable 1024 both 60 GHz 100 MHz

Figure 3. CRB for 2D localization by five randomly placed antennas in the plain of the array.
The locations of the antennas are marked by triangles. The obtained CRB is for a random Gaussian
sequence and parameters SNR0 = 10 dB and N = 64.

In Figure 4, we present how the 90% quantile of
√

CRB depends on νc, SNR0, and N,
for a random Gaussian sequence (Table 2, case 3). The plots show how the accuracy of
localization improves with frequency, N, and SNR0. They also demonstrate the advantage
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of using mmWave because the increased frequency of the carrier allows for higher localization
accuracy. The results for known sequences are similar.

It is also worth investigating how the CRBs depend on the number of antennas, M.
Since the effect of relative placement of antennas to each other and the effect of increasing
M are coupled, we have chosen to evaluate the CRBs for a uniform square distributed
array with 2× 2, 3× 3, 5× 5, and 9× 9 antennas (so M ∈ {4, 9, 25, 81}). The arrays were
attached to the ceiling of a room and the CRBs were evaluated in a square of size 4 m× 4 m
and centered 1.2 m directly below the array, in a horizontal plane, for SNR0 = 15 dB,
N = 1024, fc = 60 GHz/100 MHz (Table 2, case 4). We analyzed a constant aperture
and a constant antenna distance scenario. In the former, the array’s aperture was kept at
4 m× 4 m, whereas in the latter, the adjacent antennas were retained at 0.5 m from each
other, effectively making the 9× 9 arrays identical in both setups. Figure 5 compares
the CRBs of the arrays in the constant aperture and Figure 6, in the constant antenna
distance scenario.

3.5 25 39 60

ν
c
 [GHz]

10
-6

10
-5

10
-4

10
-3

10
-2

√

C
R
B

[
m
]

N=1024 SNR0=25dB P=90%

N=1024 SNR0=15dB P=90%

N=1024 SNR0=5dB P=90%

N=64 SNR0=25dB P=90%

N=64 SNR0=15dB P=90%

N=64 SNR0=5dB P=90%

5G accuracy requirement

Figure 4. The 0.9 quantile of
√

CRB vs. νc for a Gaussian sequence and B = 100 MHz, for different
SNR0 and N.

Figure 5. The CRBs for different array sizes in the constant aperture scenario. The square root of the
CRB, normalized by the carrier wavelength, for the 2× 2 array is shown in (a). The ratios of 2× 2 on
one hand and 3× 3, 5× 5, and 9× 9 on the other are shown in (b), (c), and (d), respectively.
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When we average the CRBs over the possible locations of the transmitter in the
4 m× 4 m square of the experiment, we obtain the results depicted in Figure 7. They show
how the CRBs change with M and comparing them with the ideal ∼1/M and ∼1/M2

dependencies. This shows how much increasing the number of antennas improves the
accuracy of localization.

Figure 6. The CRBs for different array sizes in the constant antenna distance scenario. The square root
of the CRB, normalized by the carrier wavelength, for the 2× 2 array is shown in (a). The ratios of
2× 2 on one hand and 3× 3, 5× 5, and 9× 9 on the other are shown in (b), (c), and (d), respectively.

0 10 20 30 40 50 60 70 80 90

M

10-6

10-5

10-4

√

m
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n
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R
B
)
[
m
]

Dependence 1/sqrt(M)

Const aperture RMS bound

Const distance RMS bound

Dependence 1/M

Figure 7. Dependence of the CRB on the number of antennas, M.

We have also evaluated the CRB curves as a function of SNR0 (recall that SNR0
is the SNR of a channel whose antenna is 1 m away from the transmitter) for random
Gaussian sequences and known sequences (Table 2, case 5). Again, the results are obtained
by averaging the CRBs for locations of the transmitter over locations in the 4 m× 4 m
square of the experiment. The results for the 2× 2 and 9× 9 arrays are shown in Figure 8.
They suggest that increasing the number of antennas from 4 to 81 produces a gain of
approximately 15 dB. The results also show the advantage of using mmWave massive
MIMO systems because the localization can successfully be performed in low SNR conditions
(low transmitted power in the mmWave range), even for unknown sequences (non-
cooperative scenarios). In [18], the authors present additional results for CRBs and
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localization algorithms evaluated for different sets of parameters, including different
array geometries.

-30 -25 -20 -15 -10 -5 0 5 10

SNR
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B
)
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m
]

Gauss seq. 2x2

Known seq. 2x2

Gauss seq. 9x9

Known seq. 9x9

Figure 8. Dependence of the CRB, averaged over space, on SNR0.

Finally, we point out that in coherent direct localization, besides the main lobe of
the criterion function of the localization algorithm, there usually exists a number of high
sidelobes (the space between them is on the order of the carrier wavelength), so that
some estimates are placed on these lobes, degrading the absolute error. This is called the
(integer wavelength) ambiguity problem (for further details, please see [18]). However,
for distributed beamforming (which is one of the important applications of coherent
localization), this absolute error is irrelevant, whereas the error within the main lobe (the
distance of its local maximum to the true location) determines its performance. This error
is much smaller than the absolute one and is reflected in the CRB (which describes only
local behavior). For this reason, the ambiguity problem is outside the scope of this paper.
Some possible solutions, though, are mentioned in [18].

5. Conclusions

In this paper, we have addressed the performance limits of direct wideband coherent
3D localization in distributed mmWave massive MIMO for 5G cellular systems. In the
derivation of the limits, we assume only the presence of spatially coherent line-of-sight
signal components. We also assume collocated time- and phase-synchronized receiving
front-ends with antennas distributed at known locations. The results for known and
random Gaussian signals show that the CRB is inversely proportional to the squared
carrier frequency. For a typical indoor setting and realistic system parameters (M = 5× 18,
SNR0 = 25 dB, N = 1024), the square root of the CRB is smaller than λc/1000 in 90% of
the space. These results suggest important advantages of massive MIMO for 5G systems.
Namely, one can preprocess the signals at the base station array to focus energy at the
selected user antenna in the downlink and, conversely, to increase the gain in the uplink.
This shifts the focus from location-based services to the location aided communication
concept. This entails that coherent localization in LoS scenarios, typical for small cells in
mmWave range, has the potential to improve the capacity considerably and the overall
performance of 5G massive MIMO systems with distributed antennas. The results also
show that the studied systems are especially suited for coherent localization due to high
accuracy and the ability to perform localization in low SNR conditions (low radiated
power), even with non-cooperative transmitters. The ambiguity problem of coherent
localization can be solved in a number of ways, e.g, by optimizing the antenna geometry
or by using signals from antenna subarrays distributed in the cell.
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Finally, we provide some topics for future research. In practice, the propagation
conditions inside a cell may vary over time, so it is desirable for a localization system to
implement different methods (with different strengths and weaknesses), such as RSS and
coherent ones. It would be valuable to compare their performance and design schemes that
activate appropriate methods based on the detected conditions.

Furthermore, optimization of antenna array geometries based on different criteria is
of interest. One criterion is the accuracy, but the main accuracy gain seems to be achieved
by placing the array so that the transmitters are inside its aperture. Another criterion is the
reduction of the ambiguity problem, which can easily happen in coherent localization when
the number of antennas is small. This is of interest in applications where absolute error is
important (traffic collision prevention, automated robot and drone movement control).

A challenging direction of research is an error analysis in conditions with more
pronounced NLoS components and the possibility to leverage information in strong
reflections to improve coherent localization.

The exploration of a fair comparison between the error bounds of RSS (received signal
strength; i.e., amplitude only) and coherent localization (from this paper) is also important.
RSS localization puts no additional requirements on the hardware. To make the comparison
fair, it would have to be carried out in conditions suitable for both types. Namely, RSS
localization is robust against synchronization errors and a lack of spatial coherence in
the medium. On the other hand, coherent localization is robust against deviations in the
received power from a law with a given path loss exponent. This is especially important
for 3D localization, where not all of the antenna polarizations would be aligned, so that it
could even happen that an Rx antenna closer to the Tx has a weaker received signal power
than another Rx antenna farther away.

Another interesting topic for further research is the possibility of using reconfigurable
intelligent surfaces (RIS) to aid coherent localization for increased accuracy (the use of a RIS
in non-coherent localization was already reported in [19]). Namely, if a localization system
could measure very accurately the position of a RIS and if it controls (or knows) the phase
changes that the RIS induces in the signal component, it reflects from a transmitter (that
needs to be localized). Then, a coherent localization algorithm might be able to use such
an NLoS component in addition to the LoS component for better performance (especially
if the transmitter is well outside the aperture of the Rx antenna array). The paper [41]
presents challenges and opportunities for using RISs in localization.
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Abbreviations
The following abbreviations are used in the manuscript:

2D 2-dimensional
3D 3-dimensional
5G Fifth generation
6G Sixth generation
BPU Baseband processing unit
C-RAN Cloud radio access networks
CDMA Code-division multiple access
CoMP Coordinated multipoint
CRB Cramér-Rao bound
DFT Discrete Fourier transform
FIM Fisher information matrix
i.i.d. Independent and identically distributed
IQ In-phase-quadrature-phase
LAC Location aided communication
LoS Line-of-sight
MIMO Multiple-input multiple-output
mmWave Millimeter-wave
NLoS Non-line-of-sight
PDF Probability density function
RAU Remote antenna unit
RF Radio frequency
RFID Radio frequency identification
RFoF Radio-frequency-over-fiber
RIS Reconfigurable intelligent surface
RSS Received signal strength
SNR Signal-to-noise ratio
TDoA Time difference of arrival
ToA Time of arrival

Appendix A. CRB Derivation-Known Sequences

We rewrite the loglikelihood function from (6), L = ln p(u|α), i.e.,

L = −N
M

∑
m=1

ln(πσ2
m)−

M

∑
m=1

N−1

∑
n=0

1
σ2

m
|sm(n)− um(n)|2. (A1)

The FIM is given by

I(α) =
[
Iij
]

4×4 Iij = −E
∂2L

∂αi∂αj
= Iji. (A2)

In the derivation, we use the identity ∂
∂α |z|

2 = 2 Re
(

z∗ ∂z
∂α

)
, where (·)∗ denotes

complex conjugation. Note also that since

dm =
√
(x− xm)2 + (y− ym)2 + (z− zm)2, (A3)

we can write
∂dm

∂x
=

x− xm

dm
,

∂dm

∂y
=

y− ym

dm
,

∂dm

∂z
=

z− zm

dm
. (A4)

Define

spm(n) = s′
(

n− τ0 −
dm

c

)
× exp

(
−jωc

(
τ0 +

dm

c

))
, (A5)
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where (·)′ denotes the first derivative. Then, the first derivatives of the loglikelihood are

∂L
∂τ0

=Re
M

∑
m=1

N−1

∑
n=0

2
σ2

m
(sm(n)− um(n))

∗ ×
(

jωcsm(n) + spm(n)
)
, (A6)

∂L
∂x

=Re
M

∑
m=1

N−1

∑
n=0

2
σ2

m
(sm(n)− um(n))

∗ × x− xm

cdm

(
jωcsm(n) + spm(n)

)
, (A7)

∂L
∂y

=Re
M

∑
m=1

N−1

∑
n=0

2
σ2

m
(sm(n)− um(n))

∗ × y− ym

cdm

(
jωcsm(n) + spm(n)

)
, (A8)

∂L
∂z

=Re
M

∑
m=1

N−1

∑
n=0

2
σ2

m
(sm(n)− um(n))

∗ × z− zm

cdm

(
jωcsm(n) + spm(n)

)
. (A9)

If we define Pm =
∣∣jωcsm(n) + spm(n)

∣∣2, then for the second derivatives we obtain

∂2L
∂τ2

0
=− Re

M

∑
m=1

N−1

∑
n=0

2
σ2

m

(
Pm − (sm(n)− um(n))

∗ f1(n, m, α)
)
, (A10)

∂2L
∂τ0∂x

=− Re
M

∑
m=1

N−1

∑
n=0

2
σ2

m

(
x− xm

cdm
Pm − (sm(n)− um(n))

∗ f2(n, m, α)

)
, (A11)

∂2L
∂τ0∂y

=− Re
M

∑
m=1

N−1

∑
n=0

2
σ2

m

(
y− ym

cdm
Pm − (sm(n)− um(n))

∗ f3(n, m, α)

)
, (A12)

∂2L
∂τ0∂z

=− Re
M

∑
m=1

N−1

∑
n=0

2
σ2

m

(
z− zm

cdm
Pm − (sm(n)− um(n))

∗ f4(n, m, α)

)
, (A13)

∂2L
∂x2 =− Re

M

∑
m=1

N−1

∑
n=0

2
σ2

m

((
x− xm

cdm

)2
Pm − (sm(n)− um(n))

∗ f5(n, m, α)

)
, (A14)

∂2L
∂x∂y

=− Re
M

∑
m=1

N−1

∑
n=0

2
σ2

m

(
x− xm

cdm

y− ym

cdm
Pm − (sm(n)− um(n))

∗ f6(n, m, α)

)
, (A15)

∂2L
∂x∂z

=− Re
M

∑
m=1

N−1

∑
n=0

2
σ2

m

(
x− xm

cdm

z− zm

cdm
Pm − (sm(n)− um(n))

∗ f7(n, m, α)

)
, (A16)

∂2L
∂y2 =− Re

M

∑
m=1

N−1

∑
n=0

2
σ2

m

((
y− ym

cdm

)2
Pm − (sm(n)− um(n))

∗ f8(n, m, α)

)
, (A17)

∂2L
∂y∂z

=− Re
M

∑
m=1

N−1

∑
n=0

2
σ2

m

(
y− ym

cdm

z− zm

cdm
Pm − (sm(n)− um(n))

∗ f9(n, m, α)

)
, (A18)

∂2L
∂z2 =− Re

M

∑
m=1

N−1

∑
n=0

2
σ2

m

((
z− zm

cdm

)2
Pm − (sm(n)− um(n))

∗ f10(n, m, α)

)
, (A19)

where fi(n, m, α), 1 ≤ i ≤ 10, are deterministic functions, whose expressions are not
given for brevity. They are all deterministic, and each of them is multiplied by the term
(sm(n)− um(n))

∗ whose expectation is equal to zero, and therefore, their values have no
impact on the result in the next step.

Then, for the first element of the FIM we write

I11 =
M

∑
m=1

2
σ2

m

N−1

∑
n=0

∣∣jωcsm(n) + spm(n)
∣∣2.

If we define β as

β =
N−1

∑
n=0

∣∣jωcsm(n) + spm(n)
∣∣2,
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after some simple derivation, we get

β =
N−1

∑
n=0

∣∣jωcs(n) + s′(n)
∣∣2, (A20)

because shifting a signal in time does not change its energy. Note that β does not depend
on m. Then I11 and the rest of the FIM elements can be expressed in compact forms
respectively as

I11 = −E
∂2L
∂τ2

0
= β

M

∑
m=1

2
σ2

m
, (A21)

I12 = −E
∂2L

∂τ0∂x
= β

M

∑
m=1

2
σ2

m

x− xm

cdm
, (A22)

I13 = −E
∂2L

∂τ0∂y
= β

M

∑
m=1

2
σ2

m

y− ym

cdm
, (A23)

I14 = −E
∂2L

∂τ0∂z
= β

M

∑
m=1

2
σ2

m

z− zm

cdm
, (A24)

I22 = −E
∂2L
∂x2 = β

M

∑
m=1

2
σ2

m

(
x− xm

cdm

)2
, (A25)

I23 = −E
∂2L
∂x∂y

= β
M

∑
m=1

2
σ2

m

(x− xm)(y− ym)

c2d2
m

, (A26)

I24 = −E
∂2L
∂x∂z

= β
M

∑
m=1

2
σ2

m

(x− xm)(z− zm)

c2d2
m

, (A27)

I33 = −E
∂2L
∂y2 = β

M

∑
m=1

2
σ2

m

(
y− ym

cdm

)2
, (A28)

I34 = −E
∂2L
∂y∂z

= β
M

∑
m=1

2
σ2

m

(y− ym)(z− zm)

c2d2
m

, (A29)

I44 = −E
∂2L
∂z2 = β

M

∑
m=1

2
σ2

m

(
z− zm

cdm

)2
. (A30)

The CRBs for the individual components are given by

Var τ̂0 ≥ CRBτ0 =
[
I(α)−1

]
11

, (A31)

Var x̂ ≥ CRBx =
[
I(α)−1

]
22

, (A32)

Var ŷ ≥ CRBy =
[
I(α)−1

]
33

, (A33)

Var ẑ ≥ CRBz =
[
I(α)−1

]
44

. (A34)

We define by ∆r =
√
(x̂− x)2 + (ŷ− y)2 + (ẑ− z)2 the error in locating the transmitter.

For the bound of its mean squared value, we write

CRB∆r = CRBx + CRBy + CRBz

=
K22 + K33 + K44

det I(α)
, (A35)

where Kij is the cofactor of the (i, j)th element of I(α). For simplicity of notation, we will
call this bound just the (transmitter location) CRB.
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If the transmitter’s z-coordinate is known (which corresponds to 2D localization),
the corresponding FIM, I(2D), is obtained by removing the last row and column of the FIM
for the 3D case, I(α). Namely,

I(2D) =

 I11 I12 I13
I12 I22 I23
I13 I23 I33

, (A36)

and the CRB for 2D localization is

CRB(2D)
∆r = CRB(2D)

x + CRB(2D)
y (A37)

=
I11 I33 − I2

13 + I11 I22 − I2
12

det I(2D)
. (A38)

Let the quantity SNR0 be defined as the SNR value in a channel whose antenna would
be 1 m away from the transmitter. If the signal power decreases with the square of the
distance from the transmitter, and if the noise has equal power across the channels prior
to scaling by 1/am, starting from the derived expressions above, SNRm = SNR0d2

0/d2
m,

d0 = 1 m, and the assumption that ωc is large in the sense that β ≈ ∑N−1
n=0 |jωcs(n)|2, it can

be shown that the CRBs approximately depend on SNR0, the carrier frequency, and the
number of samples as follows: (Actually, CRB ∼ 1/ν2

c . So, the expression CRB ∼ 1/ω2
c

holds if B is constant, since ωc = 2πνc/B. In addition, the dependence on B also exists
in c.)

CRB ∼ 1/SNR0, (A39)

CRB ∼ 1/ω2
c , (A40)

CRB ∼ 1/N. (A41)

Appendix B. CRB Derivation—Random Gaussian Sequences

We start with writing the joint PDF p(ũ1(k), ũ2(k), . . . , ũM(k)). This random vector is
a function of M + 1 independent random variables (one for the useful signal, s̃(k), and M
for the noise, w̃m(k)). We obtain the joint PDF by integrating over all the possible values of
the signal random variable, s̃(k). If we denote Re s̃(k) = sR(k) and Im s̃(k) = sI(k), then

p(ũ1(k), ũ2(k), . . . , ũM(k)) =
∞∫
−∞

∞∫
−∞

p(sR(k))p(sI(k))× pw̃1(k)(ũ1(k)− s̃1(k))

× pw̃2(k)(ũ2(k)− s̃2(k))× · · · × pw̃M(k)(ũM(k)− s̃M(k))dsR(k)dsI(k), (A42)

where pw̃m(k)(ũm(k)− s̃m(k)) is the value of the PDF of the complex random variable w̃m(k)
evaluated at ũm(k)− s̃m(k). After some rearranging, we obtain

p(ũ1(k), . . . , ũM(k)) = γ

+∞∫
−∞

+∞∫
−∞

exp
(
− 1

Nσ2
s
|a + jb|2

)

×
M

∏
m=1

exp
(
− 1

Nσ2
m
|a + jb− Cm − jDm|2

)
dadb, (A43)

where Cm, Dm (which are real), and γ are defined by

Cm + jDm = ũm(k) exp(+j(ωc + 2πk/N)dm/c), (A44)

γ =
1

πNσ2
s

M

∏
m=1

1
πNσ2

m
. (A45)
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Using
∫ +∞
−∞ 1/(

√
2πw) exp(−x2/(2w))dx = 1 and (21), after some derivation, we get

p(ũ) =
(

γ
π

A

)N
× exp

N/2−1

∑
k=−N/2

 1
AN2

∣∣∣∣∣ M

∑
m=1

Cm + jDm

σ2
m

∣∣∣∣∣
2

−
M

∑
m=1

|Cm + jDm|2

Nσ2
m

, (A46)

where A = 1
Nσ2

s
+

M
∑

m=1

1
Nσ2

m
. Thus, the loglikelihood function is

L = ln p(ũ) = N ln
γπ

A
+

N/2−1

∑
k=−N/2

 1
AN2

∣∣∣∣∣ M

∑
m=1

Cm + jDm

σ2
m

∣∣∣∣∣
2

−
M

∑
m=1

|Cm + jDm|2

Nσ2
m

. (A47)

The FIM is

I(α) =
[
Iij
]

3×3 Iij = −E
∂2L

∂αi∂αj
= Iji. (A48)

Note that γ, A do not depend on α. For the log likelihood, we write further

L =N ln
γπ

A
−

N/2−1

∑
k=−N/2

M

∑
m=1

1
Nσ2

m
|ũm(k)|2

+
1

AN2

N/2−1

∑
k=−N/2

∣∣∣∣∣ M

∑
m=1

1
σ2

m
ũm(k)× exp

(
j
(

ωc +
2πk
N

)
dm

c

)∣∣∣∣∣
2

. (A49)

Note that the first two terms of L do not depend on α, but the third term does. In the
sequel, we use the following identities: ∂

∂α |z|
2 = 2 Re

(
z∗ ∂z

∂α

)
, ∂dm

∂x = x−xm
dm

, ∂dm
∂y = y−ym

dm
,

and ∂dm
∂z = z−zm

dm
. For the first derivatives of L, we obtain

∂L
∂x

=
2

AN2 Re
N/2−1

∑
k=−N/2

(
M

∑
m=1

1
σ2

m
ũ∗m(k)× exp

(
−j
(

ωc +
2πk
N

)
dm

c

))

×
M

∑
m=1

1
σ2

m
ũm(k) exp

(
j
(

ωc +
2πk
N

)
dm

c

)
× j
(

ωc + 2π
k
N

)
x− xm

cdm
, (A50)

∂L
∂y

=
2

AN2 Re
N/2−1

∑
k=−N/2

(
M

∑
m=1

1
σ2

m
ũ∗m(k)× exp

(
−j
(

ωc +
2πk
N

)
dm

c

))

×
M

∑
m=1

1
σ2

m
Um(k) exp

(
j
(

ωc +
2πk
N

)
dm

c

)
× j
(

ωc + 2π
k
N

)
y− ym

cdm
, (A51)

∂L
∂z

=
2

AN2 Re
N/2−1

∑
k=−N/2

(
M

∑
m=1

1
σ2

m
ũ∗m(k)× exp

(
−j
(

ωc +
2πk
N

)
dm

c

))

×
M

∑
m=1

1
σ2

m
ũm(k) exp

(
j
(

ωc +
2πk
N

)
dm

c

)
× j
(

ωc + 2π
k
N

)
z− zm

cdm
. (A52)

The second derivatives of the loglikelihood are

∂2L
∂x2 =

2
AN2 × Re

N/2−1

∑
k=−N/2

(∣∣∣∣∣ M

∑
m=1

1
σ2

m
ũm(k)×

(
ωc + 2π

k
N

)

× exp
(

j
(

ωc +
2πk
N

)
dm

c

)
x− xm

cdm

∣∣∣∣2
+

(
M

∑
m=1

1
σ2

m
× ũ∗m(k)× exp

(
−j
(

ωc +
2πk
N

)
dm

c

))
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×
M

∑
m=1

1
σ2

m
× ũm(k)× j

(
ωc + 2π

k
N

)
× exp

(
j
(

ωc +
2πk
N

)
dm

c

)

×
(

j
(

ωc + 2π
k
N

)
×
(

x− xm

cdm

)2
+

1
cdm
− (x− xm)2

cd3
m

), (A53)

∂2L
∂x∂y

=
2

AN2 × Re
N/2−1

∑
k=−N/2

((
M

∑
m=1

1
σ2

m
× ũ∗m(k)

×
(

ωc + 2π
k
N

)
exp

(
−j
(

ωc +
2πk
N

)
dm

c

)
y− ym

cdm

)

×
(

M

∑
m=1

1
σ2

m
× ũm(k)×

(
ωc + 2π

k
N

)
× exp

(
j
(

ωc +
2πk
N

)
dm

c

)
x− xm

cdm

)

+

(
M

∑
m=1

1
σ2

m
× ũ∗m(k)× exp

(
−j
(

ωc +
2πk
N

)
× dm

c

))

×
M

∑
m=1

1
σ2

m
× ũm(k)× j

(
ωc + 2π

k
N

)

× exp
(

j
(

ωc +
2πk
N

)
dm

c

)
× x− xm

cdm
× y− ym

cdm
×
(

j
(

ωc + 2π
k
N

)
− c

dm

))
. (A54)

The expressions for ∂2L
∂x∂z , ∂2L

∂y2 , ∂2L
∂y∂z , and ∂2L

∂z2 are analogous. Note that the only random
variables in the second derivatives of L are the frequency components ũm(k). If the
expectation operator is applied to the second derivatives, there will be terms of the form

E ũ∗m(k)ũp(k) = E(s̃∗m(k) + w̃∗m(k))
(
s̃p(k) + w̃p(k)

)
= (A55)

= E
(
s̃∗m(k)s̃p(k)

)
(A56)

= exp
(

j(ωc + 2πk/N)(dm − dp)/c
)

E|s̃(k)|2 (A57)

= Nσ2
s exp

(
j(ωc + 2πk/N)(dm − dp)/c

)
, for m 6= p, (A58)

and
E ũ∗m(k)ũm(k) = Nσ2

s + Nσ2
m. (A59)

These equalities are used to derive the elements of the FIM. The derivation is somewhat
tedious but straightforward and yields

I11 = β
M

∑
m=1

M

∑
p=1

1
σ2

mσ2
p

x− xp

cdp

(
x− xp

cdp
− x− xm

cdm

)
, (A60)

I12 = β
M

∑
m=1

M

∑
p=1

1
σ2

mσ2
p

x− xp

cdp

(
y− yp

cdp
− y− ym

cdm

)
, (A61)

I13 = β
M

∑
m=1

M

∑
p=1

1
σ2

mσ2
p

x− xp

cdp

(
z− zp

cdp
− z− zm

cdm

)
, (A62)

I22 = β
M

∑
m=1

M

∑
p=1

1
σ2

mσ2
p

y− yp

cdp

(
y− yp

cdp
− y− ym

cdm

)
, (A63)

I23 = β
M

∑
m=1

M

∑
p=1

1
σ2

mσ2
p

y− yp

cdp

(
z− zp

cdp
− z− zm

cdm

)
, (A64)

I33 = β
M

∑
m=1

M

∑
p=1

1
σ2

mσ2
p

z− zp

cdp

(
z− zp

cdp
− z− zm

cdm

)
, (A65)
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where

β =
2σ2

s

1
σ2

s
+

M
∑

m=1

1
σ2

m

(
Nω2

c − 2πωc +
N2 + 2

3N
π2
)

. (A66)

The CRBs are then given by

Var x̂ ≥ CRBx =
[
I(α)−1

]
11

, (A67)

Var ŷ ≥ CRBy =
[
I(α)−1

]
22

, (A68)

Var ẑ ≥ CRBz =
[
I(α)−1

]
33

. (A69)

The bound on the mean squared error of the transmitter’s location estimate is then

CRB = CRBx + CRBy + CRBz

=
K11 + K22 + K33

det I(α)

=
I22 I33 − I2

23 + I11 I33 − I2
13 + I11 I22 − I2

12
det I(α)

, (A70)

where Kij is the cofactor of the (i, j)th element of I(α). If the transmitter’s z-coordinate is
known (the 2D localization case), the last row and column of I(α) are removed to obtain
the FIM for the 2D case,

I(2D) =

[
I11 I12
I12 I22

]
. (A71)

So, the CRB for 2D localization is

CRB(2D) =CRB(2D)
x + CRB(2D)

y (A72)

=
I11 + I22

I11 I22 − I2
12

. (A73)

Under similar assumptions as in the known sequence scenario, starting from the
derived expressions, and with the approximations

Nω2
c − 2πωc +

N2 + 2
3N

π2 ≈ Nω2
c , (A74)

1 +
M

∑
m=1

SNRm ≈ 1, for low SNRs, (A75)

1 +
M

∑
m=1

SNRm ≈
M

∑
m=1

SNRm, for high SNRs, (A76)

it can be shown that the CRB approximately depends on SNR0, the carrier frequency,
and the number of samples as follows:

CRB ∼ 1/SNR2
0, low SNRs, (A77)

CRB ∼ 1/SNR0, high SNRs, (A78)

CRB ∼ 1/ω2
c , (A79)

CRB ∼ 1/N. (A80)
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