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Abstract: Recently, image attributes containing high-level semantic information have been widely
used in computer vision tasks, including visual recognition and image captioning. Existing attribute
extraction methods map visual concepts to the probabilities of frequently-used words by directly
using Convolutional Neural Networks (CNNs). Typically, two main problems exist in those methods.
First, words of different parts of speech (POSs) are handled in the same way, but non-nominal words
can hardly be mapped to visual regions through CNNs only. Second, synonymous nominal words are
treated as independent and different words, in which similarities are ignored. In this paper, a novel
Refined Universal Detection (RUDet) method is proposed to solve these two problems. Specifically,
a Refinement (RF) module is designed to extract refined attributes of non-nominal words based
on the attributes of nominal words and visual features. In addition, a Word Tree (WT) module is
constructed to integrate synonymous nouns, which ensures that similar words hold similar and more
accurate probabilities. Moreover, a Feature Enhancement (FE) module is adopted to enhance the
ability to mine different visual concepts in different scales. Experiments conducted on the large-scale
Microsoft (MS) COCO dataset illustrate the effectiveness of our proposed method.

Keywords: attribute extraction; Refined Universal Detection; word tree; image captioning

1. Introduction

Attribute extraction is an important process in various computer vision tasks. Com-
monly, the attributes are defined as the probabilities of frequently-used words belonging
to any part of speech (POS) corresponding to images. Recently, researchers have used
attributes to strengthen the applications in image classification, facial verification, image
captioning [1,2], etc. For example, attributes with high probabilities of words “man”,
“food”, “eating”, and “delicious” indicate that there is probably a man who is eating de-
licious food in that image. It shows that the attributes containing high-level semantic
information can help in understanding the content of images.

The application of attributes is of paramount importance in image captioning, which is
a process of generating natural sentence descriptions for a given image based on the ob-
jects, together with their actions and relationships in the image. Recent work shows
that attributes containing high-level semantic information can significantly improve the
performance of caption generation [3,4]. As a computer vision task, the attribute extrac-
tion process is commonly implemented using Convolutional Neural Networks (CNNs).
Since each image corresponds to multiple words, the attribute extraction can be treated
as a multi-label object classification or detection task. Researchers usually attempt to use
weakly supervised methods, for example, Multiple Instance Learning (MIL) [5,6], to train
the CNN-based attribute detection networks [3,7].

Although recent methods attach great importance to the attributes that guide com-
puter vision processes, the attributes they used are not effective enough. The reasons are
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explained as follows. First, as shown in Reference [3], taking only CNN and MIL as the
structure of attribute detection, the performances on the attributes of non-nominal words,
including verbs, adjectives, and others, except for nouns, are significantly worse than those
of nouns. The reason lies in that CNNs behave worse in extracting features for abstract
concepts than for concrete objects. Second, those methods treat synonymous nominal
words as independent and different words, thus ignoring the similarities among them.

To solve the above two problems, a Refined Universal Detection (RUDet) method
is proposed in this paper to improve the attribute extraction process. It mainly contains
the following three modules. First, to refine the performance on non-nominal words,
a well-designed Refinement (RF) module is developed. It generates refined attributes
of non-nominal words based on the integrated knowledge of both the original detected
attributes and visual features. In other words, the attributes of non-nominal words depend
on not only the visual features but also the attributes of nominal words. Second, a Word
Tree (WT) module is constructed to detect more reasonable attributes for synonymous
nominal words. In the WT module, all nominal words are assigned to different levels of
parent nodes according to their relevance. Using this module, the probability of one leaf
word is calculated as the product of itself and its all ancestors. This mechanism ensures
that similar nominal words, or called synonyms, hold similar probabilities, which are
reasonable according to natural knowledge. Third, a Feature Enhancement (FE) module is
employed to detect attributes of different visual concepts in different scales. The proposed
method has the ability to detect various kinds of concepts, thus rendering an approach
of “universal” detection. The comprehensive experiments are conducted to illustrate the
effectiveness of the proposed method on extracting image attributes. By replacing the
attributes used in state-of-the-art caption generation methods, the experiments also indicate
the validity of our proposed method in caption generation.

Overall, the main contributions proposed in this paper are:

• An RF module refines the detected attributes for non-nominal words. It can generate
refined attributes of non-nominal words with the help of the integrated knowledge of
both the original detected attributes and visual features.

• A WT module improves the attributes for synonymous nouns. It can generate reason-
able attributes for similar nominal words based on the prior knowledge in the word
tree structure.

• An FE module is employed to extract multi-scale features of input images, which is
responsible for mining different visual concepts in different scales. Furthermore,
it helps to generate more accurate attributes for all words.

• Comprehensive experiments indicate that our method outperforms the state-of-the-
art attribute detection methods and can improve the performance of many image
captioning methods.

2. Related Work

Existing methods employ only CNNs as the attribute detection networks. Most image
captioning methods split the task into two separate processes: attribute detection and
caption generation. Those methods detect attributes using attribute detection models and
map the attributes to caption sentences by language models. As a weakly supervised
method, MIL learns to predict the instance probabilities, while only bag probabilities are
in prior knowledge [5,6]. The structure based on CNN and MIL is commonly used in
generating attributes. Fang et al. [3] implemented the attribute detection following the
structure based on CNN and MIL. They picked the feature map from the last convolutional
layer of backbone AlexNet [8] or VggNet [9] and calculated the instance probabilities
through two convolutional layers followed by a sigmoid function. Then, the attributes are
calculated as the bag probabilities of corresponding words using MIL. Yao et al. [4] adopted
a similar structure using GoogLeNet [10]. The GoogLeNet goes deeper, thus getting
more representative features, which improves the performance of attribute detection.
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Wu et al. [11] designed a region-based framework that takes a series of region proposals as
input, and then detects attributes on those regions. Then, attributes from all regions are
integrated using the max pooling operation.

Given the detected attributes, researchers attempted to enhance their image caption-
ing methods. Yao et al. [4] attempted to feed the attributes into their caption generation
model in different ways to prove the helpfulness of the attributes. Wu et al. [11] directly
learned a mapping from the attributes to sequences of words as the caption descriptions.
Yang et al. [12] designed a content module for visual features and a linguistic module for
textual information. The content module takes the images as input and output the visual
attributes, while the textual module takes the visual attributes as input and maps them to a
frequency vector. Finally, the outputs of the two modules are integrated and then fed into
the following Long Short-Term Memory (LSTM) [13] to generate captions. Rennie et al. [14]
adopted the reinforcement learning method, called self-critical sequence training, to di-
rectly optimize the test metric on the image captioning dataset. They utilized the spatially
pooled attribute features or the spatial attention features generated by CNN models, and
fed the features into the LSTM to generate caption sentences. Anderson et al. [15] proposed
a combined bottom-up and top-down attention mechanism, using the complex and power-
ful object detection network Faster Region-based CNN (Faster R-CNN) [16] to generate
effective image features. These kinds of features are widely used in many image captioning
methods later. Huang et al. [7] constructed an end-to-end model, connecting the attribute
detection with the following caption generation. They designed a multimodal attribute
detector, which learned a mapping from the bottom-up and top-down features to attributes
corresponding to frequently-used words, and improved the performance by mutual pro-
motion between image features and word embedding of attributes. Xiao et al. [17] fed the
attributes into all steps of the following caption generation model, which helps to modulate
the feature distributions of the semantic representation.

However, all the previous methods suffer from the two problems mentioned above:
they cannot effectively deal with non-nominal words, and they ignore the similarities
between synonymous nominal words. To solve these problems, the RUDet method is
proposed in this paper.

3. Method

As mentioned above, the proposed RUDet method was developed to detect effective
and refined image attributes. It takes the image as input, extracts the features from the
visual concepts, and then outputs the attributes indicating the probabilities of the presences
of N frequently-used words in the input image. Note that the proposed RUDet acts like a
weakly supervised object detection method and has the following two properties: (1) It is
responsible for detecting various kinds of “entities”, including physical objects and abstract
concepts. (2) Although it can predict the coarse position of entities, the probabilities of the
entities’ presences are enough.

The base model of our proposed RUDet follows the structure of “CNN + MIL”.
The CNN is adopted to extract spatial visual features of images. Meanwhile, the MIL
is employed as a weakly supervised training method to learn the probabilities of words’
presence in the images and to learn which regions are most likely associated with these
words. The more accurate probabilities mean more effective attributes, which can better
represent the semantic information of the images. In order to boost the accuracy of the
detected attributes, three additional modules are proposed in our RUDet, including the RF
module, the WT module, and the FE module. These modules are described in the following
subsections. Figure 1 demonstrates the overall structure of our method.
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Figure 1. The network structure of our proposed Refined Universal Detection (RUDet). The main
branch detects attributes using the Feature Enhancement (FE) module, the convolutional layers,
the Multiple Instance Learning (MIL) method, and the Word Tree (WT) module. The Refinement
(RF) module in the refinement branch integrates the visual features extracted by the Spatial Pyramid
Pooling (SPP) layer and the attributes from the main branch, and then it learns a non-linear mapping
to refined attributes for words of each non-nominal part of speech (POS), including verbs (VB),
adjectives (JJ), and others.

3.1. Base Model

The base model consists of a CNN feature extraction backbone and an MIL header
module. The powerful and widely used Residual Networks (ResNets) [18] are employed
as the backbone network. On the output feature map of the backbone, the MIL header
module is expected to learn the attributes, that is, the probabilities of N frequently-used
words. In the MIL header module, a series of convolutional layers are employed to detect
the probability of each word corresponding to each grid area. For example, given an image
of size 512× 512, the backbone ResNet50 and the convolutional layers output a feature
map of size N × 16× 16, where N is the number of frequently-used words. In this feature
map, it can be supposed that each value represents the probability of the word’s presence
in the corresponding 32× 32 area in the input image. Then, the MIL method is used to
calculate the probabilities of words’ presences in the whole image.

MIL is a weakly supervised method which learns predicting the instance probabilities
while only bag probabilities are in prior knowledge [5,6]. The Noisy-OR version of MIL [5,6]
is used to calculate the probabilities of words in image sub-regions while knowing only the
probabilities in the whole image. Following the implementation in Reference [3], instead
of using fully connected layers, a series of convolutional layers and a sigmoid activation
function are used to get the probabilities of words corresponding to regions, which are
represented by the values in the convolutional feature map. For the word wi in the whole
set of words W = {wi|1 6 i 6 N}, a sample image I is labeled positive if wi exists in I;
otherwise, it is negative. In the proposed RUDet, the backbone network and the following
convolutional layers together extract the features of the input image I, which is denoted as
feature map C. The shape of C is (N, H, W), where H denotes height, W denotes width,
and N is the number of words. Each value Cx,y

i in the feature map C can be mapped to
a rectangle region in the input image I, where x, y is the spatial coordinate in the feature
map C. Thus, Cx,y

i is considered as the probability of wi in the corresponding region. Then,
the Noisy-OR version of MIL is defined as:
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Pi =MIL(Ci) = 1− ∏
x∈[1,W],y∈[1,H]

(1− Cx,y
i ), i ∈ {1, 2, · · · , N}, (1)

where Pi stands for the probability of the word wi in the image I. After training from a
dataset containing labels of whole images, our proposed RUDet can identify the sub-regions
where the visual concepts lie in the images.

To sum up, the base model takes the image as input, extract visual features by a CNN
backbone and additional convolutional layers, and then it outputs the probabilities of
words as the attributes of that image. Thus, the process of the base model is formulated as:

B = B(I), (2)

C = sigmoid(CONV(B)), (3)

Pbase =MIL(C), (4)

where B(·) stands for the backbone network, CONV(·) denotes the additional convolu-
tional layers, sigmoid is the sigmoid activation function, and Pbase represents the attributes
detected by this base model.

3.2. Refinement Module

Although the base model of the proposed RUDet has the ability to detect words of
all POSs, it lacks accuracy in detecting non-nominal words because visual features are not
enough to effectively detect abstract or invisible concepts. For example, it is easy to detect
the noun “person” because it shows in an image as an exact region of pixels. However,
it is hard to find a region related to non-nominal words, like “beautiful”, in an image; thus,
they cannot be easily detected. The refinement branch, also named the Refinement (RF)
module, was developed to improve the detection performance for non-nominal words.

We designed the RF module as a non-linear mapping function from a set of known
knowledge to refined attributes of non-nominal words, where the knowledge consists
of not only the image visual features but also the initial attributes from the base model.
The initial attributes from the base model, or more precisely the initial attributes of nominal
words, provide the most important information that guides in learning more accurate
attributes of non-nominal words. Technically, a series of convolutional layers and the
following Spatial Pyramid Pooling (SPP) layer [19] are employed to extract a fixed-length
visual feature vector of the image. Next, it integrates the visual feature and the original
attributes from the main branch, and then it learns a non-linear mapping by a series of
fully connected layers to generate refined attributes for words of each non-nominal POS.
The following formulas show the process of the RF module:

Cr f = sigmoid(CONV(B)), (5)

Sr f = SPP
(

Cr f
)

, (6)

Pr f
pos = RF pos(P) = sigmoid

(
FC pos

(
Sr f ⊕ P

))
, pos ∈ {VB, JJ, Others}, (7)

where B denotes the output of the backbone network in the base model, Sr f is the fixed-
length visual feature vector from the SPP layer, P stands for the original attributes of all
words from the main branch,RF (·) represents the RF module, and Pr f

pos stands for the re-
fined attributes of words Wpos which belong to non-nominal POS pos. Meanwhile, SPP(·),
FC(·), and ⊕ represent the SPP layer, the fully connected layers, and the concatenation
operation, respectively.

The main difference, compared with the CNN-based base model, is that the RF module
contains a non-linear mapping for each non-nominal POS implemented by fully connected
layers. The non-linear mapping is fed with not only the visual features but also the helpful
knowledge of attributes of nominal words from the main branch. This helps the RF module



Sensors 2021, 21, 95 6 of 16

to generate more accurate attributes for non-nominal words. The improvement of this
module is shown in the results of the ablation study experiments in this paper.

3.3. Word Tree Module

Besides the issue of non-nominal words which has been addressed by the RF module,
there is also a problem with the attributes for nominal words. Commonly, more than half
of the N frequently-used words are nouns. However, there are many synonyms in these
nouns. In general, synonymous words should be related to same visual concepts; thus,
their probabilities should be similar in each image. In order to ensure similar probabilities
for synonyms, a hierarchical Word Tree (WT) module is constructed using the Nn nouns in
all N words. For the remaining non-nominal words, including verbs, adjectives, and others,
there are no obvious hierarchical relationships among them. Thus, there is no need for
non-nominal words to be considered in the WT module.

In our implementation, the WT module is built based on the prior knowledge from the
well-known WordNet [20], which is a lexical database of English. The WordNet helps to find
conceptual relationships between words, such as hypernyms, hyponyms, and synonyms,
antonyms, etc. These relationships guide the construction of the WT module to integrate
similar words. Figure 2 demonstrates a simplified WT. The process of constructing the WT
module is explained below. First, the root node of the WT is “entity”, which means the
collect of all noun words, and the original Nn noun words are mapped to Nn leaf nodes
in the WT. Then, the WordNet is used to find the parent path from leaf nodes to the root
node. For example, “chair” and “couch” are two leaf nodes which exist in the original Nn
noun words. According to the knowledge of WordNet, both “chair” and “couch” belong
to “seat”, so a node “seat” is created as their parent node. Then, “seat” and “bed” belong
to “furniture”, so “furniture” is also added as their parent node in the WT. The similar
processes are carried out until the root node is reached.

Entity

Physical Entity

... ...

Furniture

Bed

bed beds

Seat

Sofa

couch couches sofa

Chair

chair chairs

Abstraction

Attribute Relation

Legend:

Original Word

Generated Word

Figure 2. A simplified demonstration of the word tree.

After building the WT, other Nt parent words are generated. These Nt words are
appended to the previous N words to form the complete word set of size N + Nt. In the
implementation of the WT, both the input and the output are N + Nt dimensional vectors.
In detail, for each word, the input value is considered as its conditional probability on the
basis of its direct parent word, and the output value is the absolute probability, which is
computed as:

Pwt
i =WT (Pi) = Pi · ∏

i′∈Ai

Pi′ , i ∈ {1, 2, · · · , N + Nt}, (8)

where Pi stands for the conditional probability of the word wi before the WT, Pwt
i represents

the absolute probability after the WT, and Ai denotes the indices set of all ancestor words
of wi. For example,
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Pwt
chair = Pchair · PChair · PSeat · . . . · PEntity, (9)

Pwt
couch = Pcouch · PSo f a · PSeat · . . . · PEntity, (10)

which shows that the probabilities of similar words “chair” and “couch” are more likely to
be similar, owing to the contributions from their same ancestors. Therefore, synonymous
nominal words hold similar probabilities, which makes our RUDet robust to words with
similar semantics. For example, the synonyms “chair” and “couch” in Figure 3 hold similar
probabilities after computed through WT module.

Caption 1: A man sitting on a chair with a dog in his lap.
Caption 2: A man sitting on a couch with a dog. .

Figure 3. The words “couch” and “chair” are synonyms in the captions of an image.

3.4. Feature Enhancement Module

To make the proposed RUDet robust to visual concepts of different scales, the Feature
Enhancement (FE) module is adopted to extract multi-scale features of input images.
The FE module is designed based on a simplified version of the Feature Pyramid Network
(FPN) [21]. The modification is that only the levels of P4, P5, and P6 are used as multi-scale
feature maps to reduce the memory usage. This module generates multi-scale feature maps
based on the backbone network. Then, the MIL header module described in the base model
is used on these three multi-scale feature maps to simultaneously compute attributes for
multi-scale visual concepts. Then, these three attributes are integrated using the weighted
sum operation.

Formally, the FE module is expressed as:

E4, E5, E6 = FPN ′(B4, B5), (11)

C f e
k = sigmoid(CONV k(Ek)), k ∈ {4, 5, 6}, (12)

P f e
k =MIL

(
C f e

k

)
, k ∈ {4, 5, 6}, (13)

P f e = ∑
k∈{4,5,6}

λk · P
f e
k , (14)

where B4 and B5 are two feature maps from the last two blocks of the backbone network [21],
FPN ′(·) is the simplified version of the FPN, E4 to E6 are three multi-scale feature maps,
P f e

k stands for the attributes detected from the feature map Ek, λk is a learnable weight,
and P f e represents the integrated attributes which are the final output of the FE module.

3.5. Loss Function

The frequencies of the words are seriously unbalanced, which makes it difficult to
perform well on the detection task of all words. For this reason, the class-balanced loss
proposed in Reference [22] is adopted to train our model. The loss function is formulated as:
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L(P, Y) = −
N

∑
i=1

1− β

1− βni
[Pi log Yi + (1− Pi) log (1− Yi)], (15)

where Pi and Yi represent the predicted probability and the ground truth label for the i-th
word wi, respectively, N denotes the total number of words, ni represents the frequency of
wi in the training dataset, and β is a hyper parameter. It attempts to find the best balance
point by assigning an effective number to each class. By assigning different factors to the
loss items of words with different frequencies, this loss function can help to relieve the
problem of unbalanced data.

In the proposed RUDet model with all modules, the final loss function consists of
three different items, that is:

L f inal = Lbase + Lwt + Lr f , (16)

where Lbase denotes the loss value calculated by the ground truth and the output attributes
from the base model and the optional FE module, and Lwt and Lr f represent the loss
values of the attributes from the WT module and the RF module, respectively. Because the
WT module improves the attributes of nominal words only, and the RF module improves
the attributes of non-nominal words only, thus, Lwt is calculated using the nouns (NN)
part of the attributes, while Lr f is calculated using the other part, excluding NN, that is,
the non-nominal part. Note that the ground truth labels of the generated parent words in
the WT module can be calculated using the labels of leaf words, which can be used as an
extra supervision of the WT module. In detail, the loss functions of the WT module and
the RF module are defined as:

Lwt = L(Pn, Yn) + L
(
Pt, Yt), (17)

Lr f = L(Po, Yo), (18)

where Pn, Pt, and Po stands for the NN part, the generated parent part, and the non-nominal
part of the attributes, and the same as the ground truth labels Yn, Yt, and Yo.

4. Experiments
4.1. Dataset

The public available Microsoft (MS) COCO dataset [23] is used to conduct the experi-
ments of training and evaluation. MS COCO is a large-scale and widely used image dataset
for use of object detection, segmentation, caption generation, and so on [3,4,7,11,15–17,24–26].
It consists of 123,287 images in total. Each image is associated with at least five cap-
tion sentences annotated by humans. Sampled images and the corresponding captions
are shown in Figure 4. There are various of complex visual concepts, including scenes,
objects, colors, actions, and relationships, in the huge number of images. In addition,
different scales, different lighting environments, and different camera poses make it
a quite difficult task to detect accurate attributes from these images. Thus, the MS
COCO dataset is enough for training and evaluating our method. The Karpathy’s splits
(https://cs.stanford.edu/people/karpathy/deepimagesent/) are used to divide the dataset
into training set, validation set, and testing set. Unless otherwise mentioned, the following
experimental results are reported on the testing set.

https://cs.stanford.edu/people/karpathy/deepimagesent/
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A restaurant has modern
wooden tables and chairs.

A man preparing desserts
in a kitchen covered in
frosting.

The kitchen is full of spices
on the rack.

Two people in a food truck,
one looking at an order.

An elegant bathroom fea-
tures a tub, sink, mirror,
and decorations.

A car with some surf-
boards in a field.

An airplane sits on the tar-
mac of an airport, with
a disconnected boarding
gate.

A white truck filled with
motorcycle on its flatbed.

A man with a red helmet
on a small moped on a dirt
road.

People on bicycles ride
down a busy street.

A painting of a table with
fruit on top of it.

A couple of traffic lights
sitting under a cloudy sky.

Figure 4. The images which are randomly chosen from the Microsoft (MS) COCO dataset. The text
under each image shows the first sentence from the five ground truth caption sentences associated
with the image.

4.2. Attribute Detection
4.2.1. Experimental Settings

Following the settings in References [3,7], N = 1000 frequently-used words are chosen
from the training caption sentences in the proposed models. The words in the ground
truth sentences are used to form the labels for attributes. In the WT module, Nn = 616 and
Nt = 313. The numbers of words belonging to other POSs are shown in Table 1. All images
are resized so that the longer side contains 512 pixels. In the training phase, the Adam
optimizer [27] is adopted with default parameters β1 = 0.9 and β2 = 0.999, which are
widely used by researchers in various tasks [7,14,28]. Different values of learning rate
lr are tested, and, finally, the learning rate is set to 10−5, which generates the best result.
The parameter β in the class-balanced loss function is set to 0.9999, which is tested to best
fit the unbalanced dataset. The experimental results for different hyperparameters are
shown in Figure 5. The models are implemented based on the deep learning framework
PyTorch (https://pytorch.org/). All backbones have been pre-trained on the ImageNet
dataset [29].

https://pytorch.org/
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Table 1. The comparison among the different versions of the proposed RUDet. In each column, the highest values are
marked by underline.

Word Count / Average Precision (AP)

Backbone FE module WT module RF module NN VB JJ Others All

Word Count 616 176 119 89 1000

a) ResNet50 41.08 22.06 26.69 21.47 34.28
b) ResNet50 X 42.30 22.94 27.72 22.24 35.37
c) ResNet50 X 42.81 23.10 27.67 22.02 35.69
d) ResNet50 X 42.35 22.66 27.43 21.92 35.29
e) ResNet50 X X X 44.13 24.03 28.63 22.89 36.85

a) ResNet101 42.09 23.02 27.61 21.89 35.21
b) ResNet101 X 43.28 24.16 28.68 22.61 36.34
c) ResNet101 X 43.79 24.06 28.64 22.38 36.61
d) ResNet101 X 42.96 24.01 28.44 22.55 36.08
e) ResNet101 X X X 45.95 25.65 30.32 23.55 38.53

a) ResNet152 42.31 22.90 27.24 21.82 35.28
b) ResNet152 X 43.46 23.91 28.28 22.52 36.35
c) ResNet152 X 43.99 23.82 28.08 22.29 36.62
d) ResNet152 X 43.21 24.06 27.89 22.54 36.17
e) ResNet152 X X X 46.80 26.26 30.97 23.85 39.26
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Figure 5. Different Average Precision (AP) values (the higher the better) with different hyperparame-
ters, including the learning rate lr and the class-balanced parameter β.

4.2.2. Experimental Results

Quantitative Results: Referring to Reference [3], the metric Average Precision (AP) for
multi-label classification problems is used in the evaluation. Given a probability threshold
t ∈ [0, 1], for a word w and an image I, if the model’s output probability is Pw > t, the image
is considered a true positive instance if the word exists in the annotated caption sentences;
otherwise, it is a false positive instance. Then, the precision and recall values are calculated
by the number of true positive instances and false positive instances corresponding to
different probability thresholds. Finally, the evaluation metric AP is computed as the
area under the precision-recall curve by numerical integration. Four other methods are
employed here to be compared to our proposed RUDet method. The “MIL (AlexNet)” and
“MIL (VGG)” [3] are attribute detection methods which are implemented by directly using
CNN and MIL. The “MAD” is an attribute detector which is separated from the image
captioning method Multimodal Attribute Detector plus Subsequent Attribute Predictor
(MAD+SAP) [7]. The AP values of “MAD” are calculated using the pretrained image
captioning model from the authors (https://github.com/RubickH/Image-Captioning-
with-MAD-and-SAP/). For comparison, we trained the “MAD” model separately on the
attribute detection task only, which is named as “MAD-retrained” in the results. The results
are reported in Table 2. It shows that “MAD-retrained” can perform better than “MAD”,
which was joint trained on the image captioning task but not the attribute detection task.

https://github.com/RubickH/Image-Captioning-with-MAD-and-SAP/
https://github.com/RubickH/Image-Captioning-with-MAD-and-SAP/
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Compared to all these methods, the proposed method performs better in AP for all words.
This experiment indicates the effectiveness of our method, showing the performance
improvement on the attribute detection.

Table 2. The comparison of the proposed RUDet with other methods. For the proposed RUDet, “ResNet152” means using
Residual Network with 152 layers (ResNet152) as backbone, and “+FE+WT+RF” means using the FE module, the WT
module, and the RF module. In each column, the highest values are marked by underline.

Word Count / Average Precision (AP)

Method NN VB JJ Others All

Word Count 616 176 119 89 1000

MIL (AlexNet) [3] 36.90 18.00 22.90 19.90 30.40
MIL (VGG) [3] 41.40 20.70 24.90 21.23 34.00
MAD [7] 37.72 17.26 22.16 09.43 30.07
MAD-retrained [7] 40.60 20.84 25.38 20.82 33.55

RUDet (ResNet50) (ours) 41.08 22.06 26.69 21.47 34.28
RUDet (ResNet152+FE+WT+RF) (ours) 46.80 26.26 30.97 23.85 39.26

Qualitative Analysis: Qualitative results are shown in Figure 6. It demonstrates that
our proposed model can effectively detect words corresponding to visual concepts in
images. More importantly, with the help of the RF module, non-nominal words for abstract
concepts can also be correctly detected, such as the words “holding”, “blue”, and “large”.
In addition, synonymous nominal words are reasonably detected with similar probabilities,
for instance the words “shelf” and “shelves”, which owes to the WT module. These results
indicate that our proposed method is powerful to extract attributes for words of all POSs.

4.2.3. Ablation Study

In order to show the effectiveness of the modules in our method, we design five
different versions of the proposed RUDet model.

a. The first version, or named the base model, contains only a backbone network and a
series of convolutional layers for calculating the probabilities of words correspond-
ing to sub-regions in the image. This base model generates the initial attributes of
input images. The MIL, as a weakly supervised method, is applied to calculate the
probabilities of words corresponding to the whole image and to train this base model.

b. To verify the effectiveness of the FE module, the second version is constructed with a
backbone network and the FE module. The FE module is adopted to extract multi-
scale features of input images, which is expected to generate more accurate attributes.

c. To show the improvement of the WT module, the third version is built using the base
model and the WT module, which helps to improve the performance on synonymous
nominal words.

d. To indicate the refinement effect of the RF module, the fourth version consists of the
base model and the RF module, which refines the attributes of non-nominal words.

e. The fifth version integrates the base model and all above modules, which is the most
powerful model.

The results of ablation experiments are reported in Table 1. First, it shows that higher
AP appears along with deeper backbone. This may owe to the higher-level semantic
information extracted by the deeper CNNs. Second, fixing the backbone, the FE module
brings the increase of the AP for all words by about 1.1. This is a considerable improvement
for this issue, which benefits from the multi-scale features by the FE module. Third,
the WT module and the RF module result in the AP increment of about 1.4 and about
0.9, respectively. Note that, although the RF module aims at improving the performance
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on non-nominal words, the APs of nominal words also get increased. These increments
benefit from the joint training of the base model and the RF module, i.e., better attributes
of non-nominal words have a positive impact on the training process of nominal words.
This is the same reason why the WT module generate better attributes of non-nominal
words, in spite of the fact that it aims at improving the performance on synonymous
nominal words.

To further demonstrate the effect of the WT module on synonymous nominal words,
the AP values of two examples of synonyms are reported in Table 3. The results show
that the WT module reduces the differences between synonymous nominal words and,
furthermore, increases the mean AP of them all. These results indicate that the WT module
can ensure similar and more accurate probabilities for synonyms.

Table 3. The effect on the Average Precisions (APs) of synonyms (“phone” and “cellphone”, “laptop”
and “computer”) by the WT module. The difference is calculated by subtracting the APs of two
synonymous words; the lower↓, the better. The mean is the mean value of the APs of two synonymous
words; the higher↑, the better.

Average Precision (AP)

Word Without WT module With WT module

phone 69.95 71.14
cellphone 41.34 45.12
(difference) 28.61 ↓26.02↓
(mean) 55.65 ↑58.13↑

laptop 97.27 95.79
computer 85.81 87.86
(difference) 11.46 ↓07.93↓
(mean) 91.54 ↑91.83↑

When combining all these modules, the strongest version of the proposed RUDet
comes out. The integration of the deeper backbone network ResNet152, the FE module,
the WT module, and the RF module achieves the increment of the AP of all words at about
5.0. This is a significant improvement, which shows that our proposed RUDet method can
detect effective attributes of images.

4.3. Caption Generation

Additional experiments on the image captioning task were conducted to verify the
advantage of the attributes detected by our method. Six state-of-the-art image caption-
ing methods are employed for comparison, including Long Short-Term Memory with
Attributes (LSTM-A) [4], Attribute Region CNN plus LSTM (Att-R+LSTM) [11], Multi-
modal Attribute Detector plus Subsequent Attribute Predictor (MAD+SAP) [7], Self-critical
Sequence Training (SCST) [14], Up-Down [15], and Scene Graph Auto-Encoder (SGAE) [28].
In addition, we report the evaluation results of three methods, including “RUDet+LSTM-A”,
“RUDet+Att-R+LSTM”, and “RUDet+MAD+SAP”, where the “RUDet+” means replacing
the attributes used in the original method with the attributes detected by the proposed
RUDet. The results are shown in Table 4. The values of standard metrics are reported,
including BiLingual Evaluation Understudy (BLEU) [30], Meteor [31], Recall-Oriented
Understudy for Gisting Evaluation - Longest Common Subsequence (ROUGE-L) [32],
and Consensus-based Image Description Evaluation - Defended (CIDEr-D) [33]. Compared
with their original results, the image captioning models using the detected attributes by our
method achieve much higher performance. This demonstrates that the attributes detected
by our proposed RUDet can represent more abundant and accurate high-level semantic
information in images.
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Table 4. The comparison with other methods in caption generation. In the first column, “RUDet+” means using the
attributes detected by the proposed RUDet. The symbol “–” means that the authors did not provide the values of the
corresponding metrics. In each column, the highest values are marked by underline, and other values improved by our
method are marked by dashed underline.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 Meteor ROUGE-L CIDEr-D

LSTM-A [4] 73.4 56.7 43.0 32.6 25.4 54.0 100.2
Att-R+LSTM [11] 74.0 56.0 42.0 31.0 26.0 – 94.0
MAD+SAP [7] – – – 38.6 28.7 58.5 128.8
SCST [14] – – – 34.2 26.7 55.7 114.0
Up-Down [15] 79.8 – – 36.3 27.7 56.9 120.1
SGAE [28] 81.0 – – 39.0 28.4 58.9 129.1

RUDet+LSTM-A (ours) 75.9 59.8 46.1 35.4 27.1 56.1 110.4
RUDet+Att-R+LSTM (ours) 75.8 59.8 46.2 35.6 27.1 56.0 110.2
RUDet+MAD+SAP (ours) 79.5 64.3 50.8 40.2 29.5 59.3 129.6

4.4. Visualization Analysis

To show the ability to localize visual concepts, we extracted and visualized the fea-
ture maps from the last convolutional layer of the MIL header module as the heat maps.
As shown in Figure 6, the proposed RUDet can correctly locate the visual concepts corre-
sponding to both nominal words and non-nominal words. With the help of the effective
attributes detected by our method, the generated caption sentences are reasonable and
close to the ground truth captions.
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cat (1.00) kitten (0.78) holding (0.66) girl (0.43)
N Ground truth caption 1: A young girl is holding a small cat.
N Ground truth caption 2: Girl in a tank top holding a kitten in her backyard.
N Generated caption: A little girl holding a cat in her arms.

train (1.00) bridge (1.00) blue (0.94) red (0.90)
N Ground truth caption 1: A red and blue train on a bridge during a cloudy day.
N Ground truth caption 2: Red train pulling four blue train cars behind it over a

bridge.
N Generated caption: A train traveling on a bridge over the ocean.

bathroom (1.00) large (0.18) shelf (0.12) shelves (0.10)
N Ground truth caption 1: A bathroom with a white toilet and large shelf full of

stuff.
N Ground truth caption 2: Some shelves filled with a bunch of different items in the

bathroom.
N Generated caption: A bathroom with a toilet and large shelves.

Figure 6. The visualization of the localization heat maps from the proposed RUDet, and the generated
captions from the RUDet plus Multimodal Attribute Detector plus Subsequent Attribute Predictor
(RUDet+MAD+SAP). The first column shows the original images. The following columns are the
heat maps indicating the probabilities of major words using class activation mapping (CAM) [34],
where red regions denote higher probabilities, and blue regions denote lower probabilities. The sen-
tences below show the ground truth captions and the generated sentences.

5. Conclusions

In this paper, we presented our approach of Refined Universal Detection (RUDet),
which can detect effective attributes from images, especially for non-nominal words and
similar words. In the proposed method, a Refinement (RF) module is designed to learn
refined attributes for non-nominal words based on the knowledge of the initial attributes
from the base model and image visual features. Besides, a Word Tree (WT) module is
constructed, which ensures similar, reasonable, and more accurate probabilities for synony-
mous nominal words in same images. Furthermore, a Feature Enhancement (FE) module
is employed to extract multi-scale visual features; thus, it helps to generate more accurate
image attributes. Experiments indicated that our method can boost the performance of
attribute detection significantly and outperform other existing methods. In addition, the at-
tributes detected by our method help to improve the performance of state-of-the-art image
captioning methods.

Technically, our method has the ability to detect attributes of various of concepts
and can be applied in many other domains, such as visual question answering, video
captioning, three-dimensional visual understanding, and so on. In the future, we will
continue to improve the capability of our method and apply this method on other domains.
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RUDet Refined Universal Detection
FE Feature Enhancement (module)
WT Word Tree (module)
RF Refinement (module)
MS COCO Microsoft Common Objects in Context (dataset)
CNN Convolutional Neural Network
MIL Multiple Instance Learning
CAM Class Activation Mapping
AP Average Precision
POS Part of Speech
FC Fully Connected
FPN Feature Pyramid Network
SPP Spatial Pyramid Pooling
NN nouns
VB verbs
JJ adjectives
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