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Abstract: In mobile systems, fog, rain, snow, haze, and sun glare are natural phenomena that can be
very dangerous for drivers. In addition to the visibility problem, the driver must face also the choice
of speed while driving. The main effects of fog are a decrease in contrast and a fade of color. Rain
and snow cause also high perturbation for the driver while glare caused by the sun or by other
traffic participants can be very dangerous even for a short period. In the field of autonomous vehi-
cles, visibility is of the utmost importance. To solve this problem, different researchers have ap-
proached and offered varied solutions and methods. It is useful to focus on what has been presented
in the scientific literature over the past ten years relative to these concerns. This synthesis and tech-
nological evolution in the field of sensors, in the field of communications, in data processing, can
be the basis of new possibilities for approaching the problems. This paper summarizes the methods
and systems found and considered relevant, which estimate or even improve visibility in adverse
weather conditions. Searching in the scientific literature, in the last few years, for the preoccupations
of the researchers for avoiding the problems of the mobile systems caused by the environmental
factors, we found that the fog phenomenon is the most dangerous. Our focus is on the fog phenom-
enon, and here, we present published research about methods based on image processing, optical
power measurement, systems of sensors, etc.

Keywords: visibility enhancement; mobile systems; fog detection methods and systems

1. Introduction

Adapting vehicle speed to environmental conditions is the main way to reduce the
number of accidents on public roads [1]. Bad visibility caused by the weather conditions
while driving proved to be one of the main factors of accidents [1]. The research from the
last decade came with different features to help the drivers, such as redesigning the head-
lights by using LED or laser devices or improving the directivity of the beam in real time;
with these new technologies, the emitted light is closer to the natural one [2]. In addition,
they also introduced a new feature, auto-dimming technologies being already installed
on most of the high-end vehicles [3]. In case of fog, unfortunately, this is not enough, and
up until now, no reliable and robust system was developed to be installed on a commer-
cial vehicle. There were approaches based on image processing by detecting lane marking,
traffic signs, or hazards such as obstacles [4], image dehazing and deblurring [5], image
segmentation, or machine learning methods [6,7]. Other methods are based on evaluating
the optical power of a light source in direct transmission or backscattering, by analyzing
the scattering and dispersion of the beam [8,9]. There are approaches that are using sys-
tems already installed on the vehicle such as ADAS (Advanced Driver Assistant Systems),
LIDAR (LIght Detection And Ranging), radar, cameras, or different sensors [10-12] and
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even geostationary satellite approaches [13]. While imaging sensors output reliable results
in good weather conditions, their efficiency is decreasing in bad weather conditions such
as fog, rain, snow, or glare of the sun.

The biggest companies around the world are working these years to develop a tech-
nology that will completely change driving, the autonomous vehicle [14]. When this will
be rolled out in public ways, the expectation will be for crashes to decrease considerably.
However, let us think about how an autonomous vehicle will behave in bad weather con-
ditions: loss of vehicle adherence, problems on vehicle stability, and maybe the most im-
portant fact is related to the decrease or lack of visibility: non-visible traffic signs and lane
markings, non-identifiable pedestrian [15], objects or vehicles on its way [16], lack of vis-
ibility due to sun glare [17], etc. We have also the example of the autonomous vehicle
developed by Google, which failed the tests in bad weather conditions in 2014. Now, the
deadline for rolling out the autonomous vehicle is very close; 2020 was already announced
by many companies, and they must find a proper solution for these problems because
these vehicles will take decision exclusively based on the inputs obtained from the cam-
eras and sensors or in case of doubts will hand over the vehicle control to the driver.

In the next decades, there will be a transition period; on the public roads, there will
be autonomous vehicles but also vehicles controlled by the drivers; as drivers’ reactions
are unpredictable, these systems will have to have an extremely short evaluation and re-
action time to avoid possible accidents. Based upon this reasoning visibility estimation
and the general improvement of visibility remain viable fields of study, we did a study on
the state of the research for papers that use image processing as the means to estimate
visibility in fog conditions, thus increasing general traffic safety.

Figure 1 presents an overview of the field, starting from the main methods from the
state of the art, visibility enhancement (2), and fog detection (3), following by systems and
sensors (4) that use the methods proposed in the first two subsections to detect visibility
in adverse weather conditions and ending by presenting the human observer’s reactions
in such conditions (5).

Visibility issues caused by
fog

2. Visibility enhancement

2.2 Koschmieder Law
2.3 Dark Channel Prior
2.4 Image segmentation using single

input image

2.5 Image segmentation using
multiple input images

2.6 Learning based methods

3. Fog detection

3.2 Optical power - Direct
transmission measurement

3.3 Optical power - Backscattering
measurement

3.4 Image processing - Global feature
image-based analysis

3.5 Visible Light Communications

4. Sensors and Systems for fog
detection and visibility
enhancement

Figure 1. Overall structure.

Basically, in the first category, the methods are based on image processing, while in
the second one, they are based on optical power measurements or image processing. In
the next sections, the most known and used methods from these two broad categories will
be detailed. The goal of this work is to present the advantages but also the weaknesses of
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every method to identify new ways of improvement. Afterwards, as it is stated in the
figure below, we propose a mix of methods with the scope of counterbalancing the short-
ages of a method with the other one. The final step will be to check if the results obtained
from such a system are valid for human beings and additionally usable by autonomous
vehicles.

The paper is structured as follows: we present visibility enhancement methods, fog
detection methods, and sensors and systems that fulfill visibility measurements and de-
tections in fog environment. Subsequently, we present some approaches that link the re-
sults obtained with an automatic system, presented above, and the human stimuli to un-
derstand their applicability now when humans need to take actions based on the system’s
outputs but also for the future when an autonomous vehicle will make decision based on
the same outputs. Afterwards, we present the conclusions of our work.

2. Visibility Enhancement Methods

In the last decade, there was a great interest in the area of improving visibility in bad
weather conditions and especially in foggy conditions. The methods are based on image
processing algorithms and can be split into two categories: image processing using a sin-
gle input image (one of the first approaches was presented by Tarel and Hautiere in ([18])
and using multiple images ([19]) as input. Taking multiple input images of the same scene
is usually impractical in several real applications; that is why single image haze removal
has recently received much attention.

2.1. Basic Theoretical Aspects

This subsection will mathematically describe the main methods from the first cate-
gory, visibility enhancement: Koschmieder Law and dark channel prior.

2.1.1. Koschmieder Law

During his studies related to the attenuation of luminance through the atmosphere,
Koschmieder noted that there is a relationship between the luminance of an object (L)
found at a distance x from the observer and the luminance Lo close to the object:

L= Ly € + Lo(1- e %) 1)

where Lo is the luminance close to the object, Ly, is the atmospheric luminance, and o is
the extinction coefficient. By rewriting Equation (1), divining it by L, we will obtain:

C =) e = e @

which is known as Koschmieder Law regarding the apparent contrast (C) of an object
against the sky background at a certain distance x, considering the inherent contrast Co.
This law is applicable only for daytime uniform luminance; for night conditions, we can
apply Allard’s Law.

2.1.2. Dark Channel Prior

This is a statistical method based on non-foggy images taken outdoors and uses a
single foggy image as input. It is based on the statement that haze-free outdoor images
have in almost all non-sky patches at least one channel with very low intensity for some
pixels. In other words, the minimum intensity in such an area tends to zero. Formal, for
an image J, can be defined:

JA4K(x) = Mincer 6z (Minyeaey (J€ (y)) 3)

where /€ is a color channel of image ], and Q(x) is a local area or window centered in x.
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Except for the sky area from the image, J4kintensity is very low; it is close to zero if
J is an outdoor image without light. In this case, Jdak is called dark channel and the statis-
tical analysis is known as “dark channel prior”.

2.2. Methods Based on Koschmieder Law

Koschmieder was one of the first researchers that treated the phenomenon of visibil-
ity degradation due to weather conditions. He studied the luminance attenuation in the
atmosphere and proposed a law relating to the apparent contrast of an object against a
sky background.

His was among the first approaches dedicated to transportation systems (started in
2005) from which were further derived numerous refinements belong to Hautiere et al.
[18,20-24], etc.

Based on the same principles, Negru et al. present in [25] and continuing in [26] a
method of image dehazing, which calculates the attenuation of the luminance through the
atmosphere. The goal of the work is to dehaze images taken from a moving vehicle and
to inform the driver about the fog’s density and the adequate speed for those specific con-
ditions. The first step of this approach is to apply a Canny-Deriche edge detector on the
input image followed by estimations of the horizon line and inflection point of the image
to indicate if fog is present. If haze is detected, then the extinction coefficient is calculated,
visibility distance is estimated, and fog is classified considering its density (Figure 2). The
method has good results for free, straight roads where the camera is not obstructed.

Inputimage +|Canny-Deniche detect |—* Horizon line *  Region growing » Inflection point detect

Figure 2. Haze removal method presented in [26].

The authors deduced the visibility distance as:

@)*

dyis = Revy + 29f

4)

where:

e  Rwr of the equation represents the distance traveled during the safety time margin
(including the reaction time of the driver), and the second term is the braking dis-
tance. This is a generic case formula and does not take into account the mass of the
vehicle and the performance of the vehicle’s breaking and tire system.

e  Riis atime interval that includes the reaction time of the driver and several seconds
before a possible accident may occur.

e  gisthe gravitational acceleration, 9.8 m/s?

e  fisthe friction coefficient. For wet asphalt, we use a coefficient equal to 0.35.

e  urdenotes the recommended driving speed.

Thus:

v = —gfRe+ [g*f*RE +29fdys ©)

Later, Negru et al. proposed in [27] a contrast restoration method for an ADAS sys-
tem. The method takes into consideration the exponential decay from a foggy image. The
image is restored by estimating the atmospheric veil based on partitioning of the unity
functions. The authors come with an ingenious method of filtering, by applying a median
filter on the image’s columns, which increases the clarity of the reconstructed image (Fig-
ure 3). The advantages of this method are its performance in real-time applications and
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the possibility of using the algorithm on a mobile device, being a cost-efficient solution.
The method does not offer reliable results for some specific cases, one example being the
images with a constant depth of the observed scene.

Foggy image

Gray Scale

Enterimage directly in gray scale, orimage £

transformed from color to grayscale, in order Gray scale

to improve the contrast transformation

The median filter along columns is the one that yields the #

best results and, in addition, it makes the atmosphernc veil

to adapt with the fog's density. For consistency reasons Apply a median filter

and to reduce hallo effects introduced due to the filtering ‘

methods applied in image processing, the standard

deviation is also applied on the columns of the input Find the Standard Deviation
foggy image. We also consider that only a percentage p ¥

{the usual values $5%... 95%) will be used to calculate . i

the value for the atmospheric veil in each pixel. Estimate Sky Intensity ‘
Estimate Veil Image: Fog has an exponential decay between ‘

the sky region and until the vicinity of the camera. There Estimate Veil image ‘

must exist an exponential restoration mechanism. The final
formula for computing the atmospheric veilis Vina= V' G

where G is an exponential function with values between 0 and 1. @ Gray Scale

Image reconstruction using various algonthms: modified no black pixel
constraint (NBEPC), no black pixel constraint with planar assumption (NBPC +
PA) [1. P. Tarel ot al, “Vision enhancement in homozensous and heterozensous

foz,” IEEE Intsll. Trarsp. Svst Mag., vol. 4, no. 2, pp. 620, Svmmer 2012 ], modified RGB -

no black pixel constraint with the squared exponential function (NEPC + f3), Restored color image
maodified no black pixel constraint with the modulus exponential function -

(NBPC + fm). modified no black pixel constraint with the translated squared exponential function (NBPC + Gs)
and modified no black piel constraint with the translated modulus exponential function (NEPC + Gm).

Restored gray image

The authors find that the use of the exponential G functions, proposed by them, give the best results.

Figure 3. Method proposed in [27].

A method based on a modified version of Koschmieder’s model is presented in [28],
where the atmospheric effect of fog is modeled first. Afterwards, the atmospheric veil is
estimated using dark channel prior, and then an exponential transformation is applied to
it to improve the accuracy of the estimation. The authors assume that an input image is
usually not affected in all the regions by fog, which is why it uses a nonlinear transfor-
mation not to affect the fog-free regions during the reconstruction process. Finally, every
pixel from the image is reconstructed using the modified version of Koschmieder Law.
Being a linear function of the number of input pixels, the complexity is low, which makes
it proper to be used for real-time applications. Comparing the method with others from
state of the art, from a quality point of view, it appears that the proposed method has
better results in recovering details and edges, the colors of the output images being less
affected in comparison to [18] and [29]. The assessment from quantity was performed con-
sidering only two parameters: ratio of visible edges added after the reconstruction process
and the ratio of pixels that become saturated after the restoration process. The method has
comparable results with the two methods mentioned above, the performances being re-
lated to the input hazy image.

An ADAS-based dehazing model is presented in [30], which continues the work
started in 2012 by Tarel et al. in [23], where they exposed the idea to use a Head-up display
(HuD) inside the vehicle, helping the driver to see behind the fog, by dehazing images in
real time using Koschmieder model. During the experiments, the reaction time of the
driver was tested to understand the usability of such an application. The results obtained
after three experiments realized in the laboratory are only a starting point, the system
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needs to be tested on the roads in real conditions to prove its reliability and robustness.
Such a system can be used in low fog conditions, but for dense levels of fog, the system is
unable to help the driver.

Methods based on Koschmieder Law are applicable only in daytime scenarios, mak-
ing them unusable for real-life automotive applications where the system offers reliable
results 24 h/day.

2.3. Methods Based on Dark Channel Prior

One of the most influential papers in this field of removing haze from a single image
was published by He et al. [31], which was based on the same principle described by
Koschmieder. The presented method, dark channel prior, is based on the statistics of the
haze-free outdoor images. The idea of this method is that at least one of the color channels
has a very low intensity at some pixels (tends to zero) in most of the non-sky patches
(Figure 4). Based on this assumption, it can estimate the haze thickness, and a high-quality
haze-free image can be restored by the atmospheric scattering model. The advantages of
the method are its simplicity and efficiency, but on the other hand, being a statistical
method may not work for some specific images; in the case when the scene objects are
similar to the atmospheric light, these objects will be ignored.

Yeh et al. in [32,33], based on the same idea mentioned above, presented two meth-
ods: pixel-based dark channel prior and pixel-based bright channel prior. They identified
that the three major drawbacks in He’s paper —low accuracy, the computational complex-
ity for big patches, and transmission map refinement—improved with the actual method.
The proposed algorithm follows the next step: the atmospheric light is estimated using
haze density analysis; then, using a bilateral filter, the transmission map is estimated and
refined. The experiments show that the method presented in this paper has better results
in recovering hazy images, achieving better color information and lower run time com-
pared to He’s method ([31]). The performance related to color information makes the out-
put images more natural compared to other methods from the state of the art. The dehaz-
ing results of this method were compared with the ones of the other three methods
([31,34,35]) from a visual quality point of view, being assessed by 10 subjects. The final
score, after analyzing the dehazing results of 50 images, shows that the proposed method
outperforms the others. The authors plan to extend the dehazing method to videos, with
the idea of integrating this algorithm in a driving assistance safety device.

Huang et al. analyzed in [36] He’s work ([31]) and classified the drawbacks of this
method in three categories—halo effects and color distortions in the recovered image plus
insufficient transmission map—and developed a novel method desiring to fix these prob-
lems. The proposed method is based on three modules: depth estimation, color analysis,
and visibility restoration. The experimental results of the actual approach are compared
with He’s approach ([31]), considering four areas: refined transmission results, enhanced
transmission result, results of haze removal, and quantitative evaluation. The analysis
over these four areas proved that the proposed method outperforms other methods, being
an efficient visibility restoration method proper to be applied in different weather condi-
tions in a real environment. A comparison to [31] is done in Table 1.

Table 1. Method result overview.

Advantages to Base

Resul
Solution esults

Method Type of Method/Operations

Addition of two priors
Yeh et al. pixel-based dark channel prior Lower computational
[32] and pixel-based bright channelcomplexity

Outperforms or is com-
parable to the reference

. implementation
prior
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Addition of two priors
Yeh et al.l.pixel-based dark channel prior Lower computational
[33] and the pixel-based bright complexity
channel prior

Outperforms or is com-
parable to the reference
implementation

Does not require the
geometrical infor-

Tan [34] Markov random fields (MRFs) mation of the input
image, nor any user in-

No comparison to ref-
erence made

teractions
Fattal [35] Surface shading model, color Provides transmission No comparison to ref-
atta o .
estimation estimates erence made

Depth estimation module,
color analysis module, and
visibility restoration

Huang et
al.l. [36]

Quality of results in-  Outperforms reference
creased implementation

The authors of [37] present a novel method where simultaneously a single hazy im-
age is dehazed and the sharpness is enhanced. The transmission map algorithm is based
on a fusion of transmission maps: a patch dark channel prior transmission map on one
side and a single-point pixel one on the other side. Afterwards, a Gaussian kernel function
is applied to improve the fusion. The main advantage of this method is its processing
speed, due to the low complexity (linear function of the number of input image pixels)
being adequate for real-time processing applications such as ADAS systems. It is also able
to inhibit halos completely, improving visual quality. Comparing to [16], the method can
provide more detailed information but has lower performance from dehazing point of
view.

Zhang et al. propose in [38] a visibility enhancement method from a single hazy im-
age. Based on the dimension reduction technique, the method uses a filtering approach
(first proposed by Tarel in [39]), composed from a median filter and the truncated singular
value decomposition to estimate atmospheric veil with dark channel prior to restore the
haze-free image. Then, the method was compared with other methods from the state of
the art from visual effects, speed, and objective evaluation criteria points of view. It turned
out that the method is very fast due to the low complexity, but the results for heavy fog
and far objects are not very reliable.

The foggy image enhancement method proposed in [40] follows the next steps: first,
a dark channel computation is applied on the foggy image; then, the transmission ratio is
estimated and adjusted. The atmosphere light is also estimated, while the last step of the
algorithm is the gamma adjustment to get the final deblurred image. The method is com-
pared with [31] from a dehazing performance and speed point of view, being inferior in
the first category, the output images of the proposed method are unnatural but outper-
form in the second category, being twice as fast compared the other method.

One of the basic characteristics of a hazy image is the low contrast; that is why the
main idea of the method proposed in [41] is to restore a hazy image by increasing the
contrast. In addition to the contrast element, Kim et al. took also into consideration the
loss of information in developing this optimized contrast enhancement algorithm valid
for hazy images and video restoration. For static image dehazing, the algorithm consists
of extracting the atmospheric light of an input image and then estimating the block-based
transmission followed by a refinement of the transmission (Figure 4). A big advantage of
the proposed method is that besides the applicability on static images, the algorithm was
extended also for real-time videos by adding the temporal coherence cost and reducing
computation complexity to avoid flickering artifacts, but this is still not possible to be im-
plemented in application with limited computing resources, such as the actual system
from the vehicles.
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Input image

Atmospheric light estimation

The observed color of a captured image in the presence of haze can be modeled, based on the atmospheric optics according [42]:

I(p) =t(p)J(p) + (1 —t(p)A
where:

J(p) = ((J-(p). Jo(p). Ju(p))”
1(p) = (I (p). 1,(p). I (p)))"

denote the original and the observed r; g: b colors at pixel position p,respectively, and
A= ((A, Ay, AT

is the global atmospheric light that represents the ambient light in the atmosphere. Also
t(p) € [0,1]

is the transmission of the reflected light, which is determined by the distance between the scene point and the camera. #(p) is
inversely proportional to the scene depth, and is take

t(p) = e—Pd(p)

The atmospheric light A is weighted by (1-7(p)) and piays a more important roie,if the scene point is farther from the camera.
To estimate the atmospheric light more reliably, they exploit the fact that the variance of pixel values is generally low in hazy
regions, e.g., sky. In addition,they propose a hierarchical searching method based on the quad-tree subdivision.

Block-based transmission estimation

After estimating the atmospheric light A, the restored scene radiance J(p) depends on the selection of the transmission 7. They
attempt to estimate the optimal 7 so that the dehazed block has the maximum contrast. They adopt the MSE (mean squared error)
contrast to quantitatively measure the contrasts of restored blocks The MSE contrast, CMSE, represents the variance of pixel
values [43] They should not only enhance the contrast but also reduce the information loss. To this end, they design the contrast
cost and the information loss cost and then minimize the two cost functions simultaneously.

E= Eranlrm-l + /\LElu.\m

where /L isa weighting parameter that controls the relative importance of the contrast cost and the information loss cost. By
controlling AL the proposed algorithm can strike a balance between the contrast enhancement and the information loss.

}

By using an edge preserving filter, they refine the block-based transmission map, alleviate the blocking artifacts, and enhance the
image details. In this work, they adopt the guided filter [44], which assumes that the filtered transmission is an affine
combination of the guidance image. They employ the shiftable window scheme, instead of the centered window scheme. The
shiftable window scheme hence can reduce the contributions of unreliable transmission values derived from edge regions,
thereby alleviating blurring artifacts.

Transmission refinement

Restoration

After obtaining the pixel-based transmission map, the input image is dehazed as of [45]. Futhermore as of [31] a minimum
transmission value to be greater than 0.1, since a smaller value tends to amplify noise, the restored hazy image often has darker
pixel values than the input image. Thus, a gamma correction to the restored image with an empirically selected gamma of 0.8 is

applied.
1

Output image
Figure 4. Algorithm description and exemplification of results for the static image dehazing algorithm proposed in [31,41-45].
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From the site http://mcl.korea.ac.kr/projects/dehazing/ (accessed on 24 April 2021),
we can find many results of the project (and those in Figure 4), compared with processing
including using other established algorithms. There is also video footage that was pro-
cessed with the algorithm proposed by the authors. However, the effort is calculated, and
for real-time application in the automotive sector, it not yet feasible.

During the experimental results, the method was compared with a few methods from
the state of the art: Ref. [34] generates many saturated pixels by simply increasing the
contrast of the restored image, Ref. [35] does not remove haze from some demanding re-
gions, for instance near the horizon or around some objects, Ref. [32] changes color tones
and produces halo artifacts, while the authors in [31] only considered the darkest pixel
value for dehazing; it removes shadows from pictures. Going further in comparison with
[31], the experiments show that the atmospheric light is estimated better with the pro-
posed method, assures higher quality transmission maps, and truncates all the pixels (not
only the dark ones); the overall results prove the higher dehazing performance of the pro-
posed method.

Having the goal to improve image quality and increase the visibility of photos af-
fected by haze, Ref. [46] proposes a method of recovering a single hazy image. The paper
focuses on the fact that the dark channel prior algorithm tends to underestimate the trans-
mission of bright areas. Therefore, starting from the atmospheric scattering method and
then applying a weighted residual map and offset correction, an appreciable outcome is
achieved. The experimental results demonstrate that image contrast was enhanced after
applying the proposed algorithms, which led to more information being recovered and
image clarity being improved. The combination of offset correction and residual map re-
duces color oversaturation and enhances details in dehazed images. Similar to other
dehazing algorithms using the atmospheric scattering model, the presented method also
suffers from the drawback of color shifting in defogged images.

Real-time processing is a must when discussing traffic safety features or autonomous
driving. Focusing on that, Ref. [47] tackled the fact that dark channel prior has a high
complexity, which makes the algorithm very demanding for real-time processing. The pa-
per presents a Graphics Processing Unit (GPU) accelerated parallel computing method
capable of real-time performances when removing haze from a high-definition video. To
improve the performances, a filter method called a transposed filter combined with the
fast-local minimum filter algorithm and integral image algorithm is used. Experimental
results show that the proposed algorithms can process a 1080p video sequence with 167
frames per second, proving that the solution qualifies for real-time high-definition video
haze removal. The video flicker problem is solved by the inter-frame constraint used to
dynamically adjust the atmospheric light. The method drawback is that it requires extra
hardware such as a GPU device, leading to an increase concerning the cost of production.

When discussing traffic safety features, real-time processing is very important; it be-
ing mandatory in such circumstances is the main subject of the paper [48]. Ngo et al. pro-
vide data about a single image haze removal algorithm and a specific hardware imple-
mentation that is facilitating real-time processing performances. The proposed approach
mainly exploits computationally efficient processing techniques such as multiple-expo-
sure image fusion, adaptive tone remapping, and detail enhancement. Compared to other
state-of-the-art techniques, good performance is obtained by having low computational
complexity. Compact hardware is used to handle high-quality videos at a rate higher than
25 frames per second. All datasets alongside the source code are available online for public
use and could be used as a starting point for an autonomous vehicle.

Single image dehazing has made huge progress in recent years, but the focus was
mainly on daytime. During the nighttime, the process is more challenging; due to multiple
scattering phenomena, most daytime dehazing methods become invalid. The paper [49]
proposes a novel unified nighttime hazy image enhancement framework that approaches
both haze removal and illumination enhancement problems simultaneously. A big plus is
the fact that most current daytime dehazing methods can be incorporated into nighttime
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dehazing tasks based on the proposed framework. The hazy image is decomposed into a
halo layer and a scene layer to remove the influence of multiple scattering. Then, the spa-
tially varying ambient illumination is estimated based on Retinex theory. The result is
obtained by employing the classic daytime dehazing methods to recover the scene radi-
ance and generate the dehazing result by combining the adjusted ambient illumination
and the scene radiance. The framework is tested using various daytime dehazing methods
(classic methods such as He’s dark channel prior), and a comparison from the perfor-
mance point of view is performed proving the value of the work.

After analyzing the approaches from this chapter, we can conclude that the dark
channel approach has some drawbacks, which make it unlikely to be used in the automo-
tive field: dense fog images cannot be dehazed, and for some specific images, the method
cannot apply, such as for example when objects are very close to the atmospheric light.

2.4. Image Segmentation Using Single Input Image

Zhu et al. in [50] present a mean shift-based algorithm, which improves a few issues
of the traditional dehazing methods: where the sky is part of the image such as oversatu-
rated images in [34], the time-consuming and limitation of using the method for gray-
scale images in [35], and problems in handling sky images and computational complexity
for [31,44]. The mean shift-based algorithm is composed of three steps: sky segmentation,
re-refining, and restoring. The algorithm starts by computing the dark channel on the in-
put image; then, on the same input image, a white balance correction is applied to reduce
the influence of the color cast (after dehazing, there is a strong enhancement in saturation).
On the processed image, the dark channel is re-calculated to get the coarse transmission
map, and next, it is refined with guided image filtering (proposed in [44]). Afterwards,
the sky regions are picked out using a shift segmentation algorithm to solve the problem
of underestimation of the transmission. In the last phase guided image, filtering is applied
again to smooth the transmission map, which is then dehazed obtaining the output
dehazed image. From a qualitative point of view, the experiment results show that the
proposed method improves the weaknesses of the approaches from the state of the art
presented above. From a quantitative point of view, the method presented in this paper
has almost the same results from noise production and image quality point of view but
has lower results for dehazing effects in terms of contrast enhancement comparing with
other approaches.

Methods based on the same idea of splitting the sky area from the rest of the image
are presented in [51-53]. The assumption of the authors in [51] was that the sky patches
are not important for the driver, so after applying dark channel on the hazy image, these
sky patches can be masked (using Hough transform and edge detection methods); the
output of this operation is an enhanced image and a decrease of the artifacts along the
edges between the sky and road. In [52], the sky region is first segmented (quad-tree split-
ting and mean-shift algorithm) from the input hazy image, which is followed by a region-
wide medium transmission estimation and refinement of the transmission map using a
guided filter. Zhu et al. in [53] propose an algorithm where the sky region is first detected
through brightness and gradient and then is split by the non-sky area to avoid the noise
and color distortions caused by the sky area.

The algorithms for separating road and sky by region growing suffer from high com-
putational costs and are therefore not optimal for a real-time application on an embedded
system.

2.5. Image Segmentation Using Multiple Input Images

Some methods related to image segmentation (single image dehazing) were already
presented, Refs. [50-53], where the sky was split from the rest of the image to avoid noise
and distortions in the boundary area. In other approaches, this time having multiple input
images, as presented in [54], the moving vehicles are segmented from the outdoor envi-
ronment, even in bad weather conditions such as fog. Such a method requires a large
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number of frames to distinguish between the foreground and background, so the idea
from this paper was to use the motion energy of the moving vehicle to differentiate them
from the changing background. By applying a dynamic adaptive threshold, the false mo-
tion determined by the dynamic background is suppressed, and the computation effi-
ciency is improved, making it feasible to be implemented in real-time applications. In
comparison to other methods from the state of the art, the proposed method proved the
robustness in reducing false motion and detecting moving vehicles in poor visibility con-
ditions. One of the limitations of the proposed method is the case when two vehicles are
very close; the algorithm detects them as being a single object, which is a fact that can be
improved by using post-processing techniques. The method is likely to be used on high-
ways as a static system that notifies the drivers about the visibility range.

Yuan et al. in [55] consider the foggy images being a convolution between the original
image and the degraded function. The proposed method starts with a segmentation of the
input image in blocks, which are then decomposed in background and foreground im-
ages, the latter one with sparse errors due to the movement. The next step is to build the
local transfer function from deconvolution using the blocks with the lowest sparsity, with
the main goal to create the global transfer function used to reconstruct a non-foggy image
by deconvolution of the original image and the global transfer function. The results show
that the proposed method provides clearer scenes with better visibility and more entropy
information compared to other methods. The experiments using this method were per-
formed on traffic images with simple scenes and with a low number of vehicles, it needs
to be tested in a more complex situation to verify if the outputs are still reliable.

The method presented in [56] avoids the split between the background and the fore-
ground of the image due to numerous disadvantages such as a continuous update of the
image background due to changes in luminance, shadow effects, vibration in illuminance,
and vehicle overlapping if these are very close to each other. The proposed method is
based on an adaptive vehicle detection approach where vehicles are directly detected
without involving the background operations. The first step is to normalize the input im-
age by histogram extension (HE) to remove the impact of weather and light effects. After-
wards, the moving objects are dynamically segmented using the gray-level differential
value method, and vehicles are extracted by merging broken objects or by splitting the
incorrectly merged ones. Vehicle tracking, correlating with the existing information, and
updating traffic parameters are the next steps, followed by an error compensation, which
is useful for cases when some targets are missing. Comparing to previous methods, the
processing time decreases, algorithms being applied only in the region of interest, work-
ing well in real time. The experimental results show that the method offers good results
also for traffic jam conditions. The method was tested in different weather conditions
(sunny, rain, sunrise, sunset, cloudy, snowy day), but it still needs to be evaluated in foggy
weather conditions, which is the main area of interest for our research, making the method
attractive for commercial applications.

2.6. Learning-Based Methods

Some very promising methods for visibility enhancement tasks, using a single image
as input, are based on Neural Networks. This is a class from Machine Learning methods
that allow solving complicated nonlinear functions. In the image processing area, Deep
Neural Networks (DNN) are mostly used, which are Artificial Neural Networks (ANN)
with many hidden layers of neurons between the input and output layers.

One of the pioneers in this field is Cerisan in [57], which won the German traffic sign
recognition benchmark, being more precise in identifying objects than the human observ-
ers. In the visibility enhancement area, Hussain presents in [58] a method that has as an
input a foggy image, models the fog function with deep neural networks, and outputs a
fog-free image. The multiple hidden layers are useful in this case, in realizing a more effi-
cient representation of the fog function. The network learns the function through some
examples, basically by using input-output pairs of images. Initially, some random
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weights are used for the DNN, and the input pattern is propagated into the network,
which produces a different output compared to the target. The error function of the net-
work is a sum of the errors generated by every hidden layer; the solution proposed in this
paper to minimize the error is a backpropagation algorithm that sends back into the net-
work the error signal from the output layer; in this way, every node can calculate its own
error introduced during the processing phase, and the nodes can update their input
weights values. This process continues until the error becomes sufficiently small; basi-
cally, the output image generated by the network being acceptable is regarded as the tar-
get image. At this point, the input pattern is presented into the network. The algorithm is
tested only on artificial images, which makes the job simpler as far as for such cases the
patterns from such an image are more regular.

In [59], Singh proposed a method based on a particular case of DNN called Conven-
tional Neural Networks (CNN); the method accepts both forward and backward propa-
gation for error minimization. The CNN is implemented based on two primary layers:
feature extraction and feature mapping. In [60], Cho et al. use a CNN as a classifier for
visibility estimation; the network is trained using CCTV camera images captured in vari-
ous weather conditions. To have a bigger number of images to train the network, the re-
searchers proposed an algorithm that applies several augmentation techniques (rotation,
flip, translate, zoom, region-zoom, etc.), so multiple unique images can be obtained from
a single input image. Feature extraction uses two convolution layers; the first one pro-
duces 32 feature maps, and the second one produces 64 feature maps. The classification
accuracy of the proposed method is about 80%; there is still room for improvement. One
additional drawback is that only daytime images were used in the learning process.

To solve the fact that haze significantly reduces the accuracy of image interpretation,
Ref. [61] proposes a novel unsupervised method to improve image clarity during the day-
time. The method is based on cycle generative adversarial networks called the edge-sharp-
ening cycle-consistent adversarial network (ES-CCGAN). Unlike most of the existing
methods, this approach does not require prior information, since the training data are un-
supervised. The focus of the study was on improving images captured by satellites, but
the principles can be adapted to a vehicle environment. The presented experimental re-
sults prove the fact that the hazy image was recovered successfully and that the color
consistency was excellent. The drawback of such an approach is that the performance de-
pends on the training data, since many remote-sensing images are needed to train the
algorithm.

Ha et al. presents in [62] a new dehazing technique. A residual-based dehazing net-
work model is proposed to overcome the performance limitation in an atmospheric scat-
tering model-based method. The proposed model adopted the gate fusion network that
generates the dehazed results using a residual operator. The divergence between a
dehazed and a clean image is reduced by analyzing the statistical differences via adver-
sarial learning. Experiments were performed, and the results show that the method im-
proves the quality of an image compared to other state-of-the-art approaches on several
metrics. The proposed method was tested only in daytime scenarios, and it showed limi-
tations when dense haze is present. In future works, the authors want to tackle the dense
haze removal topic and to improve the current work.

It seems that learning-based methods are becoming more and more popular since
many studies focused on this approach. The paper [63] proposes an unsupervised atten-
tion-based cycle generative adversarial network to resolve the problem of single-image
dehazing. The novelty of the paper consists of an attention mechanism that can be used
to dehaze different areas based on the previous generative adversarial network dehazing
method. Different degrees of haze concentrations are targeted by this method while the
haze-free areas are not changed. Training-enhanced dark channels were used as attention
maps; in this manner, the advantages of prior algorithms and deep learning were com-
bined. The presented experiments show the value of the work and demonstrate that the
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proposed technique can effectively process high-level hazy images and improve the clar-
ity of the outcome. There are still some drawbacks to this approach, such as the fact that
the dark channel is still erroneous for the area marked with haze. Ideally, the attenuation
map of a haze-free image should be completely black; this is not yet achieved in the cur-
rent work.

Focusing on learning-based solutions, Ref. [64] proposes a technique to recover clear
images from degraded ones. A supervised machine learning-based solution is proposed
to estimate the pixel-wise extinction coefficients of the transmission medium, and a com-
pensation scheme is used to rectify the post-dehazing false enlargement of white objects.
The focus is on a camera-based system being able to process images in real time. The fact
that 4K videos can be processed at 30.7 frames per second in real time is a big gain of the
presented work. Experimental results were performed to prove the superiority of this
method over existing benchmark approaches. The source code and datasets are publicly
available for further research.

During the nighttime, relying on light sources is not feasible because of inconsistent
brightness and the cost of resources, especially when talking about a vehicle. The paper
[65] proposes an autoencoder method to solve the overestimation or underestimation
problem of transmission captured by the traditional prior-based methods. An edge-pre-
serving maximum reflectance prior method is used to remove the color effect of hazy im-
ages. Then, it will serve as input for a self-encoded network to obtain the transmission
map. Moreover, the ambient illumination is estimated through a guiding image filtering.
The experimental results show that the proposed method can effectively suppress the halo
effect and reduce the effectiveness of glow. The proposed method works well in keeping
the edges of the image and suppress the halo effect. The drawbacks are that the color of
the image changes after dehazing and that the estimation accuracy of ambient lighting
and transmission map has a great influence on the quality of haze-free images.

Advanced learning-based methods, using deep learning, prove very good perfor-
mances but for this, it needs a high amount of training images, in varying conditions, to
learn the network; the performances of the network are limited by the amount of trained
data used. Despite their many advantages such as the possibility of implementing differ-
ent methods without many constraints, as it was observed in this chapter, versatility, and
even price, cameras have also many drawbacks: they can be totally or partially blinded by
other traffic participants or by weather conditions, providing erroneous results exactly at
the moment when they are most needed.

3. Fog Detection and Visibility Estimation Methods

In the previous section, we mentioned Hautiére and He as pilots for the field of image
dehazing; now, one of the most relevant works for vision in the atmosphere is the work
of Nayar and Narasimhan [42], which is based on reputed research of Middleton [66] and
McCartney [67].

Most of the approaches for detecting fog and determining its density for visibility
estimation are based on optical power measurements (OPM), but there are also image
processing approaches. The basic principle of the methods from the first category is the
fact that infrared or light pulses emitted in the atmosphere are scattered and absorbed by
the fog particles and molecules, resulting in an attenuation of the optical power. Methods
of detecting the attenuation degree are by measuring the optical power after the light
beam passed a layer of fog (direct transmission) or by measuring the reflected light when
the light beam is backscattered by the fog layer. Figure 5 provides an overview of optical
power measurement methods.
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Figure 5. Optical power measurement methods.

3.1. Basic Theoretical Aspects

This subsection will mathematically describe two main methods from the fog detec-
tion through light scattering category: Rayleight scattering and Mie scattering.

3.1.1. Rayleigh Scattering

Rayleigh scattering is applicable for light scattering where the size of the particles (x)
from the atmosphere is much smaller than the wavelength (A) of the light (x < A/10). The
intensity of the scattered radiation, I, can be defined as the product between the initial
light intensity Io and the Rayleigh scattering term S(A, 0, h):

2 (n?-1)2 p(h) 1
2 N A%

I=1oS(A, 6, h)=Io- (1 + cos20) (6)
where A is the wavelength of the input light, 0 is the scattering angle, h is the position of
the point, n is the refraction index, N is the density of the molecular number of the atmos-
phere, and o is the density level, which is equal to 1 at sea level and decreases exponen-
tially with h.

The Rayleigh scattering equation shows how much light is scattered in a specific di-
rection, but it does not indicate how much energy is scattered overall. For this, it must be
taken into consideration the energy scattered in all directions:

sm(m?-1)% p(h) 1
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B(A, h) = ?)
where (A, h) represents the fraction of energy lost after a collision with a single particle.
This is known as the Rayleigh scattering coefficient or the extinction coefficient.

The initial Equation (4) that described Rayleigh scattering can be rewritten as follows:

SAeh) _ 3
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S(A, 0, h) = B(A, h) y(0) — v(0) =
where the first term (3(A, h) controls the intensity of the scattering while the second one
Y(0) controls the direction of scattering. The last term is not dependent on the input light
wavelength anymore.

Rayleigh scattering is applicable for particles whose size is less than 10% from the
incident radiation wavelength. If the particle size becomes bigger than this value, the Mie
scattering model can be applied to identify the intensity of the scattered light, which is the
sum of an infinite series of terms, not just a simple mathematical expression such as in the
Rayleigh model.

3.1.2. Mie Scattering

According to ISO 13321:2009, the model is applicable for particles under 50 um. Dust,
pollen, smoke, and microscopic water drops that form mist or clouds are common causes
of Mie scattering.
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Comparing to Rayleigh scattering, for Mie scattering, the influence of input light
wavelength is very low; the variation of the intensity is much stronger in the front direc-
tion compared to the rear one, and the difference increases with the particle dimension.

Mie theory is a theory of absorption and scattering of flat electromagnetic waves of
uniform isotropic particles, having simple shapes (sphere, infinite cylinder) that are part
of an infinite, dielectric, uniform, and isotropic environment.

The main scope of the theory is the calculation of efficiency coefficients for absorption
(Qa), scattering (Qs), and extinction (Qe), which are connected through the following for-
mula ([68]):

Qe-Qa+ Qs )

The scattering and extinction coefficients can be represented as infinite series, but for
satisfactory convergence, the series shall not be longer than jmax = x + 4x'?+ 2 (where x =
2mr/A is the diffraction parameter):
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Re is the real part of the complex numbers aj and bj:

; 1/)]"(7711 x)] _ -1 : [wj’(ml x)] il
_ 11’1(1)[ Vi, x) |~ A Y (x). b= MW GG, 0 |~V (12)
o [wi(my x) . 4 o [wi'(my x) . .
00 Gmy|~ma i’ O e R

The two coefficients aj and bj are called the Mie coefficients or the expansion param-
eters; these are expressed in terms of Riccati-Bessel functions Wj (t) and &j (t), which in
their turn are expressed as Bessel functions of unintegrated order:

W (t) = \E Jinn(t); &(t) = \[";t Jian(t) + (C1rTaan(t), i= V=1. (13)

The absorption coefficient Qa is determined based on the other two coefficients Qe
and Qs, using Formula (7).

3.2. Optical Power: Direct Transmission Measurement

The authors in [8] present laboratory measurements where fog is generated in a
chamber and using a laser and an optical receiver, the fog influence (attenuation and ab-
sorption) on the optical laser beam is analyzed. The distance between the transmitter and
the receiver is one meter, the fog environment is assured using a fog generator, the quan-
tity of fog being controlled by the level of liquid used to generate it. In addition to these
measurements, in the same chamber but without fog, the input power of the light source
is varied to find a concordance between input power and different fog levels. The method
is a good starting point to split fog into different categories by analyzing the input power
or the optical output power, and the added value is the way the results are validated using
an optical chart.

A method of estimating fog density based on the free space optical link attenuation,
in real-life conditions this time, is presented in [69] by comparing the optical attenuation
caused by bad weather conditions with the results obtained using standard meteorologi-
cal equipment and with the ones obtained with a camera. The measurements are done in
an area prone to fog, the observatory being at 836 m above sea level. The distance between
the transmitter and the receiver is 60 m, having a simplex optical communication link at
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1550 nm. The results of the optical system are closed to the ones obtained with the profes-
sional sensors. The work continues in [70,71], which present a link between attenuation
caused by fog and visibility (definition from CIE):

B =391/V [km"(-1)], (14)

where (3 is the attenuation, V is visibility, the relation being valid for the wavelength A =
550 nm. Comparison between the above-mentioned optical measurements and other
methods are presented in the next subsection.

3.3. Optical Power: Backscattering Measurement

The authors in [9,72] present a fog sensor that measures the fog density based on the
liquid water content (g/m?) from the atmosphere, which is measured considering the
backscattering principle. The system is composed of an outdoor unit that sends and re-
ceives short infrared pulses. The amplitude and shape of the reflected pulses are analyzed,
this being influenced by the liquid water content from the environment. The presence of
fog is determined by comparing the computed fog density with a predefine threshold.

Using the principle of sending pulses in the medium and then measuring the time it
takes to return, the light detection and ranging (LIDAR) systems [10,11] are able to detect
particles down to a few pg/m?® with a spatial resolution of a few meters. The distance is
calculated by multiplying the speed of light (0.3 m/ns) with the time of flight and then
dividing by two due to the two ways covered by the beam. The LIDAR sends around
150,000 pulses per second, building up a complex map of the surface in front of it. Being
a laser scanner device, it can be used also in other applications, such as weather conditions
detection, which is an opportunity that is presented in [12,73]. It is possible to differentiate
weather conditions from other objects considering the shape of the response that is com-
pared with a predefined set of values. Fog particles, rain drops, and air pollutants have a
flat and extended receiving echo, making them distinguishable from the ones coming back
from a vehicle. In addition, from the shape of the response can be extracted information
related to the absorption degree, having a reliable parameter for visibility estimation. The
parameters that are considered during the evaluation are the reflected signal power and
the backscattering coefficient. This system has a very big advantage because LIDARs are
already installed on commercial vehicles, the data gathered from the LIDAR need only to
be processed and used for this new feature. The validity of the results obtained with such
a system still needs to be validated and confirmed in different weather conditions.

A method to detect precipitation and fog was proposed in [74], using a LIDAR ceil-
ometer that analyzes backscatter data to estimate cloud height and attempting to detect
the weather phenomena through machine learning techniques. Therefore, the backscatter
data obtained from the LIDAR ceilometer is used as an input for the used algorithms. The
precipitation detection shows potential, but unfortunately, the fog detection did not have
promising results. Nevertheless, the paper can be used as a starting point for future re-
search.

3.4. Image Processing: Global Feature Image-Based Analysis

Some other approaches for fog detection are using image processing methods, such
as analyzing the global features of the input images. For example, [75] analyzes the power
spectrum to detect fog conditions, which is the squared magnitude of the Fourier trans-
form of the image, containing information about the frequencies in the image without
considering any spatial information. To extract the features, first, a Han window is applied
to avoid broadband components along the axis, followed by FFT. Before the classification,
to get an accurate one, a two-step feature reduction is performed. Building these features,
images can be classified afterwards as non-foggy and foggy images; for the latter category,
the split can be done for different levels of fog (low fog, fog, dense fog). For fog scenes,
the frequency components are concentrated near-zero frequency, while for non-fog
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scenes, there are much more high-frequency components. The results obtained after the
experiments (image classification into different categories of fog) show an overall accu-
racy of 94% from the total number of tested images (44,000 images) in daytime conditions.
During the experiments, all the road profiles were not covered, only three categories were
considered: no fog, low fog, and dense fog. Another weakness of the method is that it can
work only if the horizontal line is visible in the image; if other objects or vehicles surround
the visibility, the results are erroneous. The last remark is that the method can be applied
only in daytime conditions, which is a drawback that was improved in [76] where the
method was extended for night conditions, the detection rate was improved (95.35% in
daytime conditions and more than 99% for night conditions), and the method is more
robust to variations. The method provides wrong results in detecting clear weather when
high contrast appears in the image, which is understood as fog (e.g., oncoming vehicle,
overtaking trucks, passing bridges, etc.).

The authors of [77] present an ADAS fog detection approach with high robustness to
illumination changes by taking care of the frequency distribution (noise results in high
frequencies) of the image blocks affected by fog (instead of analyzing the spatial domain);
the computational costs are low comparing with methods from Section 2.2, and the goal
of the authors is to achieve real-time requirements, which are essential for such a system.
This method assumes that fog, being composed of fine water particles, diffuses light
beams, which from an image processing point of view means that the edges of a foggy
image are not as sharp as the ones of a non-hazy image, and visibility is reduced. The
method starts with the calculation of the vanishing point from the input image; then, the
power spectrum slope is calculated for the blocks around the vanishing point. By classi-
fying (using naive Bayes classifier) the power spectrum slope parameters, a decrease in
the visibility range is obtained (Figure 6). After analyzing more than 1100 images (around
15% natural images and the rest synthetic scenes), the detection rate for images affected
by fog is more than 95% for small PSS (Power Spectrum Slope) blocks and decreases if the
PSS block size is increased.

Power
spectrum slope calculation
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spectrum
computation
Sobel edge detector ¢
Cut
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Figure 6. Flowchart of the fog detection algorithm proposed in [77].

The tests were done in different light conditions, which is a very important aspect
when we refer to a visibility detection system. On the other side, the algorithm was not
tested in complex traffic situations, such as a crowded road with vehicles that can block
the camera view, curves, or bridges. The algorithm, in this state, cannot be integrated into
an ADAS system as far as it does not offer any other information besides that there is a
foggy environment. Such a system shall inform the driver about the visibility distance,
maybe about the speed that needs to be adapted considering the weather conditions, etc.

Asery et al. in [78] classify the hazy images based on their optical characteristics; the
Gray Level Co-occurrence Matrix (GLCM) features are extracted after the RGB input im-
age is split into three gray images. The three parameters considered to be the most im-
portant from GLCM are contrast, correlation, and homogeneity; these are used as classifi-
cation parameters for support vector machine classifier. These three parameters are suit-
able for both synthetic images (accuracy of 97%) as well as natural images (accuracy of
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85%). The results are better for synthetic images because the background remains the same
for foggy and non-foggy images, which is a fact that is not valid in real life. The proposed
method is compared with [79] for natural images, outperforming from an accuracy point
of view.

In [80], Alami et al. considered only two parameters for fog detection: saturation and
correlation. The selection of these parameters is based on the fog characteristics, color at-
tenuation, and an increase in the white color. Fog detection is realized in two steps: first,
the focus is on the vanishing point, which is detected with an edge-based algorithm; then,
the straight lines, characterizing road objects such as borders, lane marking, etc., are de-
tected using Hough Transform, the candidates’ vanishing points being the intersection
points of the straight lines. In the second step, fog is detected by selecting a region centered
at the vanishing point where the correlation and the saturation between the RGB channels
is calculated for every pixel. For a foggy image, the region around the vanishing point is
characterized by null saturation and high correlation. The method was tested only by syn-
thetic images, so it still needs to be confirmed on natural images.

The backscattering method, for fog detection and visibility estimation, was used also
in the image processing field, not only for optical power measurements. Gallen et al. pa-
tented a method ([81]) for visibility estimation based on fog detection in night conditions,
which was further published in [82]. Fog is detected by analyzing the backscattering veil
or halo that forms around a light source (e.g., headlamps, public lighting). The analysis
was done empirically, by comparing a foggy image with a reference one with known vis-
ibility distance (and fog density). The authors agreed that this is not the most reliable so-
lution, which is why for the future they plan to analyze the halo characteristics for detect-
ing the fog.

The authors in [79] propose a histogram evaluation method; Zhang et al. present a
comparison between image processing methods for visibility estimation by analyzing the
input images’ features. There are seven histogram-based methods analyzed: Color and
Edge Directivity Descriptor (CEDD), Edge Histogram Descriptor (EHD), Fuzzy Color and
Texture Histogram (FCTH), Fuzzy Opponent Histogram (FOH), Joint Histogram De-
scriptor (JHD), Scalable Color Descriptor (SCD), and Simple Color Histogram (SCH). Sup-
port Vector Machines (SVMs) were used for classification, by employing Radial Basis
Function (RBF) kernel and the Grid Search method for parameter optimization. The ex-
periments used 321 images from three weather observation stations, which were captured
with six cameras. During the evaluation, images were split into three categories—no fog,
light fog, and heavy fog —and the methods’ classification is done by evaluating the accu-
racy of each of them by placing the images in the right category. The results show that
JHD has the best performances followed by FCTH.

Neuronal Network methods are also used for fog detection not only in image en-
hancement. Some very novel methods in classifying images by analyzing their global fea-
tures are based on Deep Neural Networks (DNN). Based on the backpropagation algo-
rithm for minimizing the error, Pagani et al. present in [83] a two 5-layers neural network
trained using an image captured by traffic camera spread around the Netherlands, with
the main goal of identifying different categories of fog in the image. The authors propose
a pre-processing phase before applying the DNN to unify the images from different cam-
eras by reducing their dimensions to 28 x 28 pixels and by blurring them to avoid the
presence of some specific pixels (e.g., specific information provided by a camera such as
data, hour, location, etc.) that can be learned by the network. The set of features extracted
are used as predictors to identify the fog density. After training the network using the
H20 library, the method was used on some images obtained from traffic cameras, but the
results were not satisfactory; the error rate was quite high. However, the development of
the system is ongoing; the authors are planning to improve it by using additional training
datasets with higher variety (day/night, different weather conditions, etc.).

Li et al. proposed in [84] a two CNN-based approach where the first CNN is used for
visibility feature extraction, and based on these features, a generalized regression neural
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network (GRNN) is applied for intelligent visibility evaluation (approximating the func-
tion of visibility). The GRNN is a four-layer network, containing an input, a radial, a lin-
ear, and an output layer. For weather evaluation, only parts of the input image are used,
the context and the image size used for the analysis influencing the accuracy of visibility
prediction. The outputs of the method are not reliable at this point; the predicted accuracy
is around 60%, the model being also influenced by the low amount of training datasets
used to learn the network.

In [85], Chabaani et al. present a visibility range estimation method under a foggy
environment. The method is proper to be part of a static system installed on highways or
express roads, and it uses a single foggy image as input. The system has to differentiate
the images in classes, starting from no fog to dense fog images. The authors proposed a
three-layer neural network as a classifier, which was trained using a backpropagation al-
gorithm. The network is learned using labeled examples and focuses more on global im-
ages’ features. The input layer represents the image features descriptor while the output
layer represents the visibility range classes. Compared to the previous method ([83]), the
actual method does not need a pre-processing phase, camera calibration, or information
related to the distances in the depth map, being somehow generic for different types of
images.

Five well-known dehazing algorithms (dark channel prior (DCP) [31], Tarel method
[18], Meng method [86], DehazeNet method [87], and Berman method [88]) were com-
pared [89]. Two images under different levels of fog were used for testing alongside their
corresponding fog-free original image (captured in the visible and near-infrared). More
details regarding the test images are provided in the “Spectral Image Database” section
of the paper. From the quality measurement side, different commonly used metrics were
selected from different categories (full-reference metrics, reduced-reference metrics, no-
reference metrics). Among the used metrics are e Descriptor (the metric refers to the
amount of new visible edges that were produced after dehazing [90,91], a higher e De-
scriptor value means better quality), Gray Mean Gradient (GMG, the metric refers to tex-
ture characteristics of the image [91,92], a higher GMG value means more visible edges),
Standard Deviation (Std, the metric refers to the contrast of the image, a higher value
means better quality), Entropy (a higher value mans a greater amount of information is
contained by the image), Peak Signal to Noise Ratio (PSNR, compares two images, a
higher value means that the images are more similar) and Structural Similarity Index
Measure (SSIM, this metric refers to image quality from a human perception [93], the
closer the value is to 1, the more similar the images are). Table 2 provides an overview of
the comparison of these methods.

Table 2. Dehazing algorithms comparison from a metrics point of view. Medium haze conditions
are considered. The table presents the ranking (from 1 to 5) Data from the table are extracted from
[89].

. Algorithm Dark C.hannel Tarel Meng Dehaze Berman
Metric Prior Net

e Descriptor 2 5 1 4 3
Gray Mean Gradient 1 4 2 5 3
Standard Deviation 1 5 4 3 2
Entropy 1 5 4 2 3
Peak Signal to Noise Ratio 5 3 2 1 4
Structural Similarity Index Measure 5 2 4 1 3

As presented in Table 2, the dark channel prior method excels when discussing edges
visibility and contrast but lacks in similarities to the haze-free image, while DehazeNet
and Tarel methods are on the opposite side. Berman and Meng methods provide a good
average and all the metrics, performing well on most of the topics.
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Apart from an objective classification from the metrics point of view, two surveys on
126 participants were conducted. In the first one, the subjects were asked to compare the
haze-free images and the dehazed images. In the second one, the participants were asked
to judge the dehazed images and the increase of the visibility of objects without taking
into consideration the haze-free image. The results are presented in Table 3.

Table 3. Dehazing algorithms comparison from human subjects’ point of view. Medium haze con-
ditions are considered. The table presents the ranking (from 1 to 5). Data from the table are ex-
tracted from [89].

Algorithm Dark C.hannel Tarel Meng Dehaze Berman
Survey Prior Net
Similarity to haze-free image 4 5 1 2 3
Increase in visibility of the objects 2 5 3 4 1

The human subjects consider that the Meng method produces the best results when
discussing similarities to the original images, and the Berman method produces the best
results when judging the increase in visibility of the objects presented in the image.

The results do not reveal a method that is the best in every aspect, but when using a
dehazing algorithm, it is important to establish what metrics are of interest and based on
that, a technique can be selected.

Visibility estimation methods are considered by our research team suitable for prac-
tical use to increase the safety of transport of any kind (road, maritime, airports), together
with adequate maintenance of the road infrastructure (traffic management systems, mark-
ings, signaling, road, vehicles).

3.5. Visible Light Communications

Visible light communications (VLC) is a wireless technology suitable for data trans-
mission using LEDs. This technology shows great potential for indoor applications, and
now, it is proposed to be used in an intelligent transport system for vehicle-to-vehicle
communications. Table 4 provides an overview of VLC patterns and potential applica-
tions. From the VLC perspective, diverse elements from traffic can be analyzed: infrastruc-
ture (traffic lights, traffic signs), vehicles in a junction (Head to Head communication,
Head to Tail communication, Tail to Head communication, Left side communication,
Right side communication), or parked vehicles (Tail to Tail communication, intelligent
parking slots, parking spots that are on the side of the road). All of these situations can
create events when a vehicle is starting to move, pedestrians also shall be taken into con-
sideration. Some of these situations are taken into consideration in [94].

Table 4. Overview of VLC patterns and potential applications.

Possible Events That Shall Be Analyzed from VLC

Traffi Traffi
rattie . ra '1c Perspective and the Influence of Weather Factors
Elements Situations .
(Rain, Fog, Smog, Snow)
Accidents Unexpected, produce traffic jams by blocking road

lanes

. . Poorly marked, can contain obstacles that reduce the
Road junctions

visibility
Infrastructure Faulty functioning, intermittent functioning, not func
ulty functioning, i i unctioning, unc-
Traffic lights . -ty & &
tioning
L. Not functioning, there can be obstacles that reduce visi-
Traffic signs bilit
Yy

Head to Head Faulty signaling
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Head to Tail/ Safety distance is not kept, headlights or rear lights are
Tail to Head  not working

Can contain obstacles (such as vegetation) that reduce
Vehicles in a Left side the visibility, traffic rules are not respected because
junction blinkers are not used

Can contain obstacles (such as vegetation) that reduce
Right side  the visibility, traffic rules are not respected because
blinkers are not used

Moving backwards, sometimes simultaneously with

Parking slots
& other cars

Parked Roadside

vehicles parking Leaving the parking spot

Stationary = In forbidden areas, no warning lights, near junctions or
vehicles crosswalks

Jaywalking  Areas with low visibility and no warnings lights
Pedestrians . . Areas with high traffic load, getting out of the car with-
Exiting vehicle . .
out ensuring that there are safe circumstances

As stated, applications for V-VLC include intersection assistance, emergency break-
ing, intersection coordination, or parking assistance, all these applications having real
benefits in the context of an intelligent transport system.

The paper [95] presents an experimental approach to analyze the effects of the fog
phenomenon on optical camera-based visible light communications (VLC) in the context
of an intelligent transport system. The authors used a real LED-based taillight and camera
inside a fog chamber to simulate outdoor foggy weather conditions. A wide range of me-
teorological visibilities (5-120 m) is considered, several scenarios being tested (e.g., differ-
ent values for modulation index of the signal). The obtained results show that the link is
reliable up to 20 m meteorological visibility for a modulation index (MI) of 0.5. The results
were better for a MI of 1, where the data transmission was reliable up to 10 m meteoro-
logical visibility.

Tian et al. present the effects of weather on Maritime VLC and how sea fog can di-
rectly affect signal transmission. As stated, the paper [96] focuses on sea fog and maritime
communication, but the presented knowledge can be used in Vehicular VLC, too. To ad-
dress the issue, the authors, provide a scattering spectrum analysis of fog sea particles and
the attenuation of Maritime VLC. Taking into consideration the spectral data extracted
from the LED, the spectral change of wide-spectrum LED at sea at a given distance is
highlighted.

Wireless connectivity in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
is considered a worthy candidate in the development of an intelligent transport system
(ITS). Therefore, its capabilities in an outdoor environment, affected by rainy and foggy
weather conditions, are analyzed by the paper [97]. The V2V link is considered as a func-
tion of distance under specified weather conditions. This expression is used to determine
the maximum communication distance that can guarantee a certain error rate. The results
are presented in Table 5.

Table 5. Maximum achievable distance for a reliable transmission for different weather types, BER
(bit error rate) = 10 and V (visibility). The table was constructed using data from [97].

Pulse Amplitude Maximum Achievable Distance for a Reliable Transmission

Modulation Size Clear Rain Fog, V=50 m Fog, V=10m
2-PAM 7221 69.13 52.85 26.93
8-PAM 53.23  50.98 39.17 19.98

32-PAM 38.73 37.11 28.71 14.66
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Table 5 shows that the maximum achievable distance is obtained for clear weather
by 2-PAM (Pulse Amplitude Modulation) (72.21 m). As expected, the value is reduced by
weather conditions to 69.13 m for rainy weather, 52.85 m for foggy weather with visibility
V =50 m, and 26.93 m for foggy weather with visibility V = 10 m. Another observable fact
is that with the modulation size increase, the maximum distance for reliable transmission
is reduced. The presented results only capture the direct transmission. The authors also
focused on multi-hop transmission and proved that deploying a single relay would in-
crease significantly the transmission range (from 26.93 to 51.15 m for foggy weather with
visibility V =10 m). Therefore, increasing the number of relays will lead to a better trans-
mission range. The paper provides a very good overview of the capabilities of V-VLC that
can be used to check if such a data transmission method is suitable for a certain project.

Digital cameras have become more and more powerful and efficient; therefore, they
can be used for more than the usual scope of photography or video. A new communica-
tion technique using optical cameras as receivers has been studied in IEEE 802.15 SG7a
and is receiving more and more attention in the research field. Optical Camera Commu-
nication (OCC) capabilities in outdoor usage feasibility have been analyzed in the paper
[98] using a laboratory setup for the experiments. The work focused on observing how the
signal quality is affected by fog and proposed a strategy using amplifiers to overcome the
issues and to decrease the noise resulting in better performances for an OCC system.

As the paper [94] stated, the future of transportation systems is to focus on infor-
mation exchange between vehicles and between vehicles and infrastructure. Cooperative
driving can be the foundation stone of a better transportation system ensuring higher lev-
els of traffic safety and comfort. Apart from traffic efficiency, the Intelligent Transporta-
tion Systems (ITS) will contribute to the goal of achieving autonomous driving. The pre-
sented work highlights the fact that VLC is a mature technology for indoor usage, having
the potential to be used in outdoor environments in the scope of vehicle-to-vehicle com-
munication. In the survey paper, the authors identified and addressed the open issues and
challenges of Vehicular VLC presented in state-of-the-art papers. Such work is very useful
for both beginners and experts in the field, providing a detailed view on the V-VLC topic.

4. Sensors and Systems for Fog Detection and Visibility Enhancement

Nowadays, vehicles are equipped with plenty of cameras and sensors desired for
some specific functionalities that might be used also for fog detection and visibility im-
provements. For example, Tesla Model S has only for the autopilot functionality 8 sur-
round cameras, 12 ultrasonic sensors, and forward-facing radar with enhanced processing
capabilities.

4.1. Principles and Methods

ADAS functions are core technologies for actual intelligent vehicles. Applications
such as lane marking detection systems or traffic sign recognition [99,100], forward colli-
sion warning systems, light detection and ranging, cameras integrated with radars or li-
dars [10-12] —all can be linked to getting useful information that can be further used for
visibility detection in fog conditions.

The paper [101] presented a study on how a foggy weather environment can influ-
ence the accuracy of machine vision obstacle detection in the context of assisted driving.
A foggy day imaging model is described, and the image characteristics are analyzed. The
object detection capabilities of machine vision are tested by simulating four types of
weather conditions: clear, light fog, medium fog, heavy fog. The study helps in quantify-
ing the effect of fog on machine vision, showing the impact of bad weather conditions on
the detection results of assisted driving. Such a study is very helpful to understand how
fog can affect an autonomous vehicle or other safety features based on cameras. On the
same topic, we can mention [102], where the performances of vision-based safety-related
sensors (SRS) are analyzed. The fog was created in a special chamber, and experiments
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were conducted to determine how the environment is affecting the safety functions. Ob-
ject recognition tests were conducted using vision-based SRS at low visibility, proposing
a method to verify the functional safety of service robots that are using vision-based
safety-related sensors. Such work can be extended to test the safety systems presented on
a vehicle in foggy conditions.

4.2. Onboard Sensors and Systems

Gallen et al. present in [103] a model of reducing the risk of accidents in bad weather
conditions due to reducing visibility or friction by computing the advisory speed. This
feature can be added to an ADAS system to monitor the speed limit. More than that, dif-
ferent profiles such as emergency breaking, speed profiles based on-road characteristics,
etc,, are calculated, which together with the vehicle and driver-related parameters
(driver’s reaction time, pressure needed to press brake pedal) can be integrated into a sin-
gle system able to deal with different weather conditions. The model can be further im-
proved by adding other profiles, different driver behavior, and extending to nighttime
conditions to assure a complete interaction between driver, car, infrastructure, and envi-
ronmental conditions.

In [12], Danheim et al. understood the opportunity of using data from different sen-
sors already existing on commercial vehicles but used for other functionalities today, and
they described a system for automatic weather conditions recognition composed from a
camera and LIDAR. The data from the camera and LIDAR are gathered and intercon-
nected, using a fusion model, to assist the control systems for autonomous driving. For a
camera, fog detection has used the approach presented by Pavlic et al. in [75], but the
authors think that using just a camera is too risky for autonomous driving, as we con-
cluded at the end of Section 2. The LIDAR, which works on laser technology, can eliminate
most of the gaps of the camera approach. It uses the backscattering method, a laser beam
is emitted in the atmosphere and comes back to the LIDAR by reflection; in this way, we
can calculate the distance to the nearest object. Fog has the effect of an atmospheric veil,
and the power of the reflected signal and the backscatter coefficient have been analyzed
to determine its presence and then its density. Local weather can be detected near the car,
based on some predefined models for every type of reflected signal (ground, fog, rain,
snow, etc.), which is information that can be shared with other traffic participants, trans-
forming the vehicle into a reliable weather source. The research continues in [73] where
besides fog, air pollution (smog) is detected, which is very useful for big, crowded cities.
The detection, realized with the camera, is based on the luminance absorption, reflection,
refraction, or scatter of light particles, measurably, due to the molecules and particles from
the air. Pollutants cause different levels of absorption, scattering, and reflection in the
color spectrum comparing to clean air; that is why analyzing the RGB color channel his-
togram (Haar wavelet) can provide information related to the degree and type of pollu-
tion. LIDAR detection is made, similar to that described above, based on the characteris-
tics of the impulse response—flat and extended for air pollutants, fog, or rain. This last
partis very important for the future green eco-driving, which will be the trend for the next
few years. Due to the high pollution caused by transportation in the last years, one of the
major goals for the automotive industry is to reduce the COz emissions but also the energy
consumption, considering that in 2015, this sector accounted for more than 25% of the
global energy, and there is an expected increase of 1.1% every year until 2040 [104]. The
first measure to decrease this negative phenomenon was taken by the public authorities;
most of the European big cities will not allow the use of diesel vehicles inside the cities
starting with 2020.

A radar-based approach is presented in [105], where the scattering and absorption of
the millimeter-wave are analyzed; facts are impacted by wavelength, temperature, and
particle proprieties. To derive a model for radar reflectivity and then to mathematically
link it to visibility, drop size distribution is considered, based on a modified gamma dis-
tribution, which is the approach used also in [71]. The drop size distribution parameters
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allow detecting different fog types and their variation. During the experiments, radar re-
flectivity is measured by using a 35 GHz cloud radar, visibility with Biral SWS-100 (a vis-
ibility sensor with a measurement resolution of 10 m and accuracy of 10%) is able to meas-
ure ranges from 10 m to 75 km. The results obtained with the two devices presented above
are compared with computed ones based on drop size distribution and information ex-
tracted from a Forward Scattering Spectrometer Probe that measured the number of par-
ticles from the atmosphere and their size (detected values are between 3 and 46.5 pum).
The first measurements prove the relationship between the radar reflectivity and the vis-
ibility, the results overlap in different fog moments, some differences appear most due to
the device’s limitations—the cloud radar being sensitive to much smaller fog particles
compared to FSSP. In this way, a radar-based visibility estimator is developed based on
the reflectivity—visibility link, but more data are needed to validate the system.

In degraded visual environments such as fog, the detection of other traffic partici-
pants suffers. The paper [106] focuses on a LIDAR target echo signal recognition technol-
ogy that is based on a multi-distance measurement and deep learning to detect obstacles.
There are 2D spectrograms obtained by using the frequency-distance relation divided
from 1D echo signals that the LIDAR sensor is providing. The images are analyzed by the
proposed algorithms to perform object recognition. Simulation and laboratory experi-
ments were performed to demonstrate the fact that LIDAR detection in bad weather con-
ditions was improved. The experiments performed using a smoke machine to simulate
fog show potential in the proposed method (Figure 7), but practical application problems
are still to be considered.

Another paper based on laser and LIDAR measurements for visibility distance esti-
mation is presented in [107]. The authors used an experimental laboratory setup (Figure
7) to test and analyze different methods (in similar and repeatable conditions), and the
results are compared with the ones obtained from human observers (in the same fog con-
ditions). To determine a mathematical relationship between the laser beam attenuation
and the particles’ characteristics, the fog particles were analyzed using a microscope. The
last experiment presents a comparison between a LIDAR and a telemeter, proving that
the first one can be used in estimating fog conditions. Based on all these results, the au-
thors proposed a collaborative system that gathers data from different sensors and offers
more reliable results related to the visibility distance in adverse weather conditions.

Figure 7. Experimental laboratory setup proposed in [107].

Using the setup from Figure 7, the authors realized experiments to estimate visibility
distance under fog conditions using laser and LIDAR pieces of equipment. The results of
technical measurements performed with those devices were validated by the response of
human subjects to the visibility in the same conditions. This type of setup can be used to
test any other device in fog conditions, for example, a camera used for image processing.
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4.3. External Sensors and Systems

A static system proper to be installed on highways to detect the visibility range in fog
conditions and to calculate the adequate speed is presented in [108]. The system is com-
posed of a laser and a camera that monitors the length of the beam. In foggy conditions,
the laser beam is dissipated, resulting in a shorter trace captured with the camera. Using
this information, the visibility range is estimated, and the proper speed is recommended
to be able to stop the car in safe conditions. Furthermore, these measurements can be dis-
played on the highway’s display panels or sent as a notification to the drivers. The meas-
urements and results are the output of laboratory experiments; the system needs to be
tested in outdoor conditions to be sure about the validity of the results. A drawback of
this system is the high cost: the actual highway infrastructure is not enough to implement
this solution; additional devices such as laser and cameras need to be installed.

On the same idea of detecting fog on highways using a static system and warning the
drivers, a wireless sensor network is presented in [109] (Table 6). The system consists of
wireless sensor terminals, local controller stations, and remote stations. The wireless sen-
sor terminal has the role of a router for relaying signal and includes visibility sensors,
building a network of wireless sensors. The external communication between the local
station and remote station is realized via 3G modules and satellite modules as a backup
solution to guarantee network reliability. Each node gathers information about tempera-
ture, humidity, and visibility, and based on these three parameters, the system makes de-
cisions related to the density of the fog. Variable message signs and fog sensors need to
be installed at every km to inform the driver about the local weather and the recom-
mended speed, which means very high costs. The results presented in the paper are only
preliminary ones, which prove that the process flow is working (data acquisition, trans-
mission, and processing) but there are no results in different weather conditions (no fog,
fog, dense fog) presented in the paper to prove the functionality of the system.

Table 6. Fog detection and warning system setup presented in [109].

Equipment Components Communication Link  Roles and Functions
Visibility Sensor/Fog Collects data from the
Sensor Sensor Wireless sensor  environment and sends
Terminal Wireless Sensor Network network them to the local
Terminal controller station
Processes information
Local
from the detector and
Controller .
. alerts when pre-defined
Station 3G module
. thresholds are reached
Satellite module -
Remote Informs drivers about the
. 3G and Satellite links visibility conditions in a
Station

specific area

A method of estimating fog density based on the free space optical link attenuation
is presented in [69] and continued in [70] by using standard meteorological equipment.
Brazda et al. present a visibility meter composed of a camera and black and white targets
used to measure the contrast. Fog is causing a darkening of the white objects and lighting
of the black ones, resulting in a decrease in contrast. The method is based on the visibility
definition that says that: “Visibility is a distance x, where the contrast ratio between the
apparent contrast measured at a distance x and the intrinsic contrast of the target
decreases with 2%”; this statement is considered in the equation:

V = In(0.02)/In(C(x)/C0) x x, (15)
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where V is the visibility, x is the distance between the camera and the target, C(x) is the
apparent contrast measured at distance x, and CO0 is the intrinsic contrast of the target. The
actual contrast is calculated here using the luminance of the black and white targets, being
a ratio between their difference and their sum, afterwards calculating the visibility. The
results are compared with the ones obtained from official meteorological equipment
composed of two visibility sensors (PWD), an optical transmitter, and an optical receiver
to measure the attenuation of the optical link on two different channels (CH1 1550 nm and
CH2 830 nm). The black and white camera is installed next to the receiver, while the black
and white targets (1 x 1 m dimension) are placed next to the transmitter. The distance
between them is 60 m. During the experiments, in non-foggy conditions, the contrast
between the black and white part of the target was C0 = 0.6. In a foggy environment, the
camera measured a visibility distance of 83 m, and the contrast decreases, C(x) = 0.0349,
which are results that prove the initial statement, the ratio between apparent and intrinsic
contrast being 0.058, which is more than 0.02 than when the fog was assumed to appear.
The results show a high correlation between the results obtained with the camera and the
ones based on optical attenuation, the system being able to identify even quick changes in
visibility (fog density). Comparing with the professional PWD visibility sensors, the
presented system can measure visibility along a path rather than only at a fixed point, but
it is also cheaper. The drawback of the system is that it cannot be used in night conditions.

Another method for fog detection was proposed by Brazda et al. in [71]; using the
same setup presented above, they consider the drop size distribution (DSD) of fog, which
was estimated using a modified gamma distribution with three parameters a, b and aa—
determined based on liquid water content, particle surface area, and visibility
(characterized by attenuation). The values for the three DSD parameters, according to
ITU-R, are a=0.027, b=0.3, and o = 3 for a visibility V = 150 m, which is considered as
heavy fog and a = 607.5, b = 3, and a = 6 for a visibility V = 450 m, which is meant as
moderate fog. The Particle Volume Monitor PVM-100 measures two moments of DSD:
liquid water content and particle surface area. The third parameter of fog, visibility, is
determined by measuring the attenuation of the optical link after passing through the fog,
using an optical transmitter and receiver. The method is tested in real conditions in a fog-
prone area. The results show a large variation of all three parameters, a and a reaching
values even out of the expected range. The mean square error is in almost 20% of the cases
higher than 0.2. All these reasons led the authors to not recommend an estimation of some
typical DSD.

The fog sensor presented in [9,72] measures data about the fog density, temperature,
and humidity. The main parameter is the liquid water content (g/m”3), with it being
estimated the fog density from the atmosphere by measuring the attenuation of the light
beam in fog conditions. The system is composed of an outdoor unit that sends and receives
short infrared pulses, the reflected pulses being influenced by the liquid water content
from the environment. The measured data are transferred to an internal unit connected to
a PC to be processed. The results are plotted in MATLAB, and fog is determined by
applying a threshold on these values. The presented system is not a stand-alone one, the
analysis is not done in real time, and the data stored, plotted, evaluated, and conclusions
are taken offline. In [110], the system was improved, the setup being many sensors that
send information to a central unit and then store it in a database. In addition to liquid
water content, humidity, and temperature, a lot of other parameters are monitored and
compared with some pre-defined thresholds to identify overflows, in such cases where
the system notifies of the problem. All these evaluations are done automatically by the
proposed system, in contrast to the methods presented above. The main parameter is the
liquid water content; based on it, the visibility is determined as follows:

V = 0.024(LWC)"(-0.65) [m]. (16)
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As future work, the authors plan to combine liquid water content with optical power
measurements to get more reliable outputs and to validate the results having two different
approaches.

In [111], the authors present a system that measures the size of the fog particle based
on the laser diffraction method. The particles were illuminated using a visible laser beam
(632 nm and 405 nm) and observed by a digital camera. The growth of the water droplets
in fog measured with the presented system was compared with the numerical calculation
of the clouds” water droplets growth, both being exponential functions and growth time
being higher for thin fog. The results after the experiments show that the radius of the fog
particle varies with the time:

r=3.4 x eN(t/510), (17)

in the case of a water droplet with a mass density of 68 mg/L. The values of the radius,
considering the time from 0 to 510 (growth time constant vale of thick fog) seconds
presented in the paper, vary from 3.4 to 9.24 um. The results of the numeric calculation
present a radius of the water particle of:

r=12.1 x e(t/1000), (18)

at a mass density of 7 mg/L, 1000 being the growth time constant value of thin fog. For
this interval 0-1000 s, the particle size can vary from 12 to 32.61 pm. In addition to the
formulas listed above, there are no other elements and results that sustain the author’s
statements, the paper being very poor from an experiments and results point of view. The
method still has to be proved with some labor or even real-life experiments in foggy
conditions.

Motion detection under non-ideal weather conditions can increase road safety and
be used to avoid dangers. The paper [112] proposes an alternative technique to Gaussian-
based background modeling to detect and segment moving vehicles. The paper’s goals
are achieved using a dynamically adaptive threshold using the full-search sum of absolute
difference (FSSAD) algorithm. Therefore, a moving vehicle can be differentiated from a
dynamic background.

The paper [113] proposes a method to detect traffic objects in bad weather based on
a dual input region-based convolutional neural network. The input consists of infrared
and visible images for object detection focusing on thermal and visible proprieties. A
traffic surveillance system can be used to send data to a car in a smart city or a smart
highway context. The presented method can be used alongside the on-board systems to
obtain better performances in detecting traffic objects.

Remaining on static systems, information about weather and the visual condition is
needed in the context of traffic safety topics; therefore, a framework to automatically
extract data from street-level images is presented by [114]. Deep learning and computer
vision are used alongside a unified method that has no pre-defined constraints. Four deep
convolutional neural network models, called WeatherNet, are trained to extract weather
and visual conditions such as dawn/dusk, day and night, time detection, glare, clear,
rainy, snowy, or foggy weather. The framework can have input images or a video stream
and shows great performance in extracting valuable information. The novelty of the
proposed work consists in its simplicity for practical applications and the fact that there
are no pre-defined constraints. WeatherNet can be integrated into smart cities to facilitate
autonomous driving or various traffic safety features.

To estimate traffic visibility in nighttime conditions, [115] proposes a Traffic
Sensibility Visibility Estimation (TSVE) algorithm that uses laser transmission and image
processing. The image processing does not need a reference to the corresponding fog-free
images and camera calibration. All the data are collected via static roadside equipment
that is analyzed locally or remotely. The current atmospheric transmissivity is calculated
based on the laser atmospheric transmission theory. The captured images are analyzed
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using two image processing algorithms, dark channel prior and image brightness contrast.
Performed experiments show that the estimation errors are reduced by such a technique.

Even if it is a difficult task, fog detection from satellite data is approached by [116].
Information from a Meteostat second-generation Spinning-Enhanced Visible and Infrared
Imager over the United Arab Emirates was used for the study. An adaptive threshold-
based technique using pseudo-emissivity values was implemented to detect nocturnal
fog. The methods used reduced the number of false alarms in the fog classification. Such
a system can be used just as a support for transport systems.

Fog forecasting and detection are very important when discussing the safety of
transportation.  Using GEO-KOMPSAT-2A/Advanced  Meteorological = Imager
(GK2A/AMI) alongside auxiliary data, a decision tree fog detection algorithm is proposed
by [117]. The goal of the study is to reduce damage caused by fog through real-time fog
detection using a high-resolution geostationary satellite. The methods were developed
over multiple versions and take into consideration the time of the day (day/dawn/night)
and the location (land/sea/coast). Experiments were performed to check if the proposed
technique can distinguish fog from low clouds. The performances were always better on
land than on the coast and at night than at day (at any location).

5. Reaction of Human Subjects

After presenting different methods and systems for visibility enhancement and fog
detection plus visibility distance estimation, there remain a few questions: Are these
methods and measurements useful for a human being, and how applicable are they in real
life? This is from our point of view a big challenge, to build a robust and reliable system
for visibility measurement. On the other side, if we refer to the autonomous vehicle, the
question will be how they will identify traffic signs or different traffic signaling in bad
weather conditions, or which is the visibility limit enacted by these vehicles.

A very interesting experiment related to the influence of luminance and contrast in
visual perception is presented in [118]. According to the state-of-the-art studies, humans’
responses to looming are driven by an OFF-mechanism more than an ON-mechanism,
which means that humans react better to dark objects seen against a light background
than to light objects seen against a dark background. The experiments comprised four
stimuli variants, two disk sizes, three presentation times, three extrapolations times, and
three conditions of feedback, having in total 216 trials, each repeated twice. During the
first experiment (12 participants), only the lightness of the looming object was varied,
while for the second experiment (15 participants), both the lightness of the looming object
and that of the background were varied. The conclusion after these experiments is that
human responses are not affected by changes in lightness and contrast. Indeed, the
performance is influence by different regimes of feedback; the reaction time increased
when humans receive feedback. This means that the feedback obtained from a system in
foggy conditions can be very useful for a driver; having a faster reaction time means that
collisions can be avoided. During the experiments, we tested only one level of luminance
and one level of contrast; it is necessary to test the system for different levels but also for
real-life complex scenarios to prove the reliability of the results.

Considering the driver’s reaction time, which is a parameter also analyzed in the
previous method, Tarel et al. in [30] want to prove the usability of a Head-up Display
inside the vehicle, which was used to dehaze the images and allow the driver to see behind
the fog. The results presented in this work are only the ones obtained in the laboratory,
the applicability still needs to be proved in real conditions.

In [70], the method already tackled in Section 4.2 is presented in a system where
optical power measurement was combined with contrast variation. The results presented
there (see Section 4.2) confirm the theory that the decrease, in contrast, is the main fog
effect on visual perception. The authors in [8] present a system that approaches the link
between light intensity decrease and visibility decrease in fog conditions. First, they create
a concordance between the input power of the light sources (led and laser —most used on
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modern vehicles) and the output optical power. The input power of the light sources is
varied in no fog condition and the output power is measured using an optical receiver;
then, the input power is kept constant while the fog is introduced in the setup. All this
time, the optical power being monitored. In this way, the fog was split into different
categories (low fog, normal fog, and dense fog). For the second step, a camera and an eye
chart are introduced in the setup, and different levels of fog are generated. The authors
assume that fog can have the same effect as eye diseases, and the authors propose an
analogy between different levels of fog and acuity decrease by reading the optotypes from
the eye chart using a camera and extracting them with an OCR algorithm. So, after the
system gets the data related to optical power from the light assessor, it indicates the fog
level, which further is converted in visibility distance. The work continues in [119], where
the authors present a more complex laboratory setup with which most of the methods
from the state of the art can be tested. Afterwards, it will be necessary to confirm these
results in real conditions, on highways, and in complex scenarios inside the cities.

A relationship between radar reflectivity and visibility is proposed in [105]. The
reflectivity was measured with a 35 GHz cloud radar and visibility with sensors. The
results obtained after these measurements are compared with the ones obtained from a
Forward Scattering Spectrometer Probe that gives information related to drop size
distribution used also to extract radar reflectivity and visibility. The link between the
visibility and the reflectivity (attenuation) is correlated in:

V =~(In(e)/Bext), (19)

where V is the visibility, € is the threshold of contrast (normally equal to 0.5), and ext is
the extinction coefficient.

6. Conclusions

This paper presented methods and systems from the scientific literature related to
fog detection and visibility enhancement in foggy conditions that appeared over the past
ten years. In the next period, the main focus of the automotive companies will be the
development of autonomous vehicles, and visibility requirements in bad weather
conditions will be of high importance. The actual methods from the state of the art are
based on image processing, optical power measurements, or based on different sensors,
some of them already available on actual commercial vehicles but used for different
functionalities. The image processing methods are based on cameras, which are devices
that have a lot of advantages such as freedom of implementing different algorithms,
versatility, or costs, but on the other hand, the results obtained from such a system can be
erroneous due to blindness caused by other traffic participants, environment, or weather.
Methods based on image processing can be applied for low fog conditions; if fog becomes
denser, the system is not able to give any valid output. Some methods presented in the
literature work only in day conditions, making them unusable for automotive
applications that require systems able to offer reliable results in real time and complex
scenarios 24 h/day.

Focusing on the fact that images are degraded in foggy or hazy conditions, the
degradation depends on the distance, the density of the atmospheric particles, and the
wavelength. The authors in [89] tested multiple single image dehazing algorithms and
performed an evaluation based on two strategies: one based on the analysis of state-of-
the-art metrics and the other one based on psychophysical experiments. The results of the
study suggest that the higher the wavelength within the visible range, the higher the
quality of the dehazed images. The methods tested during the experiments were dark
channel prior [31], Tarel method [18], Meng method [86], DehazeNet method [87], and
Berman method [88]. The presented work emphasizes the fact that there is no method that
is superior to every single metric; therefore, the best algorithm would vary according to
the selected metric. The results of the subjective analysis revealed the fact that the
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observers preferred the output of the Berman algorithm. The main conclusion is that it is
very important to set the correct expectations that will lead to a selection of some metrics
and then, based on that, a dehazing algorithm can be preferred.

Systems based on optical power measurement, by direct transmission or
backscattering, improve some of the drawbacks described above for cameras: the result is
not influenced by day or night conditions, can measure also very dense fog, and the
computational complexity is lower comparing to the previous category, making them
more sensitive to very quick changes in the environment, which is important in real-time
applications. The results obtained using such systems can be also erroneous, due to
environmental conditions (bridges, road curves) or traffic participants; that is why our
conclusion after gathering all these methods and systems in a single paper is that at least
two different systems shall be interconnected to validate the results of each other.

One big challenge, from our point of view, for the next years in this field is to prove
that the results obtained from the systems presented above are valid for a human being.
The validity of the results is a relevant topic also for autonomous vehicles that need to
identity the road, objects, other vehicles, and traffic signs in bad weather conditions, and
the automotive companies shall define the visibility limit for these vehicles.

The evaluation of the state-of-the-art methods is presented in Table 7.

Table 7. Evaluation of the state-of-the-art methods.

Evaluation Criteria

Methods Computation Availability ' Day/Night Real- Result . Linkto
. . Processing . e . Reliable  Visual
Complexity on Vehicles Use Time Use Distribution
Speed Accuracy
Koschmieder’s law Medium/Hig  Partial . Daytime Local for 1 No (not
Medium Yes for all Yes
[22-30] h (camera) only user .
inputs)
Dark channel prior Partial Daytime Local for 1 No (not
i
P High Medium Y Yes for all Yes
[31-48] (camera) only user .
inputs)
Dark channel prior .
integrated in SIDE High Partial Medium Both Yes Local for1 Yes Yes
(camera) user
(49]
Image
se%gmeITtatlon' using High Partial Low Daytime No Local for 1 No Yes
single input image (camera) only user
[50-53]
Image
Imag.e segmen.tatlo.n using . Partial . Daytime Ye.s Local for No (not
dehazing  multiple input High Medium (notify ~ many users  for all Yes
. (camera) only . .
images drivers) (highways)  cases)
[54-56]
D d
Learning-based Partial Davtime Local for ;}:i}r:e s
methods I High (camera) Medium oyl No many users training No
amera nly . rainin,
57-60 high
[ ] (highways) data
D
Learning-based Davtime sgig:s
i
methods II High No Medium Y No Large area . Yes
[61] only training
data
. Depends
Learning-based . .
Partial Dayt Local for 1 th
methods III High M Medium 0 ¢ No ocationd - ONTNE T yes
[62,63] (camera) only user training

data
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. Partial Depends
Learning-based (camera + Daytime Local for 1 on the
methods IV High High Y Yes .. Yes
64] extra only user training
hardware) data
D d
Learning-based Partial Local for 1 (frlj i}r‘:e i
methods V High High Both Yes . Yes
(camera) user training
[65]
data
Direct transmission Local for No
measurement Low No High Both Yes many users Yes (still need
[8,69-71] (highways) to prove)
Backscattering No
Partial Local for 1
Fog measurement [ Low (LIEE:R) High Both Yes 1:;1 c:ser(s)r Yes (still need
detection  [9-12,72,73] y to prove)
and Backscattering Local for 1 or
visibility = measurement II Medium No Medium Both Yes No Yes
N many users
estimation [74]
Global feature
1mage-ba.sed Medium Partial Low Both No Local for 1 No Yes
analysis (camera) user
[75-85]
Partial
C LIDAR Local for 1
amera + High (High-end High Both Yes OCarIor Lot yes Yes
[12] . many users
vehicles)
D d
Learning based Partial Local for 1 epi}r: s
methods + LIDAR High artia Medium Both Yes ocattor OIT . N Yes
(LIDAR) user training
[106]
data
No (need
Partial to be
Rad Local for 1
acar Medium  (High-end High Both Yes ocatior - or prove in Yes
[80] . many users
vehicles) complex
scenarios)
Highway static No Local (can be No
system (laser) Medium (static Medium Both Yes extend to a Yes (still need
[108] system) larger area) to prove)
Motion detection No Local for 1 or No
static system Medium (static Medium Day Yes (notforall  Yes
Sensors and many users
Svstems [112] system) cases)
4 Depends
Camera based No Local for1or on the
static system High (static Medium Both Yes . Yes
[113-115] system) many users training
Y data
Satellite-based (saijlcl)ite
system I High Medium Night Yes Large area Yes Yes
based
[116]
system)
Satellite-based (saglcl'ite
system II High Medium Both Yes Large area Yes Yes
based
[117]
system)
No
Wireless sensor No (not tested
network High (static Medium Both Yes Large area  in real No
[109] system) conditions

)
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No
Visibility Meter . Local for  (not tested
. . Day time )
(camera) Medium - Medium onl No many users  in real No
[69,70] y (highways) conditions
)
Fogriier;sor iI;WC, N Local for No
pa _C 'e S u ace Medium © Medium Both - many users (error rate No
visibility) (PVM-100) .
(highways)  ~20%)
[71]
Fog sensor
(density, Local for
temperature, Medium No Low Both No many users No No
humidity) (highways)
[9,72]
R
ize—
High (High-end High y No many users No No
camera) vehicles) only (highways)
[107,110] ghway

Based on the evaluation criteria listed in the table above (Table 7), we can conclude
that a system able to determine and improve visibility in a foggy environment shall
include a camera and a device able to make optical measurements in the atmosphere. Both
categories have their drawbacks, but putting them together, most of the gaps can be
covered; every subsystem can work as a backup and can validate the result offered by the
other one. An example can be a system composed of a camera and a LIDAR such as in
[12]; both systems are already available on nowadays high-end vehicles, offering reliable
results, in real-time, 24 h/day. The results obtained from a vehicle can be shared with other
traffic participants from that area, in this way creating a network of systems. The direction
of improvement for such a system would be to increase the detection range for LIDARs
and to use infrared cameras that can offer reliable results in night conditions and to
validate the results obtained from the LIDAR.

This synthesis can be a starting point for developing a reliable system for fog
detection and visibility improvement, by presenting the weaknesses of the methods from
the state of the art (the referenced articles have more than 30,000 citations in Google
Scholar), which can lead to some new ideas of improving them. Additionally, we
described ways of interconnecting these systems to get more robust and reliable results.

7. Observations and Future Research

The present review focuses on existing solutions that reduce or avoid unfortunate
traffic events caused by meteorological phenomena such as fog that drastically reduce
visibility. Of high importance are the visibility distance estimation and traffic conditions
(the condition of the tires, existing infrastructure, signaling systems, braking systems,
etc.). Once the visibility distance is estimated, technical conditions that assure a safe
movement of vehicles can be established, taking into consideration the external conditions
mentioned above. These will lead to speed adjustment, guarantee a certain response time
that is necessary to take decisions by the vehicle’s control systems, and alert the other
traffic participants.

As presented in our work, no method exceeds all the metrics when discussing
visibility enhancement and fog detection based on image processing. Some methods
perform by increasing the contrast of the image, others by increasing the visibility of the
edges, while others perform by restoring the image. Therefore, it is clear that using only
one camera-based method is not enough to assure the reliability of a safety system
installed on a vehicle. The solution could be to use a suite of image processing methods
and take from each one only the strong points. Such a system can be considered for future
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work; in the literature, there are no papers that tried to use multiple algorithms and
combine them. Of course, the feasibility of such a system is questionable from different
points of view such as computational power, response time, costs, complexity, etc.
Another neglected aspect in the literature is combining a camera-based method with other
technologies such as Visible Light Communications, LIDAR-based systems, or other
infrastructure elements.

In future works, the focus shall be on collaborative systems ([107]) having multiple
elements from each field mentioned in our work. First, the external elements placed on
the side of the road (smart highways) will estimate the visibility distance and transmit it
to the vehicles alongside other data such as traffic volume on the road. Second, internal
systems will be designated for object detection, obstacle avoidance, automatic braking,
etc. Third, vehicle-to-vehicle and vehicle-to-infrastructure communication shall be
integrated (Visible Light Communications). In addition to those systems, satellite-based
communication can be used to inform traffic participants regarding the meteorological
conditions in large areas (associated with GPS information). The area of using different
methods to combat bad weather conditions and increase traffic safety through distance
estimation, object detection, vehicle-to-vehicle communication, vehicle-to-infrastructure
communication, or image enhancement is still uncharted, and it could represent a field
that brings many improvements in the future of safe driving.

The proposed solutions will be in close connection with autonomous vehicles. Due
to the dynamics of manifestation, the main challenges for autonomous driving can be
separated into two categories. The first category is represented by methods of detecting a
vehicle that implies vehicles of different shapes, sizes, or colors, the context in which the
vehicle is placed, the surroundings, or other objects that are in the vicinity of the vehicle.
On this topic, real-time functionality is of utmost importance, meaning that the vehicle
speed can impose limits on the processing speed of used algorithms. A system designed
for vehicle detection shall be a robust and reliable one that can cope with situations in
which vehicles are moving not only on clear weather but also on heavy rain, fog, snow,
etc. The second category is represented by methods of detecting pedestrians and animals.
There are different shapes, colors, heights, sizes, and positions that have to be taken into
consideration under weather variable conditions. The dynamic situations have to be
analyzed and interpreted by the system, therefore imposing a certain response time and
robustness to counter unexpected elements.

The question of safety is a crucial factor in the deployment of autonomous vehicles;
from a vehicle sensorics point of view, these are the most advanced types of vehicles, as
the information necessary for such a vehicle is greatly increased. For now, these solutions
have nowhere near peaked their technological potential considering there is still a risk of
accidents caused by misinterpretations of the road conditions, thus leading to a reduced
level of authorization in most jurisdictions. Unfortunately, the current literature does not
feature a study about incidents caused by autonomous vehicles and what might be the
root cause, in correlation to the technical equipment of vehicles.

A key element in the validation of the results is a collaborative approach with vehicle
manufacturers and the relevant authorities (police, trafficadministration, weather centers,
vehicle testing, and homologation institutes) as real-world data are essential for any
production deployment of such solutions but also in realizing a statistical study of the
benefits in deploying the solutions presented.

The authors consider that future research, methods, and technologies shall be
oriented toward developing and manufacturing reliable platforms (hardware and
software) that comply with existing regulations for example, but not limited to AEC
(Automotive Electronics Council), which includes stress and functional safety standards
such as AEC-Q100 “Failure Mechanism Based Stress Test Qualification For Integrated
Circuits”; AEC-Q101 “Failure Mechanism Based Stress Test Qualification For Discrete
Semiconductors”; AEC-Q200 “Stress Test Qualification For Passive Components” and
15026262 (“Road vehicles—Functional safety”). Succeeding the identification of stress
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and traffic safety conditions, different design technologies for reliability and fault
tolerance must be adopted to obtain a valuable product. A combination of the presented
methods together with selection criteria based on the functional scenario would be the
most suitable approach for such a task.
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