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Abstract: Over the last few years, mobile robotics has experienced a great development thanks to
the wide variety of problems that can be solved with this technology. An autonomous mobile robot
must be able to operate in a priori unknown environments, planning its trajectory and navigating to
the required target points. With this aim, it is crucial solving the mapping and localization problems
with accuracy and acceptable computational cost. The use of omnidirectional vision systems has
emerged as a robust choice thanks to the big quantity of information they can extract from the
environment. The images must be processed to obtain relevant information that permits solving
robustly the mapping and localization problems. The classical frameworks to address this problem
are based on the extraction, description and tracking of local features or landmarks. However, more
recently, a new family of methods has emerged as a robust alternative in mobile robotics. It consists
of describing each image as a whole, what leads to conceptually simpler algorithms. While methods
based on local features have been extensively studied and compared in the literature, those based on
global appearance still merit a deep study to uncover their performance. In this work, a comparative
evaluation of six global-appearance description techniques in localization tasks is carried out, both in
terms of accuracy and computational cost. Some sets of images captured in a real environment are
used with this aim, including some typical phenomena such as changes in lighting conditions, visual
aliasing, partial occlusions and noise.

Keywords: omnidirectional imaging; global appearance description; localization; image retrieval;
relative orientation; fourier signature; histogram of oriented gradients; gist

1. Introduction

Nowadays, the presence of mobile robots has increased substantially in many areas,
such as industry, households, transportation and education. As their abilities in perception
and computation have increased, they have become an efficient tool to perform a wide range
of tasks and they are expected to play a crucial role in the development of some activities.
In this context, map building and localization are two of the main abilities a robot must
develop to be really autonomous. Finding a solution to both problems, balancing accuracy,
efficiency and robustness, is very important so that a robot can navigate autonomously and
safely through real working environments [1].

In the field of perception, vision sensors have become a widespread tool to get
information from the environment [2] due to several factors: the big amount of information
they can capture with a relatively low cost; the availability of the data they provide (unlike
GPS, whose signal may not be available temporarily, indoors or in narrow outdoor areas);
the variety of configurations that they permit, from single-view cameras to binocular or
trinocular systems; and the possibility of carrying out other high-level tasks such as people
detection. Among the available configurations, catadioptric vision systems stand out thanks
to their wide field of view, up to 360 deg around the camera axis [3]. The information
captured with these systems can be projected onto varied surfaces, what permits different
mathematical approaches depending on the type of task to solve [4]. Omnidirectional
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images are particularly effective comparing to conventional images due to the fact that
they capture a global context of the environment. Therefore, with this kind of information,
global features constitute an effective alternative, compared to local features, to many tasks,
such as, for example, the reconstruction of complex indoor environments. In this regard,
Sun et al. [5] and Pintone et al. [6] make use of deep learning approaches [7–9] to panoramic
image analysis, with the objective of understanding the layout of indoor environments.

Solving the mapping and localization problems using only visual information is
challenging. Images are highly dimensional data and they usually contain much redundant
information. This information tends to change not only when the robot moves but also
under some other usual circumstances such as changes in the external lighting conditions,
noise during the acquisition of the image and occlusions due to the presence of, e.g., people
in the environment. In addition, when a robot has to operate in indoor environments, it has
to cope with the phenomenon of visual aliasing, which means that the visual information
captured from very different positions may be very similar. Taking these facts into account,
to build a functional visual model of the environment and to estimate the pose (position
and orientation) of the robot within this model with robustness, it is necessary to find an
alternative codification which is more efficient and robust against such phenomena.

Two main frameworks can be found in the literature to extract this information
based either on local or on global appearance. The first family of methods consists in
detecting some outstanding landmarks or regions and describing them using any algorithm
that provides some invariance against transformations, such as SIFT [10], SURF [11],
BRIEF [12], BRISK [13], ORB [14], FREAK [15] and LDB [16]. The second family consists
of working with each scene as a whole, trying to build a unique descriptor per image
that collects information on its global structure, using some approaches such as Principal
Components Analysis [17], discrete Fourier transform [18], banks of Gabor filters [19],
color histograms [20,21], directly subsampled versions of the original image [22] or Radon
transform [23].

Traditionally, researchers have focused on the use of local appearance methods, and
it can be considered a mature technology to solve the mapping and localization problems.
Many approaches are proposed in the literature based on these descriptors [24–28]. Typically,
they require the implementation of detection, description and tracking algorithms which
tend to be relatively complex and computationally expensive. While they are often designed
to be invariant against some movements of the robot, their behavior can deteriorate when
other usual phenomena are present, such as changes in lighting conditions, occlusions,
noise or visual aliasing. Some comparative analyses of this kind of descriptor can be found
in [29,30]. Thanks to these comparatives, an optimal description method can be chosen and
tuned depending on the environment and application.

Global-appearance approaches have been applied to these areas more scarcely. Since
each image is described through a unique descriptor, they usually lead to models of the
environment that can be handled intuitively by a human operator. The localization process
is more straightforward, based on the pairwise comparison between descriptors. Some
authors have made use of such approaches in the field of mobile robots, such as [31–36].
These techniques may be useful in unstructured environments where it is difficult to extract
robust landmarks. As a drawback, they have been used typically to build topological
models [37,38], since no metric information can be extracted from pure global appearance
(unless additional sensory information is added).

In [39], a comparative evaluation of the performance of global-appearance methods in
mapping tasks was carried out. However, we have not found any work in the literature
that makes a deep and systematic study of the role of global appearance in localization
tasks. Therefore, the objective of this paper is two-fold. On the one hand, we have chosen
six widespread and accepted families of visual description methods, and we have adapted
them to be used efficiently with omnidirectional visual information, in such a way that the
resulting descriptors contain useful information to retrieve relative distance and orientation
efficiently. To this aim, some algorithms have been implemented to estimate the relative
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position and orientation from these descriptors using purely visual information. On the
other hand, we carry out a comparative evaluation of these descriptors in localization tasks
and study their behavior against changes in the robot pose and other visual changes in the
environment. Their relative performance has been tested and the influence of the most
relevant parameters is assessed, completing the work presented in [39].

The remainder of the paper is structured as follows. Section 2 presents a state-of-the-art
of global appearance description approaches and outlines the implementation of the three
methods included in the evaluation. After that, in Section 3 the framework used to estimate
the position and the orientation of the robot is detailed. Then, Section 4 presents the
experimental setup and the set of images used in the experiments. The paper finishes with
the results of the experiments, discussed in Section 5, and the conclusions and future lines
of research in Section 6.

2. Global Appearance Descriptors

The objective of this section is two-fold. On the one hand, a state-of-the-art of global
appearance descriptor is developed. On the other hand, a brief mathematical description
of the methods included in the comparative analysis is made. Six families of global
appearance methods have been chosen to be analyzed: methods based on the discrete
Fourier transform (Section 2.1), on gradient orientation (Section 2.2), on the use of banks
of Gabor filters (Section 2.3), on Speeded-Up Robust Features (SURF) description method
(Section 2.4), on Binary Robust Independent Elementary Features (BRIEF) (Section 2.5) and
on Radon transform (Section 2.6). A complete description of the methods can be found
in [39–41]. However, for the sake of clarity, we have included an outline in this section.

We consider the movement of the robot is contained in the ground plane, and it
captures images using an omnidirectional vision system mounted on its top. This system
consists of a camera pointing towards a hyperbolic mirror, with their axes aligned and in
vertical position. The complete experimental setup is presented in Section 4.

2.1. Descriptors Based on the Discrete Fourier Transform

The discrete Fourier transform (DFT) has been used by many researchers to extract
the most relevant information from scenes. For example, Oliva and Torralba [19] propose
using a windowed 2D Fourier transform, that permits defining some circular windows to
select spatial information around some specific pixels in the scene. Ishiguro and Tsuji [42]
propose an alternative approach, named Fourier Signature (FS), which is designed to be
used on panoramic images. Menegatti et al. showed the robustness of this representation
to build a model of an environment and to estimate the position of a vehicle using a
Monte Carlo approach [18,31], in a relatively small environments and controlled conditions.
Stürzl et al. [43] propose a visual homing algorithm based on the Fourier Signature, but
the panoramic scene is previously reduced to a unidimensional array. Horst and Möller
use it in visual place recognition [44].

The Fourier Signature (FS) permits obtaining a descriptor which is invariant against
rotations of the robot in the ground plane when using panoramic images. For this reason,
this is the DFT-based representation we have chosen in this comparative evaluation. The
description process starts from a panoramic scene f (x, y) ∈ RN1×N2 . Initially, the image
can be subsampled to obtain a lower number of rows k1 < N1 (k1 = 1 in [43]). The FS of the
resulting scene f (x, y) ∈ Rk1×N2 is the matrix F(u, y) ∈ Ck1×N2 obtained after calculating
the unidimensional DFT of each row of the image. In the frequency domain, the main
information is concentrated in the low frequency components, and the high frequency
components tend to be more contaminated by the possible presence of noise in the original
image. Taking this fact into account, by retaining the k2 first columns and discarding the
remainder, a compression effect is achieved. The new complex matrix, with k1 rows and k2
columns, can be expressed as a magnitudes matrix A(u, y) = ‖F(u, v)‖ and an arguments
matrix Φ(u, y).
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Based on the shift Theorem of the unidimensional DFT, when two panoramic images
have been captured from the same point on the floor, but having the robot different
orientations around the vertical axis, both images present the same magnitudes matrix, and
the arguments matrices can be used to estimate the relative orientation of the robot. Thanks
to this property, the matrix A(u, y) = ‖F(u, y)‖ can be considered as a visual descriptor
of the robot position (as it is rotationally invariant), the matrix Φ(u, y) can be considered
as a descriptor of the robot orientation (as it permits estimating this orientation), and
the estimation of the position and the orientation can be addressed independently and
sequentially.

To sum up, the position descriptor is the matrix A(u, y) ∈ Rk1×k2 and the orientation
descriptor is the matrix Φ(u, y) ∈ Rk3×k4 . In the experiments, different sizes will be
considered, to test separately the influence these parameters have on the accuracy and
computational cost of the localization process.

2.2. Descriptors Based on Histograms of Oriented Gradients

The Histograms of Oriented Gradients (HOG) are local descriptors that have been
used typically in computer vision and image processing to solve object detection tasks.
HOG was initially described by Dalal and Triggs [45], who used it to detect persons in
sequences of images. Afterwards, some researchers presented an improved version both in
detection and computational cost [46]. Hofmeister et al. [47] made use of HOG to solve
the localization of small mobile robots from low resolution images, in visually simple
environments and when the orientation of the robot is similar to the orientation it had
when the corresponding map image was captured. In [48], the same authors present a
comparative of HOG with other appearance descriptors, applied to the localization of small
robots in reduced environments, with similar results. Aslan et al. study the ability of HOG
to handle occlusion in human tracking [49]. In addition, Neumann et al. use HOG, among
other descriptors, for image-based vehicle detection and localization in an autonomous
car [50].

Originally, HOG is built to describe local areas of a scene. We redefine it as a global
appearance descriptor, using an exhaustive set of cells that covers the whole image and
permits describing the global appearance. The version of HOG included in the comparative
evaluation is presented in [51], where a global version of HOG is used to carry out map
building and Monte Carlo localization in a large environment. When used to describe
panoramic scenes, it presents rotational invariance and it also permits estimating the
orientation of the robot.

In brief, from the initial panoramic image, a position and an orientation descriptor
are obtained using the HOG philosophy. From the initial panoramic image f (x, y) ∈
RN1×N2 the magnitude and the orientation of the gradient are obtained and stored in the
matrices M(x, y) and Θ(x, y), respectively. From now on, some sets of cells are defined
upon the matrix Θ(x, y) to build the two descriptors. On the one hand, to build the
position descriptor, a set of k5 horizontal cells, whose width is equal to N2 pixels, without
overlapping, and covering the whole image are defined. For each cell, an orientation
histogram with b1 bins is compiled. During this process, each pixel in Θ(x, y) is weighted
with the magnitude of the corresponding pixel in M(x, y). At the end of the process, the
set of histograms are appended to compose the position descriptor~h1 ∈ Rk5·b1×1. On the
other hand, the orientation descriptor is built using the same steps, but considering a set of
overlapped vertical cells, with a height equal to N1 pixels, width equal to l1 and distance
between two consecutive cells equal to d1. The number of vertical cells is k6 = N2/d1.
After compiling a gradient orientation histogram for each cell, with b2 bins and appending
them, the result is the orientation descriptor~h2 ∈ Rk6·b2×1.

The descriptor~h1 is invariant against rotations of the robot in the ground plane so it
can be considered as a visual descriptor of the robot position, and the information contained
in~h2 permits estimating the orientation of the robot with respect to a reference image.
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2.3. Descriptors Based on Gist

The descriptors based on gist try to imitate the ability of the human perception
system to recognize immediately a scene through the identification of specific regions
stand out with respect to their neighborhood. This concept was introduced by Oliva and
Torralba [52,53] with the idea of creating a low dimensional global image descriptor. More
recent works make use of the concept of prominence together with gist. Siagian et al. [54] try
to establish synergies between both concepts in a unique descriptor whose computational
cost is relatively reduced. While these descriptors have been used thoroughly in classification
tasks, the experience in mobile robotics localization is more sparse. Some related applications
can be found in [55], where a localization and navigation system based on the gist and
prominence concepts is presented; in [56], where gist descriptors, calculated over specific
portions of a set of panoramic images, are used to solve a localization problem in urban
areas; and in [57], where descriptors based on gist and dimensionally reduced by means of
Principal Components Analysis are used to solve the loop closure problem in Simultaneous
Localization and Mapping. In addition, Su et al. use gist in a localization framework to
match keyframes, in combination with local descriptors to improve localization accuracy [58].

The description method we have included in this comparative analysis is based on
the works of Siagian et al. [54] and is deeply described in [51]. It is built from orientation
information, obtained by means of a bank of Gabor filters with different orientation, in some
levels of resolution. First, two versions of the original panoramic image are considered: the
original one and a new lower resolution version after applying a Gaussian low-pass filter
and subsampling to a new size 0.5 · N1 × 0.5 · N2. After that, both images are filtered with a
bank of m1 Gabor filters whose orientations are evenly distributed between 0 and 180 deg.
Finally, to reduce the amount of information, the pixels in each resulting image are grouped
into blocks, by calculating the average intensity of all the pixels contained in a block. The
block division is chosen in an identical fashion than in the case of HOG. First, a set of
k7 horizontal blocks is defined to obtain the position descriptor ~g1 ∈ R2·k7·m1×1, which is
invariant against rotations of the robot in the ground plane. Second, a set of k8 vertical
blocks with overlapping is defined to obtain the orientation descriptor ~g2 ∈ R2·k8·m2×1.

2.4. Descriptors Based on Wi-SURF

SURF [11] has been considered one of the most important local descriptors and it has
been used in countless works as in [59] or [32] where it is used to solve localization indoors.
The present study is focused on the performance of global appearance descriptors. For
this reason, we propose an adaptation which is based on the work [60], which extracts a
unique, global appearance descriptor per image, using the SURF philosophy. Throughout
the paper, we will refer to this descriptor as Whole Image SURF (Wi-SURF).

Wi-SURF has been used in previous works for topometric localization [61] or for
place recognition [40]. These works propose to obtain a unique vector d ∈ R64 that
contains gradient information of the entire image. Therefore, such a descriptor can be
useful for place recognition, but does not contain enough information to estimate relative
orientation. For this reason, we propose dividing the panoramic image into a set of evenly
distributed square windows, with some overlapping between them. In each window, a
SURF descriptor d ∈ R64 is calculated and all the descriptors are concatenated, which leads to
a global-appearance descriptor. This approach will enable us to solve not only the localization
but also to estimate the relative orientation of the robot, as detailed in Section 3.4. The
square windows are evenly distributed following the next parameters: k9 is the number of
horizontal cells in which the panoramic image is split and sp1 the horizontal space between
consecutive windows. The number of windows per cell will depend on the images’ width
(512 columns in our experiments) so a total of w1 = 512

sp1
windows per cell are calculated.

The width of the square window is equal to the height of the horizontal cell. After all, the
size of the descriptor is ~ws ∈ Rk9·w1·64×1. This final descriptor will be used to estimate both
position and orientation.
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2.5. Descriptors Based on BRIEF-Gist

BRIEF-gist is a global appearance descriptor based on the local descriptor Binary
Robust Independent Elementary Features (BRIEF). BRIEF was presented in [12] and used
for different mobile robot applications [62,63]. Based on this local descriptor, a global
appearance descriptor is presented in [64]. This approach is known as BRIEF-gist and it
has been used for place recognition and loop closure detection in [40]. In the present work,
we adapt this descriptor to be used with panoramic images in such a way that it permits
calculating both relative distance and orientation in a localization task.

To implement the BRIEF-gist descriptor, the image is divided into k10 × w2 windows
equally sized. Then, using the BRIEF description methodology, a set of ordered pairs
of pixels is defined in each window, and the intensity of the second pixel of each pair is
compared to the first one. If the difference is positive a 1 is added to the global descriptor,
and a 0 if the difference is negative. As a result, a boolean vector is obtained. After this
process, the resulting BRIEF-gist descriptor is ~bg ∈ Rk10·w2×1. This final descriptor is used
to estimate both position and orientation.

2.6. Descriptors Based on Radon Transform

The Radon transform was proposed in [65]. Initially, it was used in different computer
vision applications as a geometric shape descriptor, as in [66,67]. More recently, the Radon
transform (RT) has been adapted to describe globally omnidirectional images and its
performance was tested in [41], where descriptors based on the RT were used to solve
the image retrieval problem, and in [23], where these descriptors were used to estimate
relative altitude from images. The main advantage of this descriptor is that it can be
calculated with raw omnidirectional images, as captured by the vision system (with no
panoramic transformation).

Mathematically, the Radon transform consists of describing a function in terms of the
projections of its linear integrals.

After applying the Radon transform, the image is transformed into a function rim(Φ, d),
which is obtained after integrating the original function through several groups of parallel
lines with distance to the origin d and different orientation Φ. The size of the new descriptor
is rim ∈ RMx×My , Mx is the number of orientations where Φ = {Φ1,Φ2,. . . ,ΦMx } and My is
the number of parallel lines.

When the Radon transform is applied to omnidirectional images, it is specially interesting
its symmetry and the fact that the descriptor is horizontally shifted when the robot rotates [68],
which allows us to obtain global appearance descriptors that can be used to estimate position
and relative orientation. This property can be seen in Figure 1, where four omnidirectional
images are shown; three of them have been taken from the same position but with different
orientation and the other one has been taken from a different position. The figure clearly
shows the effect of the orientation in the Radon transform and how different the result is
if the image is from another room. If the robot rotates (∆θ) degrees, the new descriptor
presents the same information as the original one, but it has been shifted s columns,
s = (∆θ)· (M_x)/360. Thanks to this property, descriptors based on Radon transform contain
position and orientation information of the robot.

To sum up, after applying the Radon transform to an omnidirectional image with

size Nx × Nx, a matrix r ∈ R
360
p1
×0.5·Nx is obtained. p1 is the angle (deg.) between

consecutive sets of lines along which the linear integrals are calculated. In the experiments,
these matrices can be used in different ways in order to obtain proper uni-dimensional
descriptors. Two different methods and different sizes will be considered to test the
robustness of the descriptor in pose estimation. These methods and parameters are
described in Section 3.
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Figure 1. Shift property in the Radon transform.

3. Solving the Absolute Localization Problem

In this work, we assume a visual model of the environment is previously available. To
build this model, the robot has gone through the initially unknown environment (either
in a tele-operated way or using any exploration algorithm [69,70]) and has captured a set
of omnidirectional images from n points of view, defined by the poses ~pj = (xj, yj, θj),
j = 1, . . . , n, to cover the whole environment to map. The modelM is composed of the
visual descriptors and the pose of the robot, stored for each capture position:
M = {(D1,~p1), (D2,~p2), . . . (Dn,~pn)} where, in general, the description of each image
consists of a position and an orientation descriptor Dj = {~d1j, ~d2j} (in the case of Wi-SURF
and BRIEF-gist the same vector is used as position and orientation descriptor, soDj = {~d1j}).
The map building process using global appearance methods and omnidirectional imaging
is thoroughly described in [39].

Once the model is built, the localization problem consists of estimating the pose of
the robot. The problem is approached here as an absolute localization problem, i.e., no
information on the previous position of the robot is considered, and only visual information
is used. The robot captures a new image at time instant t, from an unknown pose ( ft, test
image). Then, the descriptor of this image Dt is computed and compared with the set of
descriptors stored in the model. From this comparison, the position and orientation of the
robot at time instant t are estimated. The next subsections detail these processes depending
on the description method used.

3.1. Descriptors Based on the Discrete Fourier Transform

When a test image arrives, At and Φt are calculated. Since the position descriptor is
invariant against rotations of the robot in the ground plane, first, At is used to estimate the
position of the robot, by comparing it with the descriptors Aj, j = 1, . . . , n and retaining
the k-nearest neighbors. The position of the nearest neighbor (xi, yi) (i is the index of the
nearest neighbor) can be considered as an estimation of the position of the robot at time
instant t. Once the position of the robot has been estimated, the arguments matrix of the
test image, Φt, and the arguments matrix of the nearest neighbor, Φi, are used to estimate
the orientation of the robot, using the shift theorem of the DFT. The objective is to estimate
the relative orientation θti of the robot at time instant t with respect to the orientation the
robot had when capturing the nearest neighbor, θti = θt − θi. The next steps are as follows:

1. A set of artificial rotations is applied to the test image. The shift theorem of the
unidimensional DFT can be used to generate the argument matrices of the test image
rotated siblings. The step between consecutive rotations is ∆φ. This is equivalent to
making a shift of the columns of the panoramic image with a magnitude of d pixels,
where ∆φ = d · 2π/N2. In the experiments, we consider d = {1, 2, . . . , N2 − 1}. This
means that the angular step between consecutive artificial rotations is ∆φ = 2π/N2.
This is the resolution of the method.
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2. After this process, a set of nrot = 2π/∆φ arguments matrices are available at time
instant t.

{Φ0, Φ1, . . . , Φnrot}t = {Φα}t, α = 0, . . . , nrot (1)

3. The Hadamard product of the matrix Φt and every matrix Φα is calculated. The sum
of the components of each resulting matrix is obtained, and the result is an array of
data:

{m0, m1, . . . , mnrot}t = {mα}t, α = 0, . . . , nrot (2)

4. The estimated relative rotation is the α value whose coefficient mα presents the
maximum value.

α = arg maxα{mα} (3)

θti =
2πα

nrot
(4)

where θti is the relative orientation between the image imt and the nearest neighbor
of the map, imi. This way, the absolute orientation of the robot at time instant t can be
calculated as:

θt = θi + θti (5)

In this equation, θi is the orientation that the robot had when the map image imi was
captured, with respect to the global reference system.

In the experiments, the parameters of the Fourier Signature to optimize are the size
of the module matrix (k1 and k2) and the size of the arguments matrix (k3 and k4) to reach
a balance between the accuracy in the estimation of the position and orientation and the
computational cost of the algorithms.

3.2. Descriptors Based on Histograms of Oriented Gradients

Once the test image imt has been captured, the descriptors~h1t and~h2t are calculated.
First, the k-nearest neighbors to ~h1t among the set of descriptors ~h1j, j = 1, . . . , n are
calculated and extracted. The position (xi, yi) of the nearest neighbor i is an estimation of
the position of the robot at time instant t.

Later, the orientation is calculated by comparing the vector~h2t with the vector~h2i.
With this aim, a set of artificial rotations is calculated using the vector~h2t and later, the scalar
product between the resulting vector after each rotation and the vector~h2i is calculated. To
simulate a rotation of the vector~h2t, the circular shift must be a multiple of b2 positions
(b2 is the number of bins per histogram). A shift of b2 positions equals a rotation of the
robot ∆φ = 2πd1/N2 radians (this is the angular resolution of the method), where d1 is the
distance between two consecutive vertical cells.

Finally, the estimated relative orientation θti of the robot is the angle that corresponds
to the rotated version of the vector~h2t which presents a higher scalar product with~h2i.

3.3. Descriptors Based on Gist

The processes to estimate the position and orientation are identical to those presented
in the case of HOG. Once captured the test image imt, the descriptors ~g1t and ~g2t are
calculated. First, ~g1t is compared to ~g1j, j = 1, . . . , n and the k-nearest neighbors are
calculated. From them, the position (x, y)i of the nearest neighbor i is considered an
estimation of the position of the robot at time instant t. After that, the orientation is
calculated by comparing the vector ~g2t with the vector ~g2i. With this aim, successive
artificial rotations are calculated, using the vector ~g2t and later, the scalar product between
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each rotated version and the vector ~g2i is obtained. To make an artificial rotation of the
vector~h2t, the magnitude of the circular shift must be a multiple of m2 (m2 is the number
of components of each vertical block). Every shift equals a rotation of ∆φ = 2πd2/N2
radians (this is the angular resolution of the method), where d2 is the distance between two
consecutive vertical blocks in the descriptor.

The resulting orientation θti is the angle that corresponds to the rotated version of ~g2t
that presents the highest scalar product with ~g2i.

3.4. Descriptors Based on Wi-SURF

Once the test image imt is taken, the descriptor ~wst is obtained. First, this descriptor is
compared with the descriptors ~wsj, j = 1, . . . , n, to calculate the relative orientation between
the test descriptor and the descriptors in the model. To estimate the relative orientation,
some artificial rotations are added to ~wst and the distance between the resulting descriptor
after each rotation and ~wsj is calculated. To simulate an artificial rotation of ~wst, a circular
shift is applied, which must be a multiple of 64 positions (the SURF descriptor of each
window contains 64 components) and w1 (number of windows). The 64-position shift of
the descriptor equals to a rotation of the robot ∆φ = 2 · π · sp1/N2 radians (and therefore,
this is the angular resolution of the method). Once the relative orientation between the test
descriptor and each of the descriptors in the model has been calculated, each descriptor
~wsj is shifted in such a way that the resulting descriptor has the same orientation as ~wst.

Once all the descriptors are supposed to be in the same orientation, the k-nearest
neighbors to ~wst are calculated among the set of descriptors in the model (once they are
equally oriented with respect to ~wst). The position (xi, yi) of the nearest neighbor i is an
estimation of the position of the robot at time t. The orientation between them has been
calculated previously and the corresponding angle θti is the relative orientation estimated
between the test vector and the vector evaluated from ~wsj.

3.5. Descriptors Based on BRIEF-Gist

Firstly, the relative orientation between images is estimated. The descriptor ~bgt is
calculated from the test image imt, and the relative orientation between it and each of the
descriptors ~bgj, j = 1, . . . , n is estimated. To estimate it, successive artificial rotations are

applied to ~bgt, the scalar product between the resulting vector after each rotation and ~bgj

is calculated and the minimum is retained. To simulate an artificial rotation of ~bgt, the
circular shift must be a multiple of w2 (number of windows in each cell). As explained in
Section 2.5, to calculate this descriptor the image is divided into k12 × w2 windows, so the
angular resolution of the method is determined by the number of windows w2. Every w2
shift is equal to a rotation of the robot ∆φ = 2 · π/w2 radians.

After estimating the relative orientation, each descriptor in the model ~bgj is rotated

such that the resulting descriptor has the same orientation than ~bgt. Then the k-nearest
neighbors to ~bgt are calculated among the set of rotated descriptors in the model. The
position (xi, yi) of the nearest neighbor i is an estimation of the position of the robot at
time t. The relative orientation between them has been calculated previously and the
corresponding angle θti is the difference of orientation estimated between the test vector
and the vector evaluated from ~wsj.

3.6. Descriptors Based on the Radon Transform

In the present work, we process this descriptor using two different methods to retrieve
both position and orientation.

3.6.1. Radon–Fourier Method

After applying the Radon transform, a matrix r ∈ R
360
p1
×0.5·Nx is obtained. Then, the

Fourier Signature of this matrix is calculated. As a result of this second transformation,
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a matrix of magnitudes ART j ∈ R
360
p1
×k11 and a matrix of arguments ΦRT j ∈ R

360
p1
×k12 are

obtained. As in the case of the descriptors based on the DFT, ART j is used as position
descriptor and ΦRT j is used as an orientation descriptor. k11 is the number of columns
taken for the position descriptor ART j and k12 is the number of columns taken for the
orientation descriptor ΦRT j. To estimate the position and orientation, we use the same
process as in the descriptors based on the discrete Fourier transform, presented in the
Section 3.1.

3.6.2. Radon–POC Method

This method uses directly the matrix obtained after applying the Radon transform

( r ∈ R
360
p1
×0.5·Nx ) as the image descriptor rpoc j. To compare two descriptors, Phase Only

Correlation (POC) is used. This operation outputs a correlation coefficient that allows us to
estimate the similarity between two matrices and their relative shift.

To sum up, Table 1 shows the parameters whose influence will be studied in the
comparative evaluation. After that, Table 2 gives details of the contents of the model when
we consider each description method.

Table 1. Parameters whose influence in the localization process is studied.

Descriptor Parameters

FS

k1 ⇒ number of rows, position descriptor Aj
k2 ⇒ number of columns, position descriptor Aj
k3 ⇒ number of rows, orientation descriptor Φj
k4 ⇒ number of columns, orientation descriptor Φj

HOG

b1 ⇒ number of bins per histogram, position descriptor~h1j

k5 ⇒ number of horizontal cells, position descriptor~h1j

b2 ⇒ number of bins per histogram, orientation descriptor~h2j

l1 ⇒ width of vertical cells, orientation descriptor~h2j

d1 ⇒ distance between vertical cells, orientation descriptor~h2j

k6 = N2
d1
⇒ number of vertical cells, orientation descriptor~h2j

Gist

m1 ⇒ number of orientations (Gabor filters), position descriptor
~g1j
k7 ⇒ number of horizontal blocks, position descriptor ~g1j
m2 ⇒ number of orientations (Gabor filters), orientation
descriptor ~g2j
l2 ⇒ width of vertical blocks, orientation descriptor ~g2j
d2 ⇒ distance between vertical blocks, orientation descriptor ~g2

k8 = N2
d2
⇒ number of vertical blocks, orientation descriptor ~g2j

WS
w1 ⇒ number of windows per cell, descriptor ~wsj
k9 ⇒ number of horizontal blocks, descriptor ~wsj
sp1 ⇒ horizontal space between windows, descriptor ~wsj

BG w2 ⇒ number of windows per cell, descriptor ~bgj

k10 ⇒ number of horizontal blocks, descriptor ~bgj

RT

p1 ⇒ degrees between lines where Radon is calculated, matrix r
k11 ⇒ number of columns, position descriptor ART j
k12 ⇒ number of columns, orientation descriptor ΦRT j
Nx ⇒ omnidirectional images’ size is Nx × Nx
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Table 2. Contents of the map, for localization and orientation estimation, per image included in the
model imj, j = 1, . . . , n.

Descriptor Localization Orientation

FS Aj ∈ Rk1×k2 Φj ∈ Rk3×k4

HOG ~h1j ∈ Rk5·b1×1 ~h2j ∈ Rk6·b2×1

Gist ~g1j ∈ R2·k7·m1×1 ~g2j ∈ Rk8·m2×1

WS ~wsj ∈ Rk9·w1·64×1

BG ~bgj ∈ Rk10·w2×1

RT–F ART j ∈ R
360
p1
×k11 ΦRT j ∈ R

360
p1
×k12

RT–POC r ∈ R
360
p1
×0.5·Nx

4. Experimental Setup

This section describes the experimental setup. First, the sets of images used to carry
out the experiments are presented. Second, a variety of phenomena (noise and occlusions)
to test the robustness of the algorithms are described.

4.1. Sets of Images

All the experiments are carried out with two sets of images captured by ourselves [71].
A catadioptric vision system is used to capture the images. It is composed of an Imaging
Source DFK 21BF04 camera pointing towards an Eizoh Wide 70 hyperbolic mirror, with their
axes aligned. This system captures omnidirectional images which are preprocessed to
obtain cylindrical projections (panoramic images) with size N1 × N2 = 128× 512 pixels.

The first set of images is named the training set and it is composed of 872 panoramic
images captured on a dense grid of points of 40× 40 cm, covering the whole floor of a
building of Miguel Hernández University (Spain), including 6 different rooms. The training
set will be used to build a visual model of the environment. Different grid sizes will be
considered along the experiments.

The second set is named the test set and it contains 1232 images captured in all the
rooms, with different orientations. To capture these images, 77 positions were defined on
some half-way points among the grid positions, and 16 images per position were captured,
with different robot orientations, to cover the whole circumference. These images were
captured in different times of day and with changes in the position of some objects, doors,
etc., to reflect the natural variability of the visual information in real working environments.
The test set will be used during the process of localization and orientation estimation, to test
the goodness of each description method and the influence of the main parameters. This
environment is very prone to perceptual aliasing, which means that two images captured
from two positions which are far away may have a similar visual appearance. Global
appearance descriptors must cope with this phenomenon as it frequently happens in
indoor environments.

Figure 2 shows a bird’s eye view of the environment and the capture points of the
training images. As an example, Figure 3 shows the library, the capture points of the
training (red) and test (green) images and some sample training and test images captured
in close points. The effect of changes in lighting conditions and changes of orientation can
be appreciated. Other sample space is shown in Figure 4 (corridor). The effect of visual
aliasing is clearly shown. In addition, the test image 3 shows an example of changes in the
environment (open door with respect to the training images).
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Events room

Library

Corridor

Office 1

Office 2

Office 3

Figure 2. Bird’s eye view of the capture points of the training set of images. The size of the grid is
40× 40 cm.

Figure 3. Library. Bird’s eye view of the capture points of the training set of images. The size of the
grid is 40× 40 cm.
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Figure 4. Corridor. Bird’s eye view of the capture points of the training set of images. The size of the
grid is 40× 40 cm.

4.2. Addition of Noise and Occlusions

The test images reflect some of the most habitual undesired effects in real working
environment: changes in lighting conditions, in the position and state of some objects and
perceptual aliasing. Additionally, two other phenomena are considered in the experiments:
noise and occlusions.

First, to test the influence of noise due to the nature of the acquisition system, noise with
Gaussian distribution is considered, with null average value and several variance values, to
consider different noise levels: σ2 = {0, 0.0025, 0.05, 0.01, 0.02, 0.05}. Along the rest of the
paper, these levels of noise are named noises 0, 1, 2, 3, 4 and 5, respectively. Figure 5a shows a
test image with these levels of added noise. In the most extreme case, the visual appearance
of the image is seriously altered.

Second, the presence of persons or other robots in the environment may occlude partially
and temporarily the visual information. Working with panoramic images constitutes an
advantage as far as occlusions are concerned. However, they may hide some relevant
features with respect to the visual information stored in the map and put in risk the
localization process. To model this effect, several levels of occlusion have been added
artificially to the images, considering several vertical bars that produce different levels
of occlusion, considering {0, 5, 10, 20, 40}% of the whole image occluded. Along the rest
of the paper, these levels are named occlusions 0, 1, 2, 3, 4 and 5, respectively. Figure 5b
shows a test image with these levels of added occlusion. In the most extreme case, 40% of
the visual information is lost.
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(a) (b)

Figure 5. Sample image from the training test with (a) different levels of added Gaussian noise
(σ2 = {0, 0.0025, 0.05, 0.01, 0.02, 0.05}) and (b) sequence of occlusions considered ({0, 5, 10, 20, 40}%).

5. Results and Discussion

In this section, an exhaustive bank of experiments is proposed to test the performance
of the global appearance descriptors included in the comparative evaluation and the
influence of the main parameters in the accuracy and computational cost of the localization
process. The experiments have been structured in four subsections. First, in Section 5.1,
the ability of each descriptor to find the nearest neighbor of the model, in ideal conditions
(considering neither noise nor occlusions) is tested. After that, the problem of position
estimation is solved, including also the study of performance with these effects (Section 5.2).
Third, in Section 5.3, the problem of orientation estimation is considered. Finally, Section 5.4
studies the relative performance of the descriptors with a trajectory-like dataset.

5.1. Image Retrieval Problem

During the localization process, the first step consists of comparing the localization
descriptor of the test image with all the localization descriptors in the map and obtaining
the k-nearest neighbors. Taking this fact into account, in this section we evaluate the
ability of each description method to calculate correctly the first nearest neighbor (i.e., to
identify correctly the position of the model which is geometrically the nearest one to the
test position). It is known as the image retrieval problem.

To obtain the k-nearest neighbors of a test image descriptor, several kinds of distances
can be considered. In this study, four distance measurements are implemented and
compared. In the next lines, these distances are formalized. Considering ~r = {ri},
i = 1, . . . , l and ~s = {si}, i = 1, . . . , l, the two data vectors whose distance we want to
obtain:

1. Weighted metric distance:

distp(~r,~s) =

(
l

∑
i=1

ωi · |ri − si|p
) 1

p

(6)
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If we consider ωi = 1, i = 1, . . . , l, the Minkowski distance is obtained. Two
particular cases will be considered: dist1 (Manhattan distance), which is defined
from the Minkowski distance with p = 1, and dist2 (Euclidean distance), doing p = 2.

2. Pearson correlation coefficient. It is a similitude coefficient that can be obtained as:

simPea(~r,~s) =
~rT

d ·~sd

|~rd||~sd|
(7)

where~rd = [r1 − r̄, . . . , rl − r̄] and~sd = [s1 − s̄, . . . , sl − s̄], r̄ = 1
l ∑j rj, s̄ = 1

l ∑j sj. It
takes values in the range [−1,+1]. From this similitude coefficient, a distance measure
can be defined as:

dist3(~r,~s) = 1− simPea(~r,~s) (8)

3. Inner product: It is also a similitude coefficient that can be calculated as the scalar
product between the two vectors to compare.

simcos(~r,~s) =
~rT ·~s
|~r||~s| (9)

As shown in the equation,~r and~s are usually normalized. In this case, this measure is
known as cosine similitude and takes values in the range [−1,+1]. The corresponding
distance value is:

dist4(~r,~s) = 1− simin(~r,~s) (10)

Therefore, the four distance measurements compared along this section are: dist1
(Manhattan distance), dist2 (Euclidean distance), dist3 (Pearson correlation-based distance)
and dist4 (cosine similitude-based distance).

First, the success rate of each algorithm is studied. It assesses the ability of the
localization algorithm to calculate correctly the first nearest neighbor (i.e., to identify
correctly the position of the model which geometrically the nearest one to the test position).
Figures 6–12 show the success rate, expressed on a per unit base. For comparative purposes,
all the results are expressed in the same color scale.

Figure 6. FS image retrieval problem. Success rate of the method. k1 and k2 are, respectively, the
number of rows and columns of the descriptor (Table 1).

Figure 7. HOG image retrieval problem. Success rate of the method. k5 is the number of horizontal
cells and b1 the number of bins per histogram (Table 1).
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Figure 8. Gist image retrieval problem. Success rate of the method. k7 is the number of horizontal
blocks and m1 the number of Gabor filters to build the descriptor (Table 1).

Figure 9. WS image retrieval problem. Success rate of the method. k9 is the number of horizontal
cells and w1 the number of windows per cell (Table 1).

Figure 10. BG image retrieval problem. Success rate of the method. k10 is the number of horizontal
cells and w2 the number of windows per cell (Table 1).

Figure 11. RT–F image retrieval problem. Success rate of the method. k11 is the number of blocks
and p1 the relative angle (deg) between the lines in each set (Table 1).
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Figure 12. RT–POC image retrieval problem. Success rate of the method. p1 is the relative angle (deg)
between the lines en each set (Table 1).

The behavior of the FS changes slightly depending on the distance measurement used.
The best results are obtained with dist3 and dist4 with an intermediate number of rows and
an intermediate to high number of columns. In all cases, an excessively low number of
rows and/or columns provides bad results. The best accuracy is 60%, and it is obtained
with the distance dist3 and k1 = k2 = 8.

About HOG, the best results are also obtained with distances dist3 and dist4. In both
cases, the number of horizontal cells k5 must be an intermediate value, around 16. A
higher number does not improve the accuracy of the method. The number of bins per
histogram b1 must take values from intermediate to high, starting from 16. In the case
of distances dist1 and dist2, an excessively high number of cells and bins also provides
remarkably bad results. The best accuracy is 89%, and it is obtained with the distance dist3
and k5 = 8, b1 = 32.

In the case of gist, the best results are obtained again using the distances dist3 and
dist4. In these cases, the accuracy increases as the number of masks m1 does. It is not
necessary a high number of masks m1 to obtain good results. The best accuracy is 89%, and
it is obtained with the distance dist3 and k7 = 32, m1 = 256.

In the case of Wi-SURF, the best results are obtained using the distances dist1 and
dist3. In these cases, the image retrieval problem is solved with a better rate when using
high values of k9 (around 4). The process performs correctly with intermediate and high
number of windows per cell w1, starting from 128. The best rate is 97%, and it is obtained
with the distance dist1 and k9 = 4, w1 = 512.

If we analyze now BRIEF-gist, the best results are obtained using the distances dist3
and dist4. A high number of horizontal cells k10 is needed to obtain suitable results, about
64. A high number of windows w2 does not improve the results necessarily, but remarkably
bad results are obtained using low values of k10 or w2. The best accuracy obtained with BG
is 93%, and it is obtained with the distance dist3 and k10 = 64, w2 = 16.

Finally, in the case of RT, the results are not competitive if they are compared with the
rest of the descriptors. On the one hand, using the Radon transform along with the Fourier
Signature, the best results are obtained with the distances dist1 and dist4. In this case the
parameters have less relevance on the results, but in general, high values of k11 and low
values of p1 lead to better rates. Using RT–F, the best accuracy is 39%, and it is obtained
with the distance dist1 and k11 = 32, p1 = 1. On the other hand, using the POC method,
the best rate is 41% obtained with p1 = 4.

Analyzing globally these figures, Wi-SURF is the description algorithm that presents
the best absolute success rate, when it is used along with dist1. In general, the distance
dist3 performs much better than the rest in almost all the cases. HOG, gist and BRIEF-gist
are also acceptable methods. Taking into account the challenging characteristics of the
environment, they provide remarkably good results.

Apart from the success rate, it is also worth studying the computational cost of
the process, to evaluate whether the localization task could be carried out in real time.
Figures 13–19 show the necessary time to obtain the nearest neighbor, depending on the
size of the position descriptor. The average value after all the experiments is shown,
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expressed in seconds. A logarithmic scale has been used to represent efficiently the time in
the color scale.

The experiments have been carried out with a CPU Intel Core i7-9700® at 3 GHz and
using the mathematical tool Matlab®. These time results are not absolute, they depend of
the computer which runs the process. They are comparable because all the calculations
have been done with the same machine.

Figure 13. FS image retrieval problem. Computational time.

Figure 14. HOG image retrieval problem. Computational time.

Figure 15. Gist image retrieval problem. Computational time.

Figure 16. WS image retrieval problem. Computational time.
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Figure 17. BF image retrieval problem. Computational time.

Figure 18. RT–F image retrieval problem. Computational time.

Figure 19. RT–POC image retrieval problem. Computational time.

First, FS is the quicker algorithm. The average time per test image is under 0.02 s for the
majority of configurations. Only when both k1 and k2 take high values, the computational time
takes values around 0.22 s. Both parameters have a similar influence on the computational
cost. Second, the computational cost of HOG is slightly higher than FS, depending on the
configuration of the parameters. Both parameters b1 and k3 have similar influence on this
time. When their values are high it is possible to find some results where the runtime takes
around 0.32 s. Third, gist is computationally more an expensive algorithm. m1 has a strong
influence on the necessary time. A high number of masks along with high values of k7 make
the time per image to take values around 2.1 s. Anyway, it is possible to find configurations
that provide acceptable computational times with a lower number of components.

The second group of descriptors, in which each descriptor should be shifted until
finding the relative orientation before retrieving the image, are considerably slower. On
the one hand, Wi-SURF needs more than 2 s with most of the configurations. w1 has more
influence on the computational time so, as far as possible, it is better to avoid high values
of this parameter. High values of the parameters can lead to times up to 30 s. On the other
hand, Wi-SURF is the computationally most expensive method. w2 has a strong influence
on the process, and produces times about 33.5 s.

Finally, the method based on the Radon transform and Fourier performs quickly, with
times typically under 0.1 s. The method based on Radon transform and POC leads to times
around 0.5 s with some configurations of p1. Notwithstanding that, since the descriptors
based on the Radon transform have proved to perform poorly in the image retrieval task,
these descriptors are not included in subsequent analyses.
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5.2. Estimation of the Position

The second set of experiments assesses the ability of each description method to
estimate correctly the position of the robot, when noise or occlusions are present, depending
on the size of the descriptor and the type of distance considered.

For each test image, the position descriptor is obtained and compared with all the
position descriptors in the map. The 1st nearest neighbor is then retained, using any
distance measurement. In the cases that it is possible, a k-d tree has been implemented to
make efficiently this search. After obtaining the nearest neighbor, the Euclidean distance
between the real position of the robot at time instant t and the position of the nearest
neighbor is considered the position error.

Figures 20 and 21 present the results obtained with the Fourier Signature considering
the presence of noise or occlusions, respectively, in the test images. In these figures, first,
no filter is considered (a) and second, a homomorphic filtering is carried out both to the
reference and the test images (b). The result is expressed then as the average position error,
expressed in cm after considering the 1232 test images. The horizontal axis expresses the
percentage of information considered per configuration, expressed in logarithmic scale. The
ticks of each graphical representation are {2−15, 2−14, 2−13, . . . , 2−2, 2−1}which correspond,
respectively, to the next percentages of information {0.003%, 0.06%, 0.12%, . . . , 25%, 50%}.
These percentages express the information contained in each descriptor with respect to
the information contained in each original panoramic image

(
k1·k2

N1·N2
· 100

)
. In general, the

use of homomorphic filtering worsens the results. As expected, the higher the level of
noise, the higher the error. However, dist1 and dist2 present a more robust behavior
when noise is present. About the presence of occlusions, the FS descriptor is quite
sensitive to this phenomenon and the results worsen substantially when the percentage of
occlusion increases.
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Figure 20. FS average localization error with noise: (a) no filter and (b) homomorphic filtering.
Legend: —– Original, —– Noise 1, —– Noise 2, —– Noise 3, —– Noise 4, —– Noise 5.
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Figure 21. FS average localization error with occlusions: (a) no filter and (b) homomorphic filtering.
Legend: —– Original, —– Occlusion 1, —– Occlusion 2, —– Occlusion 3, —– Occlusion 4.

Figures 22 and 23 present the results obtained with the Histogram of Oriented
Gradients considering the presence of noise or occlusions, respectively, in the test images. In
these figures, first, no filter is considered (a) and second, a homomorphic filtering is carried
out both to the reference and the test images (b). Like in the case of FS, the percentages in
the horizontal axis express the information contained in each descriptor with respect to the
information contained in each panoramic image. In the case of HOG they can be obtained
as
(

k5·b1
N1·N2

· 100
)

. In presence of noise, the use of homomorphic filtering only improves the
results with distances dist3 and dist4 and with low level of noise. Intermediate percentages
of information tend to present the best absolute results so it is not necessary to store a big
quantity of information during the construction of the descriptor. In presence of noise,
the best absolute results are obtained with dist3, no filter and intermediate quantity of
information. Comparing to the other description methods, HOG stands out thank to its
robustness against presence of occlusions in the test images.
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Figure 22. HOG average localization error with noise: (a) no filter and (b) homomorphic filter.
Legend: —– Original, —– Noise 1, —– Noise 2, —– Noise 3, —– Noise 4, —– Noise 5.
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Figure 23. HOG average localization error with occlusions: (a) no filter and (b) homomorphic filter.
Legend: —– Original, —– Occlusion 1, —– Occlusion 2, —– Occlusion 3, —– Occlusion 4.

Additionally, Figures 24 and 25 present the results obtained with gist considering
the presence of noise or occlusions, respectively, in the test images. In these figures, first,
no filter is considered (a) and second, a homomorphic filtering is carried out both to the
reference and the test images (b). Like in the case of FS, the percentages of information
contained in each descriptor with respect to the information contained in each panoramic
image can be obtained as

(
2·k7·m1
N1·N2

· 100
)

. The use of homomorphic filtering does not
improve the localization results in any case. In the presence of noise, dist3 presents the best
results when considering an intermediate percentage of information.
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Figure 24. Gist average localization error with noise: (a) no filter and (b) homomorphic filtering.
Legend: —– Original, —– Noise 1, —– Noise 2, —– Noise 3, —– Noise 4, —– Noise 5.
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Figure 25. Gist average localization error with occlusions: (a) no filter and (b) homomorphic filtering.
Legend: —– Original, —– Occlusion 1, —– Occlusion 2, —– Occlusion 3, —– Occlusion 4.

Fourthly, Figures 26 and 27 present the results obtained with Wi-SURF considering
the presence of noise or occlusions, respectively, in the test images. In these figures, first,
no filter is considered (a) and second, a homomorphic filtering is carried out both to the
reference and the test images (b). The information contained in each descriptor with respect
to the information contained in each panoramic image can be obtained as

(
k9·w1·64

N1·N2
· 100

)
.

The use of homomorphic filtering does not reduce the localization error. In this case, the
performance of the descriptor is severely influenced by the presence of noise. It is very
significant that results without noise and occlusion are better than the errors obtained
with the previous descriptors, but when these effects appear on the scene the results
worsen sharply. In general, dist1 and dist3 present the best results when considering an
intermediate or high percentage of information.

(a)

(b)

Figure 26. WS average localization error with noise: (a) no filter and (b) homomorphic filtering.
Legend: —– Original, —– Noise 1, —– Noise 2, —– Noise 3, —– Noise 4, —– Noise 5.
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(a)

(b)

Figure 27. WS average localization error with occlusions: (a) no filter and (b) homomorphic filtering.
Legend: —– Original, —– Occlusion 1, —– Occlusion 2, —– Occlusion 3, —– Occlusion 4.

Figures 28 and 29 present the results obtained with the BRIEF-gist method considering
the presence of noise or occlusions, respectively, in the test images. In these figures, first,
no filter is considered (a) and second, a homomorphic filtering is carried out both to the
reference and the test images (b). Like in previous figures, the percentages in the horizontal
axis express the information contained in each descriptor with respect to the information
contained in each panoramic image. In the case of BG, they can be obtained as

(
k10·w2
N1·N2

· 100
)

.
In this case, the best results are achieved with an intermediate amount of information, so it
is not necessary to store a big quantity of information when building the descriptors. In
addition, in general terms, the filter tends to improve the results. Comparing to the other
description methods, BRIEF-gist presents higher error in ideal conditions, but it controls its
error when noise appears on the scenes, obtaining good results even with high quantity of
noise. Additionally it performs correctly when no occlusions take part on the image but it
works wrongly when this phenomenon appears.

(a)

(b)

Figure 28. BG average localization error with noise: (a) no filter and (b) homomorphic filtering.
Legend: —– Original, —– Noise 1, —– Noise 2, —– Noise 3, —– Noise 4, —– Noise 5.
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(a)

(b)

Figure 29. BG average localization error with occlusions: (a) no filter and (b) homomorphic filtering.
Legend: —– Original, —– Occlusion 1, —– Occlusion 2, —– Occlusion 3, —– Occlusion 4.

If we analyze jointly these results, we can arrive to some general conclusions. First,
HOG presents very good localization results under ideal conditions. These results degrade
in the presence of noise or occlusions, but some configurations resist these effects. Second,
gist with no filter leads to worse results in ideal conditions, but it is robust against adverse
effects, mainly against noise. Third, WS along with filter provides the best absolute
localization results in ideal conditions. However, its performance sharply worsens with
noise and occlusions. Finally, the results of BG in ideal conditions are not remarkable.
However, this is the descriptor that presents more robustness in the presence of noise and
occlusions, even in very unfavorable conditions.

5.3. Estimation of the Orientation

In this section, the problem of orientation estimation is addressed. To assess the
performance of each description method in this task, independently of the results of the
position estimation, the test image orientation descriptor is always compared with the
orientation descriptor of the map image which was captured in the geometrically closest
position. The problem is solved using the algorithms presented in Section 3, except those
based on Radon transform, which proved to perform poorly in the image retrieval task.

First, the results obtained with the Fourier Signature are presented. Figure 30 shows
the results of the orientation estimation. The influence of noise is also assessed in this
figure. The results are expressed as average orientation error, in degrees, after repeating the
experiment with the 1232 test images. This figure shows that the algorithm is very robust
against the presence of noise. The optimal configuration is an intermediate to high number
of rows (k3) and an intermediate number of columns (k4). A high number of columns
worsens the results. Additionally, the presence of occlusions in the orientation estimation
process is assessed in Figure 31. This figure shows that the influence of occlusions is higher,
since the results tend to worsen as the level of occlusion increases. Nevertheless, some
configurations of the parameters permit obtaining an average error lower than 10 deg
even with 40% occlusions. The computational time of the orientation estimation process is
shown in Figure 32, expressed in seconds. The descriptor based on FS is able to estimate
the orientation relatively quickly for most configurations of k3 and k4 and only high values
of both parameters produce a relatively high computation time.
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Figure 30. FS orientation estimation in the presence of noise. Average orientation error (deg).

Figure 31. FS orientation estimation in the presence of occlusions. Average orientation error (deg).

Figure 32. FS orientation estimation. Average computation time (s).
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Second, the performance of the HOG descriptor is assessed, considering several values
of the parameters l1 (width of the vertical cells in the orientation descriptor) and d1 (distance
between consecutive vertical cells, which are overlapped). Figure 33 shows the average
orientation error after considering all the test images. In addition, the influence of the
presence of different levels of noise in the test images is analyzed. In general terms, low to
intermediate values of d1 and high values of l1 produce the best results (lower orientation
error). In addition, HOG proves to be a descriptor which is robust against the presence
of noise, since the results do not change substantially as the level of noise increases. In
general, HOG tends to present better results in orientation estimation comparing with
FS. Furthermore, the influence of partial occlusions in orientation estimation is shown in
Figure 34. As with FS, the influence of occlusions in the orientation estimation is substantial,
and the results degrade quickly as the percentage of occlusions increases. Notwithstanding
that, high values of l1 tend to produce relatively low orientation error, independently
of the level of occlusions. Finally, Figure 35 shows the necessary time to estimate the
orientation (average time, expressed in seconds, after considering all the test images). Most
configurations of l1 and d1 produce a relatively low computation time. Only very high
values of l1 combined with low values of d1 output a substantially high calculation time.

Figure 33. HOG orientation estimation in the presence of noise. Average orientation error (deg).

Figure 34. HOG orientation estimation in the presence of occlusion. Average orientation error (deg).
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Figure 35. HOG orientation estimation. Average computation time (s).

Third, the results of relative orientation estimation with gist are presented and
commented. Figure 36 shows the average orientation error (degrees) when considering
different configurations of l2 (width of the vertical blocks in the orientation descriptor) and
d2 (distance between two consecutive vertical blocks, which are overlapped). The influence
of the level of occlusions is checked in this figure. In the case of this description method,
the orientation error tends to increase as d2 does. However, as in the case of HOG, high
values of the width of the vertical blocks produce relatively good results independently of
the value of d2. To finish the experiments, the necessary time to estimate the orientation
(average time in seconds) is shown in Figure 37. The figure shows that d2 is the parameter
that has a predominant influence upon the calculation time. Low values of this parameter
produce a comparatively high computation time.
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Figure 36. Gist orientation estimation in the presence of occlusion. Average orientation error (deg).
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Figure 37. Gist orientation estimation. Average computation time (s).

In addition, the results of relative orientation estimation with Wi-SURF are presented
and commented. Figure 38 shows the average orientation error (degrees) taking into
account the noise influence considering the variation on the parameters k9 and w1. It
shows a strong influence of the noise in the result. It is possible to check that results
without noise are acceptable (about 5–10 deg), but the error increase considerably when
the noise appears on the scenes. If the image is corrupted with noise with variance higher
than σ2 = 0.0025, the error is always more than 30 deg. The influence of the level of
occlusions can be checked in the Figure 39. In the case of the occlusions, the results show
more robustness, except for the results with 40% of occlusion that are considerably bad
comparing with HOG. In general, the error tends to be optimized with middle values of
w1. To finish the experiments, the necessary time to estimate the orientation (average time
in seconds) is shown in Figure 40. The figure shows that w1 is the parameter that has a
predominant influence upon the calculation time. High values of this parameter produce a
comparatively high computation time.

Figure 38. WS orientation estimation in the presence of noise. Average orientation error (deg).
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Figure 39. WS orientation estimation in the presence of occlusion. Average orientation error (deg).

Figure 40. WS orientation estimation. Average computation time (s).

Additionally, the performance of the BRIEF-gist descriptor is assessed, considering
several values of the parameters w2 and k10. Figure 41 shows the average orientation error
after considering all the test images and the influence of the presence of different levels
of noise. In general terms, the optimal configuration is an intermediate to high number
of cells (k10) and an intermediate number of windows (w2). A high number of windows
lead to worse results. In addition, BRIEF-gist proves to be a descriptor which is robust
against the presence of noise, since the results do not change substantially as the level
of noise increases. In general, BRIEF-gist tends to present better results in orientation
estimation comparing with other descriptors. However, the influence of partial occlusions
in orientation estimation has a worse influence, as shown in Figure 42. As with Wi-SURF,
the algorithm performs considerably bad under the influence of occlusions. As before,
intermediate values of w2 output the best results. Finally, Figure 43 shows the necessary
time to estimate the orientation. Most configurations of w2 and k10 produce a relatively
low computation time. Only very high values output a substantially high calculation time.



Sensors 2021, 21, 3327 31 of 37

Figure 41. BG orientation estimation in the presence of noise. Average orientation error (deg).

Figure 42. BG orientation estimation in the presence of occlusion. Average orientation error (deg).

Figure 43. BG orientation estimation. Average computation time (s).
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In general terms, HOG and gist produce relatively better results in the estimation
of relative orientation, and the previous figures prove that it is possible to find some
configurations of the most relevant parameters that offer a good balance between error and
calculation time. Moreover, Wi-SURF and BRIEF-gist also offer acceptable errors in ideal
conditions, and the calculation times are low. However, with these two descriptors, the
orientation error tends to increase remarkably with the presence of occlusions and noise.

5.4. Evaluation with a Trajectory Dataset

To conclude the experimental section, a new experiment is carried out with a set of
images extracted from the COLD dataset [72]. This publicly available dataset contains
several sets of images that were captured while a mobile robot traversed a trajectory
in some indoor environments. Therefore, the results in this section permit assessing the
performance of the descriptors in a different environment and with a trajectory-like dataset.

To carry out the experiment, the Saarbrücken dataset is selected [72]. To create the
training set, we have selected images from the Saarbrücken dataset in such a way that the
distance between consecutive capture points is, on average, 30 cm. The rest of images are
considered as test images, and they are used to solve the localization problem, as described
in Section 3 .

The results are presented in Figures 44 and 45. As in the previous experiments, we
estimate both the position and the relative orientation of the robot and we consider either
noise or occlusions in the test images. The descriptors included in this experiment are HOG,
gist, WS and BG, since they have showed a good performance in the previous experiments.
Additionally, their most relevant parameters are tuned with the values that provided, in
general, best estimations in the previous subsections. The levels of noise or occlusion are the
same than those included in the previous experiments: presence of different Gaussian noise
(σ2 = {0, 0.0025, 0.05, 0.01, 0.02}) and partial occlusions considering ({0, 5, 10, 20, 40}%) of
the image occluded.

(a) (b)

Figure 44. Average errors with the COLD dataset in the presence of noise. (a) Average position error
(cm) and (b) average orientation error (deg). Legend: —– Original, —– Noise 1, —– Noise 2, —–
Noise 3, —– Noise 4.

First, Figure 44 shows (a) the average error of the localization task (expressed in cm)
and (b) the average error of the orientation retrieval task (expressed in deg). Several levels
of noise are considered in this experiment. Second, Figure 45 shows the same results but
considering several levels of partial occlusions. It is worth highlighting that these errors
cannot be directly compared with the absolute errors presented in the previous subsections,
since the experimental setup is different. Notwithstanding that, these figures permit
assessing the relative performance of the descriptors with a trajectory-like dataset and
knowing if the descriptors present similar tendencies in different kinds of environments
and datasets.
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(a) (b)

Figure 45. Average errors with the COLD dataset in the presence of occlusions. (a) Average position
error (cm) and (b) average orientation error (deg). Legend : —– Original, —– Occlusion 1, —–
Occlusion 2, —– Occlusion 3, —– Occlusion 4.

Figure 44a shows that the relative performance of the descriptors when calculating
the relative position in ideal conditions (i.e., with no noise) is quite similar. Additionally,
gist and BG resist quite well the presence of noise. However, HOG and WS quickly degrade
their performance as the level of noise increases. These results are in line with those presented
in previous sections. About the relative orientation retrieval with noise, Figure 44b shows
that HOG, gist and BG are quite robust, while WS performs worse with high levels of noise.
Figure 45a proves that the four description methods present relatively good results in the
presence of occlusions, except for the highest level of occlusion. In this case, HOG is the
descriptor that best performs. About the orientation retrieval in presence of occlusions,
Figure 45b shows that HOG, gist and BG perform well, independently on the level of
occlusion, but WS quickly increases the error with high levels of occlusion.

6. Conclusions

This paper has focused on the study of the localization problem, using a previously
built visual representation of the environment. The problem has been addressed as an
absolute localization task, making use of the data provided by a catadioptric vision sensor
mounted on the robot both to estimate both the position and the orientation of the robot.
To extract relevant information from the images, methods based on the global appearance
of the panoramic scenes have been implemented and assessed. A comparative evaluation
has been carried out between six families of well-known global description methods.

The main contributions of the paper include an exhaustive study of global appearance
techniques (FS, HOG, gist, WS, BG and RT) and the adaptation of some of these algorithms
to store position and orientation information from panoramic scenes in such a way that
both processes can be carried out sequentially. First, the position of the robot can be
estimated and second, the orientation is estimated.

In addition, the computational cost to estimate the position and orientation has
been studied, including the influence of the most relevant parameters. This study has
revealed that FS and RT present a reasonable computational cost, and so do some specific
configurations of HOG and gist, but Wi-SURF and BRIEF-gist are less competitive as far as
computation time is concerned. From this point of view, FS, RT, HOG and gist could be
feasible in real time applications. In addition to this, the performance of the descriptors has
been tested in localization tasks. First, we have focused on the image retrieval problem.
All the description methods have been tested along with several distance measures, and
the results have shown that Wi-SURF and BRIEF-gist present the best relative results.
Additionally, HOG with certain distance measures present very good results and the best
relation between computational time and image retrieval rate. Second, the relative error of
the position estimation has been studied. It has corroborated that: (a) HOG presents very
good localization results under ideal conditions and is quite robust to noise and occlusions,



Sensors 2021, 21, 3327 34 of 37

(b) Wi-SURF provides the most competitive results under ideal conditions but is very
negatively influenced by noise and occlusions and (c) BRIEF-gist is very robust against
these effects, but its results in ideal conditions are not remarkable. To finish, the problem of
orientation estimation has been addressed. The best results are obtained with WS and BG
but only when there is neither noise nor occlusions. If these phenomena are present, HOG
and gist perform more robustly.

These results have demonstrated that global-appearance methods are a feasible
approach to solve the localization task. Thanks to them, the robot can build a model
of the environment and use it to estimate with accuracy the position and orientation of the
robot in the environment, with computational efficiency. This fact may have interesting
implications in future developments in the field of mobile robotics. As an example, this
concept can be used to build hybrid maps that arrange the information in several layers,
with different accuracy: a high level layer that permits carrying out a rough and quick
localization and a lower layer that contains information with geometric accuracy and
allows the robot to refine the estimation of its position. Global-appearance methods can be
used on their own or in conjunction with feature-based techniques to develop algorithms
that face these problems efficiently.

All these facts encourage us to go into this framework in depth. To build a fully
autonomous mapping and localization system, several future works should be considered.
First, the image collection process could be automated to obtain an optimal representation
of the environment. Second, the mapping and localization processes could be integrated in
a topological SLAM system that carries out both the model creation and the localization
from the scratch. To optimize these algorithms we also consider carrying out a complete
comparison between global-appearance and feature-based techniques as a future work.
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