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Abstract: Automatizing the identification of human brain stimuli during head movements could
lead towards a significant step forward for human computer interaction (HCI), with important
applications for severely impaired people and for robotics. In this paper, a neural network-based
identification technique is presented to recognize, by EEG signals, the participant’s head yaw rotations
when they are subjected to visual stimulus. The goal is to identify an input-output function between
the brain electrical activity and the head movement triggered by switching on/off a light on the
participant’s left/right hand side. This identification process is based on “Levenberg–Marquardt”
backpropagation algorithm. The results obtained on ten participants, spanning more than two
hours of experiments, show the ability of the proposed approach in identifying the brain electrical
stimulus associate with head turning. A first analysis is computed to the EEG signals associated to
each experiment for each participant. The accuracy of prediction is demonstrated by a significant
correlation between training and test trials of the same file, which, in the best case, reaches value
r = 0.98 with MSE = 0.02. In a second analysis, the input output function trained on the EEG signals
of one participant is tested on the EEG signals by other participants. In this case, the low correlation
coefficient values demonstrated that the classifier performances decreases when it is trained and
tested on different subjects.

Keywords: brain-computer interface; system identification; feedforward neural networks; brain
electrical activity

1. Introduction

In human computer interaction (HCI), design and application of brain–computer
interfaces (BCIs) are among the main challenging research activities. BCI technologies aim
at converting human mental activities into electrical brain signals, producing a control
command feedback to external devices such as robot systems [1]. Recently, scientific
literature has shown specific interest in cognitive human reactions’ identification, caused
by a specific environment perception or an adaptive HCI [2]. Reviews on BCI and HCI can
be found in Mühl et al. [3] and Tan and Nijholt [4].

The essential stages for a BCI application consist of a signal acquisition of the brain
activities, on the preprocessing and feature extraction, classification, and feedback.

The brain signals acquisition may be realized by different devices such as Electroen-
cephalography (EEG), Magnetoencephalography (MEG), Electrocorticography (ECoG), or
functional near infrared spectroscopy (fNIRS) [5]. The preprocessing consists of cleaning
the input data from noises (called artifacts), while the extraction feature phase deals with
selecting, from the input signals, the most relevant features required to discriminate the
data according to the specific classification [6]. The classification is the central element
of the BCI and it refers to the identification of the correct translation algorithm, which
converts the extracting signals features into control commands for the devices according to
the user’s intention.
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From the signals acquisition viewpoint, the EEG represents the most used technique;
although it is non-invasive, cheap, and portable, it assures a good spatial and temporal
resolution [7]. As stated in the literature [8], however, the acquisition of EEG signals
through hair remains a critical issue.

Electroencephalography (EEG)-based biometric recognition systems have been used
in a large range of clinical and research applications [9] such as interpreting humans’
emotional states [10], monitoring participants’ alertness or fatigue [11], checking memory
workload [12], evaluating participants’ fear when subjected to unpredictable acoustic or
visual external stimuli [13], or diagnosing generic brain disorders [14].

Significant literature concerning EEG signal analysis versus visual-motor tasks is avail-
able. Perspectives are particularly relevant in rehabilitation engineering. A pertinent recent
example of EEG analysis application in robotics and rehabilitation engineering is provided
in Randazzo et al. [15], where the authors tested on nine participants how an exoskeleton,
coupled with a BCI, can elicit EEG brain patterns typical of natural hand motions.

Apart from this, cognitive activities related to motor movements have been observed
in EEG following both actually executed and imagined actions [16,17]. Comparing neural
signals provided by actual or imaginary movements, most papers concluded that the brain
activities are similar [18]. In literature, a significant correlation between head movements
and visual stimuli has been proven [19].

In order to realize an EEG-based BCI, adopting a classifier to interpret EEG-signals
and implement a control system is necessary. In fact, according to the recorded EEG pattern
and the classification phase, EEG may be used as input for the control interface in order
to command external devices. As demonstrated in literature, the quality of the classifier,
which has to extract the meaningful data from the brain signals, represents the crucial point
to obtain a robust BCI [20].

The well-known techniques used for EEG signals classification in motor-imagery
BCI applications are support vector machine (SVM), linear discriminant analysis (LDA),
multi-layer perceptron (MLP), and random forest (RF) or convolutional neural network
(CNN) classifiers. In Narayan [21], SVM obtained better performances with 98.8% clas-
sification accuracy in respect to LDA and MLP for left-hand and right-hand movements
recognition. In their research, the authors demonstrated the superiority of the CNN in
respect to LDA and RF for the classification of different fine hand movements [22]. In
Antoniou et al. [23], the RF algorithm outperformed compared to K-NN, MLP, and SVM
in the classification of eye movements used in a EEG-based control system for driving an
electromechanical wheelchair. In Zero et al. [24], a time delay neural network (TDNN)
classification model has been implemented to classify the human’s EEG signals when the
driver has to rotate the steering wheel to perform a right or a left turn during a driving
task in a simulated environment.

More in general, almost 25% of recent classification algorithms for neural cortical
recording were based on Artificial Neural Networks (ANNs) [25], as they have been
intensively applied to EEG classification [26]. An interesting application is presented
in Craig and Nguyen [27], where the authors proposed an ANN classifier for mental
command with the purpose of enhancing the control of a head-movement controlled power
wheelchair for patients with chronic spinal cord injury. The authors obtained an average
accuracy rate of 82.4%, but they also noticed that the classifier applied to a new subject
performed worse than expected and that the customization of the classifier by an adaptive
training technique increased the quality of prediction. Besides, researchers used ANNs for
motor imagery classification of hand [28] or foot movements [29], as well as eye blinking
detection [30]. In Lotte et al. [31], a review on classification algorithms for EEG-based
BCI appears.

This paper focuses on an original objective in the context of EEG signals classifiers in
respect to the literature related to body movements. Even if this work adopts a traditional
ANN classifier, the scope of the application represents the main novelty due to the fact that
we explore the recognition of the yaw head rotations directed toward a light target by EEG
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brain activities to support the driving of tasks in different applications, such as to control
autonomous vehicle or wheelchair or robot in general.

In detail, this work is about “using brain electrical activities to recognize head move-
ments in human subjects.” Input data are EEG signals collected from a set of 10 participants.
Left or right head position as responses to external visual stimulus represent the output
data for the experiments. The main purpose of the proposed approach is defining and
verifying the BCI system effectiveness in identifying an input-output function between
EEG and head different positions. Section 2 introduces BCI architecture used for experi-
ments, while Section 3 shows results coming from different training and testing scenarios.
Section 4 briefly reports the conclusions.

2. Materials and Methods
2.1. System Architecture

The architecture of the system used for the experiments consists of two interacting sub-
systems: (1) a basic lamp system in charge of generating visual stimuli, and (2) an Enobio®

EEG systems cap by Neuroelectrics (Cambridge, MA, USA) for EEG signal acquisition. The
two subsystems can communicate with a PC server through a serial port and a Bluetooth
connector, respectively.

2.1.1. Lamp System

The lamp system’s main components are a Raspberry pi 3-control unit (Cambridge,
UK) and two LED lamps. The PC server hosts a Python application, which randomly sends
an input to the Raspberry unit by the serial cable. The Raspberry unit hosts another Python
application, which receives commands to switch on/off the lamps. Figure 1 shows the
system architecture.
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Figure 1. System architecture.

The two lamps are positioned at the extreme sides of a table (size: 1.3 × 0.6 m),
allowing a typical head rotation (yaw angle) over a −45◦/45◦ range. Figure 2 shows a top
vision of the experimental set environment.
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Figure 2. Top vision of the layout of the experimental set environment.

2.1.2. EEG Enobio Cap

The sensors connected to this cap can monitor EEG signals at 500 Hz frequency. The
Enobio cap works on eight different channels. In order to decrease the artifacts due to
muscular activity, the EEG system is equipped with two additional electrodes to apply a
differential filtering to the EEG signals. These two electrodes are positioned in a hairless
area in the head (usually behind the ears by the neck). In the proposed experiments,
we focus on three channels labeled O1, O2, and CZ, according to International Standard
System 10/20. The first two are positioned in the occipital lobe; the other in the parietal one
(Figure 3). The reason for this choice is that the signals coming from the occipital lobe are
commonly associated with visual processing [32], while the signals coming from the parietal
lobe are related to body movement activities. In addition, a good correlation between
occipital centroparietal areas improves visual motor performance identification [33].
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Figure 3. EEG Enobio Cap.

Positioning electrodes on the head plays a fundamental role in the quality of the data
acquisition. For example, using gel may improve the quality of EEG signal. However, the
main target of this work is verifying EEG monitoring’s feasibility in working conditions, in
order to avoid every possible, although limited, action on the workers. For this reason, no
gel was used in the sensors positioning phase.
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2.2. Simulation Description

During data acquisition, the participant sits in front of the table and wears the EEG
Enobio cap, assisted by the operator who checks the electrodes position. Each participant is
expected to move his/her head left or right towards the lamp, which is randomly switched
on by the Raspberry unit. The lamp stays on for a variable period of time (between six
and nine seconds). After turning off, the lamp stays inactive for five seconds. The test
participant is expected to move his or her head back to the starting position following the
lamp turning off.

2.3. Data Processing and Analysis
2.3.1. Pre-Processing Data

During EEG monitoring, the presence of artifacts and noise in the acquired data
was one of the main problems we had to face. Exogenous and endogenous noises can
significantly affect reliability of the acquired data. Concerning artifacts, several types
have been described in literature [34], among others, such as ocular, muscle, cardiac, and
extrinsic artifacts.

In order to limit artifacts, we worked as follows:

• Muscle artifacts were intrinsically limited in the EEG signal acquisition system thanks
to the two differential electrodes embodied in Enobio Cap.

• Extrinsic artifacts were limited by proper signal filtering and normalizing EEG signals.
Specifically, we applied a bandpass filtering between 49 and 51 Hz in order to eliminate
the noise given by the electrical frequencies [35].

• In addition, in order to remove linear trends, a high pass filter—cutting frequencies
lower than 1 Hz—filtered the overall signal.

The resulting signals, whose unit of measure is µV, have been amplified to a factor
105, and limited between 1 and −1. The reason is to enhance the precision of the following
signal analysis. The head positions were classified as follows: −1 for left position, 1 for
right, and 0 for forward. The participants were asked to move the head in a normal speed
avoiding sudden movements. Thus, transition from one position to the other (e.g., left
to forward) was linearly smoothed using a moving average computed on a window of
300 samples (i.e., for a duration of 0.6 s).

2.3.2. Input Output Data Analysis

The testing goal is to find a direct input-output function that is able to relate a certain
number of EEG samples to the related value of the head position. This is challenging
since, as stated in literature, time variance [36] and sensibility to different participants’
reactions [37] are well known obstacles.

Specifically, the goal is to identify a non-linear input-output function, which takes
10 consecutive EEG samples, extracted from O1, O2, and Cz, (hereinafter defined as x(t),
which is a 3-component vector sampled at instant t), and the value of the head position in
the sample just following the EEG samples (hereinafter defined as y(t)).

A non-linear function f between input x(t) and output y(t) must be identified so that
the values ỹ(t) resulting by Equation (1):

ỹ(t) = f (x(t− 1), x(t− 2), . . . x(t− 10)) (1)

minimize the minimum squared error (MSE) between y(t) and ỹ(t) values, where MSE
computed on one prediction is given by:

MSE =
∑n

t=1(y(t)− ỹ(t))2

n
(2)
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To keep predictions less sensible to the input noise, the predicted values ỹ(t) are
averaged on a moving mean of 300 preceding samples, which is:

y(t) =
∑299

t̂=0 ỹ
(
t− t̂

)
300

(3)

Results related to the identification reliability of the function f are evaluated against
two key performance indexes, MSE and Pearson correlation coefficient r, as reported below:

MSE(y, y) = ∑n
t=1(y(t)− y(t))2

n
(4)

r(y, y) =
cov(y, y)

σyσy
(5)

where:

• σy and σy are the standard deviations of y and y;
• cov(y, y) is the covariance of y and y.

An ANN with 10 neurons in the hidden layer identified the non-linear input-output
function. The identification process is based on Levenberg–Marquardt backpropagation
algorithm [38,39] Matlab® software version R2020 b (Natick, MA, USA). The training
processes got a solution after an average of 87 steps (about 45 s) on a common Dell laptop
Intel i5-3360M CPU, 2.8 GHz, 8 GB (Austin, TX, USA).

3. Results
3.1. Data Set

The trials involved 10 participants: one woman (P1) and nine men (P2–P10), aged 25
to 60, with no known history of neurological abnormalities.

All participants, but P5, are right-handed. P2 and P4 are hairless. For two participants,
namely P1 and P2, 10 different experiments were recorded; for P10, 2 experiments were
recorded while for the others, namely P3–P9, only one experiment was recorded. All tests
were 5 min long. Table 1 shows the main files characteristics.

Table 1. The files used to identify the function f .

Part. ID File ID Duration Time (s) Start Time Head Position Occurrence
(Left L, Forward F, Right R)

P1 F1 328 0 L 14.2%, F 59.5%, R 26.3%

P1 F2 310 51 d L 28.9%, F 60.7%, R 10.5%

P1 F3 319 51 d L 18.0%, F 59.9%, R 22.1%

P1 F4 336 54 d L 12.0%, F 60.3%, R 27.7%

P1 F5 335 54 d L 11.9%, F 60.3%, R 27.8%

P1 F6 328 54 d L 18.5%, F 60.9%, R 20.6%

P1 F7 306 100 d L 17.9%, F 61.5%, R 20.6%

P1 F8 307 100 d L 20.2%, F 59.6%, R 20.2%

P1 F9 328 100 d L 16.7%, F 59.9%, R 23.4%

P1 F10 305 100 d L 22.8%, F 61.1%, R 16.1%

P2 F1 341 0 L 21.6%, F 60.7%, R 17.7%

P2 F2 321 68 d L 19.1%, F 59.8%, R 21.2%

P2 F3 325 68 d L 12.7%, F 60.3%, R 27.1%
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Table 1. Cont.

Part. ID File ID Duration Time (s) Start Time Head Position Occurrence
(Left L, Forward F, Right R)

P2 F4 354 68 d L 22.9%, F 61.7%, R 15.4%

P2 F5 384 68 d L 17.5%, F 61.3%, R 21.2%

P2 F6 304 85 d L 11.0%, F 60.4%, R 28.6%

P2 F7 314 85 d L 17.0%, F 59.5%, R 23.5%

P2 F8 312 85 d L 30.5%, F 60.9%, R 8.7%

P2 F9 316 85 d L 23.3%, F 62.0%, R 14.7%

P2 F10 316 85 d L 17.0%, F 60.1%, R 22.9%

P3 F1 314 0 L 19.1%, F 59.6%, R 21.3%

P4 F1 300 0 L 25.9%, F 59.3%, R 14.8%

P5 F1 399 0 L 16.8%, F 60.0%, R 23.2%

P6 F1 308 0 L 11.0%, F 60.7%, R 28.4%

P7 F1 356 0 L 23.0%, F 61.7%, R 15.8%

P8 F1 304 0 L 25.5%, F 61.7%, R 12.8%

P9 F1 366 0 L 19.7%, F 60.4%, R 19.9%

P10 F1 377 0 L 24.8%, F 59.6%, R 15.6%

P10 F2 339 1 h L 22.1%, F 59.9%, R 18.0%

From left to right, the columns show: participant ID; file ID; the number of samples in
each file; time elapsed from participant’s first trial; occurrences percentage related to the
three coded head positions (1 R (right), 0 F (forward), and −1 L (left)).

Out of the example, Figure 4 shows P4F1 trend in the three EEG channels versus head
movement output signals, filtered and normalized as described in Section 2.3.1.
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3.2. First Analysis. Identification of the Function f on the First Half File and Verification on the
Second Half

Each file was divided into two equals parts; we named the first “training set,” and the
second “test set.” The training sets always include samples related to the three possible
positions (R, F, L). The results on the testing set can be further classified according to r
value ranges reported in Table 2 [40].
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Table 2. Threshold values to evaluate correlation performance.

r Correlation Performance

0.50 ≤ r ≤ 1 strong

0.30 ≤ r < 0.50 moderate

r < 0.30 Weak

Table 3 shows the performance indexes on the testing set. In 29 files, only two (P1F8
and P1F10) show a moderate correlation; the others show a strong one instead.

Table 3. Prediction performances by the first analysis.

Participant ID File ID MSE r

P1 F1 0.12 0.86

P1 F2 0.20 0.80

P1 F3 0.32 0.78

P1 F4 0.14 0.84

P1 F5 0.26 0.78

P1 F6 0.21 0.71

P1 F7 0.30 0.61

P1 F8 0.37 0.48

P1 F9 0.42 0.79

P1 F10 0.38 0.38

P2 F1 0.31 0.71

P2 F2 0.19 0.86

P2 F3 0.12 0.88

P2 F4 0.16 0.86

P2 F5 0.16 0.82

P2 F6 0.29 0.82

P2 F7 0.30 0.78

P2 F8 0.28 0.57

P2 F9 0.27 0.76

P2 F10 0.35 0.87

P3 F1 0.31 0.82

P4 F1 0.02 0.98

P5 F1 0.13 0.91

P6 F1 0.37 0.59

P7 F1 0.35 0.66

P8 F1 0.33 0.76

P9 F1 0.33 0.78

P10 F1 0.18 0.89

P10 F2 0.32 0.93

Tables 4 and 5 report r and MSE values produced by extracting the functions from
the 10 different tests on P1 (rows) and applying them to each test for the same subject
(columns). Tables 6 and 7 report the same data produced from P2 tests.



Sensors 2021, 21, 3345 9 of 14

Table 4. r Values (P1).

r F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
F1 0.90 −0.18 −0.21 −0.73 −0.39 −0.74 0.40 −0.17 −0.35 −0.15
F2 −0.23 0.78 0.59 −0.79 −0.70 −0.78 −0.32 −0.21 −0.42 −0.47
F3 −0.33 0.52 0.71 −0.8 −0.65 −0.81 −0.19 −0.35 −0.10 −0.14
F4 0.01 −0.59 −0.56 0.84 0.73 0.82 0.04 0.57 0.15 0.19
F5 0.06 −0.53 −0.5 0.84 0.82 0.84 0.49 −0.09 −0.01 0.08
F6 0.17 −0.54 −0.47 0.84 0.76 0.85 0.37 −0.15 0.13 0.13
F7 0.70 −0.14 −0.14 0.70 0.60 0.70 0.67 0.27 −0.07 −0.02
F8 −0.11 −0.48 −0.40 0.80 0.68 0.81 0.35 0.55 0.31 0.08
F9 −0.69 −0.06 0.22 0.41 0.33 0.45 0.39 0.07 0.80 0.68
F10 −0.66 −0.32 0.00 0.78 0.52 0.77 0.20 0.31 0.83 0.79

Table 5. MSE Values (P1).

MSE F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
F1 0.09 0.51 0.41 0.52 0.49 0.47 0.35 0.41 0.40 0.40
F2 0.54 0.17 0.46 0.93 1.23 1.33 0.86 0.78 0.78 0.68
F3 0.48 0.41 0.31 1.10 1.72 1.73 0.50 0.41 0.40 0.38
F4 1.25 2.64 2.18 0.11 0.19 0.13 2.39 2.46 2.26 2.79
F5 0.79 1.88 1.41 0.14 0.13 0.13 1.95 1.84 1.50 1.93
F6 1.05 2.13 1.64 0.12 0.17 0.11 2.25 2.11 1.70 2.16
F7 0.28 0.43 0.40 0.58 0.47 0.45 0.25 0.38 0.40 0.38
F8 0.48 0.47 0.42 1.01 1.08 1.07 0.33 0.30 0.37 0.40
F9 0.85 0.45 0.37 0.34 0.35 0.35 0.34 0.41 0.32 0.35
F10 0.88 0.42 0.43 0.55 0.71 0.51 0.36 0.38 0.35 0.34

Table 6. r Values (P2).

r F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
F1 0.78 0.62 0.77 0.62 0.77 0.41 −0.01 0.01 0.02 0.0
F2 0.09 0.86 0.86 0.86 0.85 0.29 0.51 0.61 0.70 0.52
F3 0.01 0.77 0.87 0.77 0.84 0.21 0.31 0.11 0.26 0.33
F4 0.00 0.78 0.86 0.76 0.86 0.27 0.37 0.38 0.42 0.43
F5 −0.14 0.83 0.86 0.83 0.87 0.30 0.60 0.58 0.72 0.60
F6 0.15 0.42 0.60 0.42 0.83 0.75 0.70 0.69 0.77 0.80
F7 −0.00 −0.12 0.44 −0.12 0.39 0.42 0.80 0.72 0.84 0.86
F8 0.15 −0.22 −0.24 −0.22 −0.11 0.37 0.71 0.72 0.8 0.65
F9 0.16 −0.20 −0.15 −0.20 −0.21 0.53 0.62 0.66 0.81 0.72
F10 −0.11 −0.36 0.05 −0.36 0.04 0.41 0.78 0.71 0.83 0.87

Table 7. MSE Values (P2).

MSE F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
F1 0.29 0.26 0.29 0.43 0.31 0.31 0.63 1.13 0.93 0.68
F2 0.40 0.16 0.15 0.17 0.15 0.51 0.47 0.30 0.36 0.46
F3 0.43 0.20 0.13 0.18 0.16 0.40 0.44 0.34 0.35 0.45
F4 0.44 0.17 0.15 0.15 0.54 0.58 0.33 0.43 0.59 0.21
F5 0.42 0.20 0.15 0.16 0.15 0.48 0.51 0.31 0.40 0.51
F6 0.40 0.34 0.28 0.32 0.29 0.25 0.36 0.52 0.41 0.35
F7 0.38 0.42 0.38 0.33 0.36 0.36 0.29 0.33 0.28 0.31
F8 0.39 0.55 0.57 0.41 0.47 0.47 0.39 0.26 0.30 0.39
F9 0.37 0.55 0.50 0.39 0.44 0.37 0.35 0.27 0.26 0.34
F10 0.39 0.44 0.40 0.36 0.38 0.32 0.30 0.34 0.28 0.30

The cells in the tables are grayed according to the classification given in Table 2
(white = strong correlation; gray = moderate correlation; dark gray = weak correlation).
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Out of example, Figures 5–7 show the trend of three different cases of predictions
against the actual head positions.
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Figure 5 presents the best case (i.e., on P4F1, r = 0.98, Figure 5), and Figure 7 the worst
one (i.e., on P1F10, r = 0.38, Figure 7), while Figure 6 shows a study case with a medium
performance (r = 0.82 and MSE = 0.31).

3.3. Second Analysis. Identification of the Function f on One Participant’s Overall Data and
Verification on All Participants’ Overall Data

Following this approach, the files related to the overall experiments for each partic-
ipant were used to train ANN in order to test the classifier using each function on each
test file. Although the function is identified and verified on the same data, the values on
the diagonal (see Tables 8 and 9) showed strong correlation in this analysis too. On the
other hand, as expected, testing one subject’s function f on another subject’s data returns
very low correlation coefficient values, almost close to zero. There is just one case that
contradicts this statement: we managed to see that functions coming from P1 return results
with a good performance (r = 0.52, MSE = 0.38) for the P3 case. This exception is surely
fortuitous, although it is quite curious noting that P1 is P2′s mother.

Table 8. r values in the second analysis.

r P1 P2 P3 P4 P5 P6 P7 P8 P10 P10
P1 0.41 −0.09 0.08 −0.07 −0.02 0.21 0.01 0.03 −0.07 0.01
P2 −0.36 0.64 −0.17 0.06 0.19 −0.30 −0.09 −0.02 0.14 0.23
P3 0.52 −0.53 0.81 0.07 −0.26 0.60 −0.22 0.41 −0.05 0.08
P4 −0.07 −0.17 −0.42 0.93 0.08 −0.48 −0.72 −0.24 −0.04 0.19
P5 −0.31 −0.02 −0.50 −0.62 0.90 −0.27 0.80 −0.64 −0.15 0.02
P6 −0.04 −0.21 0.45 0.10 0.11 0.53 −0.56 −0.48 −0.04 0.03
P7 0.31 −0.08 −0.52 −0.16 0.33 −0.57 0.67 −0.11 −0.27 0.23
P8 0.51 −0.32 0.67 0.43 −0.62 −0.57 0.41 0.72 −0.09 0.10
P9 −0.06 0.78 0.19 0.42 0.40 0.11 −0.26 0.01 0.80 −0.59

P10 −0.63 −0.50 0.29 −0.33 −0.58 −0.19 0.62 −0.23 −0.74 0.84
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Table 9. MSE values in the second analysis.

MSE P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
P1 0.33 0.41 0.46 0.40 0.59 0.41 0.45 0.41 0.46 0.58
P2 0.55 0.27 0.50 0.39 0.71 0.43 0.42 0.49 0.44 0.44
P3 0.38 0.41 0.25 0.40 0.96 0.36 0.43 0.42 0.47 0.63
P4 0.74 2.26 2.40 0.05 6.95 0.62 0.67 0.70 1.01 0.61
P5 0.40 0.40 0.65 0.42 0.12 0.45 0.27 0.89 0.47 0.62
P6 0.37 0.40 0.36 0.40 1.18 0.33 0.42 0.49 0.38 0.78
P7 0.37 0.37 0.42 0.37 0.69 0.42 0.32 0.39 0.43 0.46
P8 0.33 0.37 0.43 0.35 0.49 0.62 0.32 0.28 0.45 0.44
P9 0.75 0.64 0.72 0.72 0.68 0.85 0.81 0.96 1.39 0.34

P10 0.63 0.63 0.52 0.60 0.85 0.60 0.51 0.61 0.20 0.96

4. Conclusions

The main contribution of this paper is to address an issue that the literature concerning
BCI has paid little attention to: the identification of human head movements (yaw rotation)
by EEG signals.

This kind of system is effectively starting to become present in commercial systems at
prototypal level. For example, it will be used more and more in the automotive context,
with proprietary systems, which will be, however, mostly based on ANN applications.
Thus, for the scientific community, it is hard to be completely aware of the current state
of the art prototypes. In our opinion, it is important to share experimental results on
these subjects.

Concerning the head yaw rotation studied in this work, from the trials performed on
ten different participants, spanning more than two hours of experiments, it seems clear
that—under some specific limitations—this goal is achievable.

Specifically, after identifying a proper function over a short period of time (a couple of
minutes for each participant), this can predict head positions with a quite relevant accuracy
for the remaining minutes. Such accuracy is quite relevant (MSE < 0.35 and r > 0.5, p < 0.01)
since it was obtained in 26 out of 28 tested files. Once the function is identified for a
single file, this generally shows good results on files involving the same participant in the
same day.

However, the results obtained in different analyses proved that EEG signals are time
variant and the files recorded in a short time interval may be useful to generate a classifier
for human head movements following visual stimuli. As a matter of fact, such correlation
appears to be time dependent, or more likely, quite susceptible to sensors’ positioning.
Besides, a further result of the study, which may represent a drawback but also an important
finding of the approach, is related to the fact that the correlation is surely dependent on the
specific participant, with the impossibility to predict on another subject when the classifier
is trained on another one. This may be a disadvantage in the implementation of the EEG
classifier because it seems to be significantly different for each subject, and this precludes
the ability to achieve an acceptable level of generalization. However, further studies should
demonstrate this when the classifier is identified on a group of several different subjects.

Other important remarks concern the EEG data acquisition reliability, which seems to
be extremely dependent on the adherence of the electrodes to the scalp. In the proposed
study cases, the two hairless participants achieved better performance in the tests proving
that the quality of data collection is closely related to the quality of the predictions.

Future developments will address different arguments. Since, in the trials reported
in this paper, EEG is affected both by electrical and illumination stimuli, further efforts
should be devoted to separate these two aspects. Secondly, further EEG signal analysis
should be performed to outline input-output relations for specific frequency bands.
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