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Abstract: With the rise of 5G, Internet of Things (IoT), and networks operating in the mmWave
frequencies, a huge growth of connected sensors will be a reality, and high gain antennas will be
desired to compensate for the propagation issues, and with low cost, characteristics inherent to
metallic radiating structures. 3D printing technology is a possible solution in this way, as it can print
an object with high precision at a reduced cost. This paper presents different methods to fabricate
typical metal antennas using 3D printing technology. These techniques were applied as an example
to pyramidal horn antennas designed for a central frequency of 28 GHz. Two techniques were used
to metallize a structure that was printed with polylactic acid (PLA), one with copper tape and other
with a conductive spray-paint. A third method consists of printing an antenna completely using a
conductive filament. All prototypes combine good results with low production cost. The antenna
printed with the conductive filament achieved a better gain than the other structures and showed a
larger bandwidth. The analysis recognizes the vast potential of these 3D-printed structures for IoT
applications, as an alternative to producing conventional commercial antennas.

Keywords: 3D printing; metal antennas; horn antennas; IoT sensors; 5G

1. Introduction

The fifth generation of mobile communications (5G) is driven by an unprecedented
growth in the number of connected devices and shared data [1]. With the main goal of being
a unifying connectivity structure for the next decade and beyond [2], 5G enables the IoT
reality, where a device will be able to maintain connectivity, regardless of time or location.
Everything will be monitored, measured, or sensed, and to gather that information, the
number of devices interacting with the surroundings will increase exponentially.

New scenarios such as the proliferation of sensors to deliver IoT services associated
to home appliances, health monitoring, smart offices, efficient navigation systems (au-
tonomous cars), immersive multimedia experiences, either through augmented or virtual
reality and cloud computing, will all be combined in a typical 5G network [1]. Given the
number of the connected devices, their diversity of nature, sizes, and shapes, the antennas
will face multiple challenges with various forms and the combination of several materials.

New techniques to build antennas need to be investigated, to properly create radiation
structures in the daily objects. Technology must be able to handle heterogeneous and
challenging layouts, always bearing in mind the improvement of both energy and cost
efficiencies along with spectrum performance [3].

Wider bandwidths are probably the most effective method to provide the data de-
mands for 5G services [4], thus the migration to the millimeter waves region becomes
mandatory. Several concerns arise with these operation frequencies, essentially due to
the huge path-loss and consequent fragile link result of the occurring diffractions [1]. To
overcome these communication issues, combating the large propagation loss in mmWaves,
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it is important to use high gain and highly directional antennas. Besides, it is highly
recommended that antennas are compact, robust, and with a low-cost and fast production.

When compared with dielectric antennas, metal antennas, such as horn, dipoles, loop,
slots, etc., due to the low losses of metals, typically allow to obtain more efficient radiating
structures, greater gains (as singular elements), and even enable handling greater power
levels. However, their costs, manufacturing process, and weights are limiting factors to
their extensive use.

Within this context, horn antennas are radiating structures with relatively high gain
and wide bandwidth, while being very robust [5]. These structures are widely used as
a feed element for large radio astronomy, satellite tracking, and communication dishes,
and they can be found installed throughout the world [6]. Their characteristics, associated
with the simplicity of construction, make them suitable for application in sensors or even
integration in larger antenna arrays.

Empowered by many demanding commercial and aerospace markets, recent advances
in 3D printing technology have been tested as an alternative to the more traditional
processes, such as milling or injection molding. Both techniques have advantages, but
also major disadvantages when compared to 3D printing. The milling process results in
a large amount of wasted metal scrap, and on the other hand, molding injection is very
time-consuming and has higher production costs [7].

3D printing presents itself as a more environment-friendly alternative, a crucial aspect
in the 5G’s context, given the goal to become the greener mobile communications generation
ever. Moreover, this manufacturing process has the advantages of minimizing the time-to-
market (allowing for fast prototyping), not causing waste, and presenting endless versatility
of the structures created, making possible to create highly complex shapes [8].

The combination of the potentiality of metal-radiating structures, with the benefits of
3D printing technology, is a promising solution in the context of 5G communication systems,
and their main challenges. In [9] a stepped reflector was built from a laser sintering process.
This work confirms the viable option of 3D printing technique to build high frequency
and medium-sized antennas. Despite presenting proper gain and good efficiency, the
construction process makes this strategy prohibitive, because it is very cumbersome and a
spray coating is necessary to apply. One of the main limitations of 3D printing is the ability
to produce metallic elements [10]. In this sense, a liquid metal alloy was used to produce a
Yagi-Uda Loop Antenna, operating at 2.45 GHz using a low-cost manufacturing process.
The material used to print the structure was the resin FormLabs Durable.

Regarding horn antennas, three prototypes operating at X band were produced with
3D printing technology in [11]. The antennas were printed in ABS and coated with silver
paint, copper tape, and were copper plated. These prototypes were further compared
with a conventional aluminum horn antenna with the same dimensions. The antenna that
was copper plated had the best gain value. In [12] a wide variety of components were
manufactured operating in the Ku-band. Nonetheless, a horn antenna with 17 dBi gain
and good radiation patterns was obtained, and authors point out the antennas’ surface
roughness as the main reason to justify the losses found in the measured gain. For the
Ka-band, in [13], two identical horn antennas were 3D printed. One was painted with a
copper conductive paint, and the other one was covered with copper tape. These proto-
types presented simulated gain values of 18.6 dBi and 9.4 dBi, for the copper painted and
copper tape antennas, respectively, despite 28 GHz measurements were not performed.
This significant difference is due to the coating process used. The reference [14] shows
good results for a corrugated horn antenna operating in the X band, with a structure man-
ufactured using an ABS material, and coated using copper with electroless metallization
method. In [15] two slot antennas are proposed for operating at 28 GHz. These antennas
required a post-printing treatment with a spray coating. Authors claim that this metal-
lization method allows a lower cost of fabrication when compared to the conventional
metallization processes. Nevertheless, this coating technique presents a significant issue
since it is not possible to assure a thickness uniformity across the whole structure.
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Also, for the Ka-band, an attractive metallization process was tested, requiring no
treatment process before and after 3D printing [16]. The printed structure was metallized
using electrodeposition of silver conductive ink and the manufactured prototype achieved
a good performance. The drawback of this technique is that the coating process produced
a non-uniform layer of paint.

Structures that do not require a post-printing treatment process have received great
attention, irrespective of the structures being printed with conductive materials or directly
printed on metal [17,18]. In [19], two-horn antennas have been modelled using 3D printing,
operating at 12 GHz. One was printed with a regular filament and covered with copper
tape while the other was directly printed with ProtoPasta, a conductive PLA. The first
prototype obtained very promising results, both in bandwidth and measured gain. On
the other hand, the prototype printed with the conductive material obtained a low gain
when compared with the typical values of horn antennas and an efficiency of only 35%.
Therefore, ProtoPasta does not prove to be the most suitable material for applications
within the context of the new mobile communication systems.

To date, there are a few studies on 3D printing with conductive filaments [20–23].
However, in all these works the operating frequency is low when compared to the 5G
demands. Regarding the conductive filaments, an effort was made in the parametric study
of 3D printing specifications for use in printing topologies with the Electrifi material [24].
Although a microstrip patch antenna and a pyramidal horn antenna were correctly built
with Electrifi [24], respectively for the operating frequencies of 2.5 GHz and 5.8 GHz, there
are some challenges in the production of RF devices for higher frequencies using this type
of material. In [25–27] three different antennas were developed using Electrifi filament with
conductive properties, an electric meandered dipole antenna, a 3D-printed dipole, and a
3D-printed conformal patch antenna, for 915 MHz, 900 MHz, and 2.32 GHz respectively.

A prototype of a 3D metal printed polarization reconfigurable horn antenna is pre-
sented in [28] for K/Ka band, using titanium material, revealing a reasonable agreement
between simulations and measurements. A low-profile all-metal antenna design with
resonant cavity is described in [29] to operate in the frequency range of 130–150 GHz. To
create the conductive layer, the antennas were coated with a thin layer of platinum using a
physical vapor deposition. Another prototype was made using direct metal laser sintering.
Both processes present a huge complexity and cost.

This paper presents and compares a set of techniques for the development of typically
metallic antennas using 3D printing. In this sense, as an example, several horn antennas
are developed to operate at 28 GHz, for 5G/IoT communications, using different methods,
these methods can be replicated to other different structures.

The article is divided into six sections, starting with an introduction with a state-of-the-
art report, where possible applications for the prototypes proposed are presented and the
objectives of this work are settled. In the Section 2, all construction methods are described,
along with the materials used in each prototype. In Section 3 the simulation and measured
results of all designed antennas are shown. Next, the Section 4 presents an analysis of the
results obtained. Finally, in Section 6, the main conclusions are reported.

2. Basis Antenna Structure

In this work, the analysis and description of the various techniques for the construction
of typically metallic radiating elements using the potential of 3D printing will be supported
by the construction of a typical structure which offers reasonable high bandwidths and
gain values, which are the horn antennas. However, it can be extended to other types of
metal structures.

Horn antennas are one of the simplest antennas in the microwave frequency bands.
Traditionally, these antennas are made of metallic materials and are typically fed by a
section of a waveguide. Their structure forms a smooth transition between the waveguide
and the free space, directing the radio waves into a beam [30]. Horn antennas may adopt
several forms and the most common types are the rectangular, or pyramidal, and the
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conical. Rectangular horns start from a rectangular waveguide propagating the TE10
mode, and in these cases, one face is enlarged with a pyramidal shape, as can be seen in
Figure 1a,b. Due to its ease of construction, wide bandwidth, versatility, ease of excitation,
and high gain, this type of antenna is used in multiple applications.
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The waveguide’s dimensions were found based on the standard rectangular wave-
guide WR34 (8.636 mm × 4.318 mm, which operates from 22 GHz up to 33 GHz). Regard-
ing the size of the horn, it was calculated to operate at 28 GHz and perform a gain of G = 
12 dBi. In horn antennas the gain is the starting point to calculate its aperture dimensions. 
Bearing in mind that it is important to obtain a compact prototype, this gain was chosen 
as a tradeoff for a value that would not represent a prototype too large. Considering the 
design parameters shown in Figure 1, the theoretical models [31] were used to estimate 
the initial dimensions of the horn antenna. 

The preliminary values of the horn were submitted to an optimization process using 
the CST simulator. Although the waveguide was based on a standard, the versatility of 
the 3D printing allows to optimize its dimensions for this specific application. 

Horn antennas are typically fed by a radiation element that is placed at a λ/4 distance 
from the waveguide’s closed face. There are a variety of possibilities to excite a horn an-
tenna, however a slot or a monopole element are the most common methods. In this work, 
and for simplicity, RS- Pro-27GHz SMA connector (two hole flange mount) operating as 
a monopole antenna was used, as it is shown in Figure 2. Its inner pin has a length of La 
and acts as a monopole at 28 GHz, properly feeding the structure. 

Figure 1. Geometry of the horn antenna: (a) three-dimensional view, (b) profile view, and (c) SMA connector operating as a
monopole for the feeding structure.

In this work, the pyramidal structure was selected, mainly due to the associated sim-
plicity of construction. To properly design the antenna, some aspects were considered, re-
garding gain, operating frequency, and the feeding waveguide dimensions (wg_a × wg_b).

The waveguide’s dimensions were found based on the standard rectangular waveg-
uide WR34 (8.636 mm × 4.318 mm, which operates from 22 GHz up to 33 GHz). Regarding
the size of the horn, it was calculated to operate at 28 GHz and perform a gain of G = 12 dBi.
In horn antennas the gain is the starting point to calculate its aperture dimensions. Bearing
in mind that it is important to obtain a compact prototype, this gain was chosen as a
tradeoff for a value that would not represent a prototype too large. Considering the design
parameters shown in Figure 1, the theoretical models [31] were used to estimate the initial
dimensions of the horn antenna.

The preliminary values of the horn were submitted to an optimization process using
the CST simulator. Although the waveguide was based on a standard, the versatility of the
3D printing allows to optimize its dimensions for this specific application.

Horn antennas are typically fed by a radiation element that is placed at a λ/4 distance
from the waveguide’s closed face. There are a variety of possibilities to excite a horn
antenna, however a slot or a monopole element are the most common methods. In this
work, and for simplicity, RS- Pro-27GHz SMA connector (two hole flange mount) operating
as a monopole antenna was used, as it is shown in Figure 2. Its inner pin has a length of La
and acts as a monopole at 28 GHz, properly feeding the structure.
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3. Proposed Metallization Techniques

To analyze the different techniques of producing an antenna using the 3D printing
technology, three approaches were adopted, using copper tape, conductive paint, and
conductive filament. All antennas were printed with an Ultimaker 3 Extended printer [32],
which is based on the fused deposition modelling (FDM) technique. Their design process
and construction methods are presented in the following sections.

3.1. Horn Antenna with Copper Tape Metallization

The process started by printing the optimized horn antenna structure of Figure 1 with
regular PLA, which is the most common material within the 3D printing filaments. After
printing, the antenna was covered with a single layer of copper tape.

The PLA used in this process was from the Ultimaker supplier and it possesses a
dielectric constant εr of 2.7 and a dissipation factor tg(δ) of 0.008 @ 1 MHz [19]. The copper
tape was from Würth Elektronik and has a thickness of 0.04 mm. It is important to highlight
that in the case of this particular tape, its glue has electrical conductivity properties. The
final parameters of the antenna’s dimensions are presented in Table 1 and the produced
prototype is shown in Figure 2. The wall thickness of the antenna is 0.8 mm.

Table 1. Dimensions of 3D-printed horn antenna coated with copper tape.

Parameters wg_a wg_b Horn_A Horn_B Horn_L La

Dimensions (mm) 8.18 3.85 17.9 16 8 2.05

3.2. Horn Antennas with Copper Conductive Paint

The construction process of these antennas is similar to that previously described,
except that instead of covering the structure with copper tape, a conductive spray-paint is
applied on the top of the PLA structure.

The commercial spray used for coating these antennas was the RS EMI/RFI Shield-
ing Aerosol 400 mL [33]. This is a spray that is easy to apply and with a drying time
of approximately 5 min. However, it reaches its maximum conductivity after 24 h of
its application.

Several prototypes were assembled, with small modifications, regarding the number
of conductive layers, and the roughness of the structure walls, to analyze their impact in the
performance of the antenna and therefore, to study the best technique to fabricate this type
of antenna. Five prototypes were printed, where in three of them the spray was directly
applied to the antenna without any preparation. The other two prototypes were previously
sanded to achieve a smoother surface, diminishing the roughness among printed layers,
where the paint would be applied.

With the first three models it was intended to analyze the impact of the variation of
the number of layers of conductive spray-paint applied, and thus, two, three, and four
layers of the above-mentioned spray coating were applied. In the sanded prototypes two
and three layers of the same spray-paint were applied.

Figure 3 shows two of the prototypes made with conductive paint using each tech-
nique, without the sanding process, Figure 3a, and with the sanding process, Figure 3b.Figure 3 shows two of the prototypes made with conductive paint using each tech-
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3.3. Horn Antennas Built from Conductive Filament

Typically, antennas produced with 3D printing technology require treatment after
printing, such as the metallization of their structure. Given the increasing advancement in
technology and the widespread use of mobile communications, it becomes necessary to
develop antennas that are easy and fast to produce in mass. Therefore, a possible solution
would be to produce an antenna entirely with a conductive filament.

The material used to produce the designed horn structure exclusively with the 3D
printing process was the Electrifi, a conductive filament from Multi3D [34]. As mentioned
in [34], this material is considered as the most conductive filament available on the market
and has an electrical conductivity of σ = 1.67 × 104 S/m, making its usage highly promising
for the design of radiating structures for mmWaves.

To confirm the proper conductivity of Electrifi, it was characterized. A line with
dimensions 0.2 cm × 10 cm × 0.2 cm was printed, as shown in Figure 4. Epoxy EPO-TEK
H20E from Epoxy technology [35] was used to ensure the electrical contact between the
multimeter terminals and the printed part.

Figure 3 shows two of the prototypes made with conductive paint using each tech-
nique, without the sanding process, Figure 3a, and with the sanding process, Figure 3b. 
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Several measurements of the material DC resistance were performed, and the values
obtained are shown in Table 2. Using (1) and (2), where R is the resistance of the material, ρ
is the resistivity, σ is the conductivity, l represents the line length, and A is the respective sec-
tion, it was possible to obtain an estimation of the conductivity value of σ = 2.22 × 103 S/m.
The difference between this value and the one mentioned by the manufacturer may be
because this resistance is of a printed piece and not of the material itself, as mentioned
in [34]. Table 3 holds all the estimated properties of the referred material, which were
considered on the antenna design process.

R = ρ
l
A

(Ω/m) (1)

σ =
1
ρ
(S/m) (2)

Table 2. Resistance of the Electrifi material.

Measures R1 R2 R3 R4 R5 R6 ¯
R

Resistance (mm) 11.3 Ω 11.0 Ω 11.0 Ω 11.5 Ω 11.3 Ω 11.2 Ω 11.22 Ω

Table 3. Characterization of the Electrifi material.

Length
l (cm)

Section
A (cm2)

Resistance
R (Ω)

Resistivity
ρ (Ω·cm)

Conductivity
σ (S/m)

10 0.04 11.22 0.045 2.22 × 103

Despite the Electrifi supplier suggests the most suitable printing settings for this
material, for high frequencies, the printing process can be a challenging task since the
structure to be printed has a small size. After some manufacturing tests, the printing
parameters have been set, and are presented in Table 4.
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Table 4. 3D-printing settings for PLA and Electrifi filaments.

Printing Setting PLA Electrifi

Printing speed 70 mm/s 15 mm/s

Printing temperature 200 ◦C 140 ◦C

Layer height 0.3 mm 0.2 mm

It should be noted that this prototype was printed in vase mode. This mode consists
of a constant printing, in which the nozzle goes through layer by layer in a spiral form as if
forming a vase. This solution not only allowed the use of less material but significantly
optimized the printing time, with the prototype being printed in approximately 12 min.

The prototype printed with Electrifi has a wall thickness of 0.4 mm. The final dimen-
sions, listed in Table 5 and Figure 5, show the antenna built using the conductive filament.

Table 5. Dimensions of 3D-printed horn antenna using conductive filament.

Parameters wg_a wg_b Horn_A Horn_B Horn_L La

Dimensions (mm) 8.35 3.85 22 17.15 13.25 2.15

Length 
l (cm) 

Section 
A (cm2) 

Resistance 
R (Ω) 

Resistivity 
ρ (Ω.cm) 

Conductivity 
σ (S/m) 

10 0.04 11.22 0.045 2.22 × 103 
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4. Results

The constructed prototypes using the different techniques to metallize the surface of
the antenna were tested and measured, and their results were compared with the ones
obtained from the simulated models. Measurements were performed with a VNA that
operates up to 67 GHz (E8361C by Agilent Technologies, Santa Clara, CA, USA) and two
reference antennas (LB-180400-KF 18–40 GHz Broadband Horn Antenna), for radiation
pattern and gain, ensuring the antennas in the far-field.

4.1. Horn Antenna with Copper Tape Metallization

Figure 6 shows the comparison between the simulated and measured reflection coef-
ficient of the copper-taped horn antenna. It is possible to observe that the measured and
simulated results are clearly in agreement, and the antenna is properly matched, with the
minimum value of S11 appearing at 28 GHz.
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It is possible to observe that the measurement results are close to the simulations. This
antenna exhibits a measured half power beamwidth (HPBW) of 38◦ in the plane θ = 90◦,
while in the orthogonal plane (φ = 90◦) is about 33◦. The copper-taped horn antenna has
a simulated gain of 12 dBi and a measured gain of 11.2 dBi, at 28 GHz, which is a clearly
satisfying result.

4.2. Horn Antennas with Copper Paint

Using this method, two approaches were tested with effect mainly on the finishes,
which are with or without sanding of the 3D structure surface.

• Without sanding process:

Three prototypes were built using a different number of layers of conductive ink
and characterized by their main parameters. Figure 8 represents the comparison of the
simulated and measured reflection coefficient of the painted antennas without the sand-
ing process.
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According to Figure 9, a good agreement between both curves is noticeable. The
antenna has a HPBW of 34.2◦ and 29◦ in the planes θ = 90◦ and φ = 90◦, respectively, with
a measured gain of 10.8 dBi at 28 GHz, and reminding that the simulated value was 12 dBi,
which is a satisfactory result.

• With sanding process:

To evaluate the roughness impact of this manufacturing process on the antenna’s
characteristics, the two painted prototypes were compared applying the sanding process
in the structure. Figure 10 presents the comparison between the simulated and measured
reflection coefficient of the two and three-layer painted antenna after a hand-made sanding
process, which is not accurate.
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Figure 11. Simulated and measured normalized radiation pattern at 28 GHz of the three-layer horn antenna (sanded) with
conductive paint: (a) plane θ = 90◦ and (b) plane φ = 90◦.

It can be observed, and in agreement with the other antennas, both radiation patterns
are similar. Based on the high directivity observed and the gain of 11.8 dBi, these are
satisfactory results for a 3D-printed horn antenna. The measured HPBW was 26.7◦ and 27◦

in the planes θ = 90◦ and φ = 90◦, respectively.

4.3. Horn Antennas with Conductive Filament

Regarding the 3D-printed horn antenna using the conductive material, the comparison
between the simulated and measured reflection coefficient is shown in Figure 12.
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Figure 13. Simulated and measured normalized radiation pattern at 28 GHz of the 3D-printed horn antenna with conductive
filament: (a) plane θ = 90◦ and (b) plane φ = 90◦.

It is possible to notice that the measured radiation pattern presents an agreement
compared with the obtained through simulation, mainly in boresight. Furthermore, the
12 dBi of measured gain proves that this material is suitable for this operating frequency,
allowing its implementation in antenna structures for emerging communications systems.
In the plane θ = 90◦, the simulated HPBW was 27◦ while its measured value was 38.4◦.
Regarding the plane φ = 90◦, the simulated HPBW was 32◦ while 31.5◦ was measured.

4.4. Additional Results

A comparison of the simulated and measured gain over the frequency was performed,
for the PLA structure covered with copper and for the Electrifi structure. These results are
presented in Figures 14 and 15, respectively.
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Although the minimum value of S11 occurs at 29.76 GHz, a reasonable level of imped-

ance matching was obtained since for the desired operating frequency, the practical S11 is 

16.02 dB. Regarding the obtained bandwidth, a significant improvement was verified. 

While in simulation a bandwidth of 3.55 GHz was found, the measured bandwidth of 

16.52 GHz (58.6%) was accomplished. 

Lastly, the normalized radiation pattern of this prototype is presented in Figure 13. 
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Figure 16. Simulated total efficiency of both antennas.

It is possible to observe that the horn antenna printed with PLA and covered with
copper has a maximum efficiency of 95.6% at the desired frequency, 28 GHz. On the other
hand, the prototype fabricated with the Electrifi material presents 90.0% of total efficiency
and although this result was obtained in a simulation environment, it is a promising one,
especially given the novelty associated with the conductive filaments.
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5. Discussion

3D printing is a common technique to all antennas produced, nevertheless, different
approaches were followed in this work. In all prototypes, the results obtained were
satisfactory and quite promising bearing in mind the requirements of the next generation
of mobile communications.

The production cost was estimated considering the percentage of material used in the
production of the prototype relative to the total cost of the materials used in the structure
of each prototype, without taking into account the cost of the connector, confirming the
advantage of 3D printing in the reduction of manufacturing cost when compared with
conventional techniques. Table 6 summarizes the main measured results of the developed
prototypes, along with their estimated production cost and total weight.

Table 6. Comparison of the different prototypes.

Antenna Bandwidth Gain@ 28 GHz Production Cost Total Weight

Copper tape 7.19 GHz
(26.0%) 11.2 dBi 0.45 € 2.6 g

4 layers of paint 7.13 GHz
(25.1%) 10.8 dBi 0.18 € 2.3 g

3 layers of paint
(sanded)

2.86 GHz
(10.2%) 11.8 dBi 0.14 € 2.3 g

Electrifi 16.52 GHz
(58.6%) 12.0 dBi 1.78 € 2.5 g

It is possible to verify that the first two prototypes present very similar values, both in
bandwidth and in measured gain.

The minor differences between both results, we believe are due to the behavior of both
coating layers, their losses, and their interaction with the base PLA structure. While the
copper strip has a homogeneous structure on the PLA, being unaffected by the possible
imperfections in the PLA, such as pores or small roughness, the PLA structure covered
with paint does not guarantee a completely homogeneous structure, without pores or with
a uniform layer.

On the other hand, and despite the acceptable gain value, the antenna that was
submitted to the sanding process presents a bandwidth lower than all the other prototypes,
but it is the closest to the simulation. Finally, the antenna produced with the conductive
filament has a considerably higher bandwidth than the other prototypes.

Concerning production costs, the antenna with the highest cost is the last prototype
made of conductive filament due to the initial cost of the material used. In the context of
the available 3D filaments, and more specially in the electrically conductive ones, Electrifi is
truly revolutionary and thus its higher price. Nevertheless, the overall cost of the antenna
production remains low.

All prototypes built have reduced weight and costs compared to a metal-based antenna
with similar characteristics, weighing at least ten times more and being sold with cost of
approximately 1500 euros.

6. Conclusions

3D printing is considered to be a technology with greater change for development and
integration in emerging communication systems. This technology has several advantages
over conventional part-making techniques, with rapid prototyping and low cost being
the most notable. In this article, different techniques for creating metal antennas with
the aid of 3D printing were presented and applied to the typical case of a horn antenna.
A total of seven samples were produced, and their main characteristics were analyzed,
combining the low-cost manufacturing, the simplicity of the structure with the positive
results achieved. The sanded antenna coated with conductive paint has a lower bandwidth
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despite having a higher gain, when compared to the prototype using copper tape and that
without the sanding process. On the other hand, although the antenna using conductive
filament is the one with higher production costs, it has in fact not only a better gain, but
also a significantly improved bandwidth. It also has the advantage that no processing is
required after printing.

Overall, the results are promising and point to 3D printing technology as a good
choice for communication applications to provide a possible cost-effective solution for
commercial applications.
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