
sensors

Article

Timely Reliability Analysis of Virtual Machines Considering
Migration and Recovery in an Edge Server

Kangkai Liu , Linhan Guo *, Yu Wang and Xianyu Chen

����������
�������

Citation: Liu, K.; Guo, L.; Wang, Y.;

Chen, X. Timely Reliability Analysis

of Virtual Machines Considering

Migration and Recovery in an Edge

Server. Sensors 2021, 21, 93.

https://dx.doi.org/10.3390/s21010093

Received: 15 November 2020

Accepted: 23 December 2020

Published: 25 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China;
liukangkai@buaa.edu.cn (K.L.); sy1714133@buaa.edu.cn (Y.W.); sy1914203@buaa.edu.cn (X.C.)
* Correspondence: linhanguo@buaa.edu.cn

Abstract: For the edge computing network, whether the end-to-end delay satisfies the delay con-
straint of the task is critical, especially for delay-sensitive tasks. Virtual machine (VM) migration
improves the robustness of the network, whereas it also causes service downtime and increases
the end-to-end delay. To study the influence of failure, migration, and recovery of VMs, we define
three states for the VMs in an edge server and build a continuous-time Markov chain (CTMC). Then,
we develop a matrix-geometric method and a first passage time method to obtain the VMs timely
reliability (VTR) and the end-to-end timely reliability (ETR). The numerical results are verified by
simulation based on OMNeT++. Results show that VTR is a monotonic function of the migration rate
and the number of VMs. However, in some cases, the increase in task VMs (TVMs) may conversely
decrease VTR, since more TVMs also brings about more failures in a given time. Moreover, we find
that there is a trade-off between TVMs and backup VMs (BVMs) when the total number of VMs is
limited. Our findings may shed light on understanding the impact of VM migration on end-to-end
delay and designing a more reliable edge computing network for delay-sensitive applications.

Keywords: CTMC; end-to-end delay; edge computing; timely reliability; virtual machine

1. Introduction

With the development of the Internet of Things (IoT), delay-sensitive computing tasks
are increasing in cloud computing networks. Because of the long distance between the user
equipment and the cloud, dealing with the IoT data in the cloud will cause unacceptable
latency, especially for stream or real-time IoT data. To satisfy the strict delay requirements
of such IoT services, edge computing emerged. Edge computing provides computing and
storage resources at the edge of the network, so that latency-sensitive data and private
data can be handled nearby the users, such as applications, e.g., driverless cars, real-time
traffic management, virtual reality (VR), augmented reality (AR), and healthcare IoT [1,2].
Regardless of the application scenario, the success of the task relies on the powerful and
reliable processing capability of edge computing servers, especially for latency-sensitive
applications.

To achieve scalability and robustness, computing and storage resources in cloud
servers or edge servers are usually managed by virtualization technology [3–6]. Comput-
ing tasks are performed by independent virtual machines (VMs). Owing to virtualization
technology, the network can facilitate load balancing and maintain servers without ter-
minating the task by live migration of VM [7,8]. More importantly, if a VM crashes or is
about to crash, the memory image of this VM can be migrated to an idle one and restart the
processing, improving fault tolerance of the system. According to [9–11], many software
failures are transient, which means the system can reboot to repair the problem. If the VM
failure is transient, the failed VM can reboot to recover in a short time after the migration.
The processing capability of the system is thus recovered. However, as for latency-sensitive
tasks, the virtualized management also creates new reliability challenges, which are the

Sensors 2021, 21, 93. https://dx.doi.org/10.3390/s21010093 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5426-128X
https://orcid.org/0000-0002-6914-1536
https://dx.doi.org/10.3390/s21010093
https://dx.doi.org/10.3390/s21010093
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/s21010093
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/1/93?type=check_update&version=4

Sensors 2021, 21, 93 2 of 24

failure of VM reducing the processing capability and the migration of VM causing the
service downtime [12,13].

Although researchers are trying to design migration mechanisms to shorten the total
migration time and downtime, the downtime caused by VM migration still cannot be
ignored, especially for service under strict Service Level Agreements (SLAs) [12,14]. As a
result, the influence of failure and migration of VM on the satisfying of transmission time
requirements needs to be studied, since it is critical for system reliability evaluation, opti-
mizing of resources allocating, and designing of resource management policy. For example,
to avoid the server crash, the computing server will not usually assign all the VMs to
provide service, but keep a part of VMs idle as backups. When the total number of VMs is
limited, more task VMs do not always reduce the delay, since this also brings about more
failures in a given time and reduces the backup VMs. Designers of the network and service
providers are curious about how to make a trade-off between the task computing resource
and idle resource to achieve the highest reliability of the computing network.

The ability of an edge computing network to transmit and process data within the
given time can be measured by timely reliability [15–18]. To analyze whether the VMs in
the edge server and the whole network satisfy the time requirements of a task, we define the
VM timely reliability (VTR) and the end-to-end timely reliability (ETR), respectively, and
propose analysis methods. The end-to-end delay in the computer network consists of four
types of delay [19], that is, processing delay, transmission delay, propagation delay, and
queueing delay. Since queueing delay is the main random variable of the four components
of end-to-end delay [18], we only consider processing delay and queueing delay of the
edge server in this paper. From the perspective of edge computing, an edge server can be
treated as a multi-server queue with unreliable servers, where the VMs are servers and
the tasks are customers. At the same time, to protect the data, the recovery of VMs will
not start until the memory image and state have been migrated. To measure the timely
reliability of edge computing more precisely, we need to build a queueing model consid-
ering failure, migration, and reboot of VM. Present mathematical models [20–27] cannot
take the migration of VM into account and neglect the migration downtime. Therefore,
to analyze the edge computing system considering migration and recovery of VM, the
essential migration-related states of VM need to be defined in a new evaluation model.
From the perspective of the network, the end-to-end delay of an edge computing network
is determined by the joint distribution of the successive delays of a packet traversing
multiple nodes [28]. The main difficulty of networked queueing model analysis is the
characterization of the departure process of an upstream queueing node, which is the
arrival process of the next queueing node when all intermediate nodes are pure relays [28].

In this paper, to measure the timely reliability of edge computing more precisely, we
define three VM states (available, failed-unmigrated, and failed-migrated) and build a
multi-server queueing model considering failure, migration, and recovery of VM for edge
computing server. The considered failures of VM are all transient and can be recovered
by rebooting. The proposed queueing model is analyzed by a continuous-time Markov
chain (CTMC) with three types of transfer relations solved by a matrix-geometric approach.
The probability density function (PDF) of the sojourn time at an edge computing server
is calculated based on the first passage time method. Then, we build a serial queueing
model for the edge computing network base on Burke’s theorem, considering edge service
and cloud service, respectively. Thereupon, the end-to-end delay and end-to-end timely
reliability are obtained. Furthermore, we investigate the impact of VM migration on
VTR, the analyzed factors including failure rate, migration rate, reboot rate, and resource
allocation. Our results are verified by simulations based on OMNet++.

The main contributions of this paper include: (1) We build a multi-server queueing
model that firstly takes account of failure, migration, and recovery of VMs. The present
works merely analyze the situation where VMs run perfectly [24,29,30]. (2) A partitioned
CTMC method is proposed to analyze three-dimension CTMC and obtain the VM timely
reliability. (3) An analysis method based on Burke’s theorem is proposed to obtain the PDF

Sensors 2021, 21, 93 3 of 24

of the end-to-end delay, which is indispensable for the evaluation of end-to-end timely
reliability. Present works either obtain average metrics only, such as mean queue length and
mean wait time [24,29,31], or obtain the end-to-end timely reliability by simulations [18,32].
(4) We investigate the impact of VM migration and assigning of task VMs and backup VMs
on the VTR, which can be a guidance for the designing of a more reliable edge computing
network for delay-sensitive applications.

The remainder of this paper is organized as follows. Section 2 presents related works.
Section 3 describes the problem, including the analysis of delay at the edge server and the
analysis of end-to-end delay. Section 4 proposes the CTMC and end-to-end delay model
and proposes an algorithm to obtain the VTR and ETR. Section 5 presents our results,
including simulation results and numerical results, and the discussion. Finally, we give the
summary and conclusions of this paper in Section 6.

2. Related Work
2.1. Network Delay Analysis

As mentioned before, the end-to-end delay in the computer network consists of
processing delay, transmission delay, propagation delay, and queueing delay [19]. We
investigate the literature of the network delay analysis, especially on the queueing delay,
and provide a comparative table mainly focusing on the analysis method as below. The
main models and methods are described in the table. In Table 1, “Fixed queues” means that
the structure of the queue models of a task is fixed. For example, in [24], the queue model
is a serial queue consists of the queue of edge computing, the queue of cloud gateway,
and the queue of cloud computing; “Stochastic queues” means that the structure of the
queue models is not fixed, but determined by some specific mechanisms with probabilities.
For example, in [33], tasks might be processed at the IoT layer, fog layer, or cloud layer
with different probabilities; “Homogeneous servers” means that the queue servers in the
model are all homogeneous, i.e., each server has the same service rate [34]; “Heterogeneous
servers” means that the queue servers in the model are heterogeneous [29].

As for simulation methods, (1) research focused on the resource management model,
such as task offloading and resource allocation, often verifies their delay analysis models by
semi-physical simulation [27,33], or Monte Carlo discrete event simulation using tools such
as CloudSim [31] and, Arena [29,30]. Average metrics such as mean wait time and mean
queue length are calculated to measure the system performance. The influence of VMs
state transitions on the timely reliability is not modeled. (2) End-to-end delay models of a
network are often verified by Monte Carlo discrete event simulation using Java Modeling
Tools (JMS) [24], OPNET [18], OMNeT++, etc. Timely reliability has been analyzed [18,32],
but the influence of VM state transitions on the timely reliability is still not modeled.

Sensors 2021, 21, 93 4 of 24

Table 1. Comparative table of related works.

Delay Feature Description

Transmission delay – Transmission delay is the ratio of the data size and the transmission rate. Factors such as task length, data size, and bandwidth are
considered to obtain the transmission delay [31,35–37].

Propagation delay – Propagation delay is the ratio of the distance and the propagation speed and is often treated as a function of distance. Factors such
as distance [31,33] considered to obtain the propagation delay.

Processing delay – Processing delay depends on the computing capability of the server and the computing complex of the tasks. It is usually modeled
by exponential distribution [24,25,29,31,33,35] or constant [18], etc., and acquired by combining with queue delay.

Queueing delay Fixed queues
Homogeneous servers M/M/c

Model the two-stage queues inside a server [25] or multi-stage
queues [24,27] of the edge/cloud computing network, consisting
of end equipment, edge nodes, and cloud, etc. Queue theory is
employed to obtain average metrics such as mean queue length
and mean delay, etc. Virtual machines are considered as queue
servers [24] and the modeled virtual machine (VM) states only
include busy and idle. Server failure of the queue is not
considered, and the probability density function (PDF) of
end-to-end delay is not obtained.

Non-M/M/c

Consider tasks arriving with an arbitrary probability distribution
[27] or service time following arbitrary probability distribution
[30]. Average metrics such as mean queue length and mean delay,
are obtained. Virtual machines are considered as queue servers
[30] and the modeled VM states only include busy and idle.
Server failure of the queue is not considered, and the PDF of
end-to-end delay is not obtained.

Heterogeneous servers

Different resource requests lead to heterogeneous queueing servers. The situation where the
task requires VMs with different numbers of cores is analyzed [29,38]. The modeled VM states
only include busy and idle. The number of jobs in waiting, the number of jobs under
provisioning, the number of busy cores, and the number of jobs in service, etc., are employed
to define the state space. CTMC is employed to calculate the mean delay. Server failure of the
queue is not considered, and the PDF of end-to-end delay is not obtained.

Stochastic queues
Build the queueing models with probabilities according to different offloading mechanisms [31,33]. M/M/c queue model is
employed to calculate the mean delay. Server failure of the queue is not considered, and the PDF of end-to-end delay is not
obtained.

Sensors 2021, 21, 93 5 of 24

2.2. VMs Timely Reliability Analysis

In the delay analysis of a single node, the main delays include processing delay and
queueing delay. Queueing theory is widely used to analyze node delay. Usually, the
processes in the computing server are modeled with multiple servers, including homoge-
neous servers [24,25] and heterogeneous servers [29,39]. An admission manager or load
balancer is often modeled as a single server ahead of the computing servers [25,27]. For
the task/data arrival, most studies described the task/data flow by Poisson distribution.
Researchers then build solutions by constructing and solving a CTMC. For example, Kafhali
and Salah [24] modeled the edge server by M/M/s/K queueing model. Pereira et al. [25]
proposed a queueing model for a Fog node containing a load balancer and several web
servers to solve a closed-form solution. Liu et al. [27] analyzed the user equipment (UE)
side delay and server-side delay, respectively, from a perspective of task offloading and
resource allocation. However, the above studies only proposed metrics such as utilization
of VMs, average throughput, mean response time, average queue length, and discard rate.
Measuring the above quantities fails to manifest whether the low-latency constraints of
delay-sensitive applications are satisfied. To solve this problem, the PDF of sojourn time at
the edge server needs to be obtained.

Moreover, the above analyses based on queueing theory are all under the assumption
that the edge node serves perfectly. However, the failure of a server or a VM can reduce
the processing capability of the edge node directly and increase latency [12,40,41]. To
model the failure and repair of VMs, VMs can be treated as unreliable and repairable
queue servers based on the multi-server queueing models with unreliable and repairable
servers [20–23,26]. For instance, Ke et al. [26] and Chakravarthy et al. [23] analyzed multi-
server queueing models considering unreliable servers and vacation policy. Although
the unreliable and repairable servers in these queueing models are similar to VMs of the
edge node, the present multi-server queueing models cannot be applied to model the edge
computing servers directly. The reason is that the VM needs to migrate memory images
and states before its recovery, resulting in down states for the migration and recovery that
cannot be described by present models.

To investigate the influence of VM migration on node delay, some researchers focused
on the performance evaluation of VM migration [12,13,40,42–47] and latency-aware VM
migration algorithms [14,48–51]. In these studies, migration time and service downtime [13]
were measured to evaluate the performance of VM migration, yet how the migration time
and service downtime influenced the sojourn time at the edge node has not been studied.
For the latency analysis of edge computing, most studies focused on the delay of specific
activities, such as processing, task offloading, and resource allocation [52]. The total sojourn
time at the edge node has not been well investigated. Liu et al. [53] analyzed the influence
of migration, but they only studied the probability that the computing system can provide
sufficient VMs. The delay at the server was not analyzed.

All this considered, present studies on VM delay did not investigate the influence
of VM migration on the total delay at the VMs, for the queueing models of VMs ignored
the failure and migration of VMs [24,25,27], and the VM migration delay was measured
separately from the total delay [12–14,42,44–47,53]. Meanwhile, due to the unique process
of failure, migration, and recovery of VMs, present queueing models with unreliable
servers [20–23,26] cannot be directly applied to analyze the VM delay. To analyze the
timely reliability of the VMs and the network, we build a queueing model considering the
whole process of failure, migration, and recovery of VMs and propose a method to obtain
the PDF of the delay at the edge server.

2.3. End-to-End Timely Reliability Analysis

There are two types of serial queueing models for the analysis of end-to-end delay,
which are analytic models and approximate models. By traversal of the end-to-end topol-
ogy, the end-to-end delay is obtained based on the delay in each node. Some researchers
analyzed the situation of two queuing nodes, i.e., tandem queue [54–58]. However, due to

Sensors 2021, 21, 93 6 of 24

the mathematical complexity, the formulation of the networked queueing model is infeasi-
ble when the queueing nodes are more than three. Therefore, approximation methods such
as simulation [18,59] and the upper bound method [60] are widely applied. Researchers
also studied the end-to-end delay of queueing networks based on the departure process
approximation. For instance, Xie and Haenggi [28] defined a parameter to measure the
spatial correlation between interfacing queueing nodes based on the departure process
approximation. Although Kafhali and Salah [24] proposed a serial M/M/s/K queueing
model for an edge-cloud computing system based on Burke’s theorem, they did not analyze
the end-to-end delay in the model. In addition, Jie Shen et al. [61] proved that the end-to-
end delay distribution of a network system is the inverse Laplace transform of the transfer
function of the signal flow graph and proposed an end-to-end delay analysis method based
on frequency domain. The end-to-end delay analysis considering the structure of the edge
computing network is still lacking.

3. Problem Description

As depicted by Figure 1, the edge computing network is composed of four parts—
sensor nodes, the edge server, the cloud gateway, and the cloud server. The task data
generated by sensors are transmitted to the edge server for necessary processing by VMs,
including pre-processing, analysis, compression, and encryption, over Bluetooth Low
Energy, or Wi-Fi. After the processing at the VMs of the edge server, a part of tasks will be
transmitted to the cloud server by the cloud gateway for global storage, power computing,
or running various applications. Usually, a task expects to be processed within an extremely
short time at the edge server to guarantee the real-time application. Differently, the cloud
server can process a task in hours or days. Therefore, the delay at the VMs in the edge
server and the delay through the whole network need to be analyzed, respectively. For
the edge service, a task only needs to queue at the edge server. Whereas, for the cloud
service, a task needs to go through three queues, which are the queue at the edge server,
the queue at the cloud gateway, and the queue at the cloud server successively. According
to the delay analysis, the definition of timely reliability is given by [18]:

RT = Pr(D < Dmax) =
∫ Dmax

0
f (t)dt (1)

where D is the total delay of a task, Dmax is the maximum allowable delay of the task, f (t)
is the PDF of the delay.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 24

[20–23,26] cannot be directly applied to analyze the VM delay. To analyze the timely reli-
ability of the VMs and the network, we build a queueing model considering the whole
process of failure, migration, and recovery of VMs and propose a method to obtain the
PDF of the delay at the edge server.

2.3. End-to-End Timely Reliability Analysis
There are two types of serial queueing models for the analysis of end-to-end delay,

which are analytic models and approximate models. By traversal of the end-to-end topol-
ogy, the end-to-end delay is obtained based on the delay in each node. Some researchers
analyzed the situation of two queuing nodes, i.e., tandem queue [54–58]. However, due to
the mathematical complexity, the formulation of the networked queueing model is infea-
sible when the queueing nodes are more than three. Therefore, approximation methods
such as simulation [18,59] and the upper bound method [60] are widely applied. Research-
ers also studied the end-to-end delay of queueing networks based on the departure pro-
cess approximation. For instance, Xie and Haenggi [28] defined a parameter to measure
the spatial correlation between interfacing queueing nodes based on the departure process
approximation. Although Kafhali and Salah [24] proposed a serial M/M/s/K queueing
model for an edge-cloud computing system based on Burke’s theorem, they did not ana-
lyze the end-to-end delay in the model. In addition, Jie Shen et al. [61] proved that the
end-to-end delay distribution of a network system is the inverse Laplace transform of the
transfer function of the signal flow graph and proposed an end-to-end delay analysis
method based on frequency domain. The end-to-end delay analysis considering the struc-
ture of the edge computing network is still lacking.

3. Problem Description
As depicted by Figure 1, the edge computing network is composed of four parts—

sensor nodes, the edge server, the cloud gateway, and the cloud server. The task data
generated by sensors are transmitted to the edge server for necessary processing by VMs,
including pre-processing, analysis, compression, and encryption, over Bluetooth Low En-
ergy, or Wi-Fi. After the processing at the VMs of the edge server, a part of tasks will be
transmitted to the cloud server by the cloud gateway for global storage, power computing,
or running various applications. Usually, a task expects to be processed within an ex-
tremely short time at the edge server to guarantee the real-time application. Differently,
the cloud server can process a task in hours or days. Therefore, the delay at the VMs in
the edge server and the delay through the whole network need to be analyzed, respec-
tively. For the edge service, a task only needs to queue at the edge server. Whereas, for
the cloud service, a task needs to go through three queues, which are the queue at the
edge server, the queue at the cloud gateway, and the queue at the cloud server succes-
sively. According to the delay analysis, the definition of timely reliability is given by [18]: 𝑅 = Pr(𝐷 𝐷) = 𝑓(𝑡)𝑑𝑡 (1)

where 𝐷 is the total delay of a task, 𝐷 is the maximum allowable delay of the task, 𝑓(𝑡) is the PDF of the delay.

Figure 1. Architecture of the edge computing network.

3.1. Analysis of Delay at the VMs in the Edge Server

In an application, the task data need to be transmitted to the edge server and be
processed by VMs within a delay constraint of Dmax1. In the edge server, S VMs are
assigned to process tasks, which are called task VMs (TVMs), and d idle VMs are assigned
as backups, which are called backup VMs (BVM). All the VMs are homogeneous. Then,
the total number of VMs is Z = S + d. The task flow is generated following a Poisson
process at each sensor, where the arrival rate is λ. The service time of each VM follows an

Sensors 2021, 21, 93 7 of 24

exponential distribution where the mean service time is 1/µ. If the S VMs are all occupied,
the task can be stored in the buffer, whose capacity is K. Then, the maximum capacity
of the edge server accommodating tasks is Y = S + d + K. If the buffer is full as well, a
discard occurs. We assume that the discarded tasks all violate the delay constraints and do
not consider the retrial queue.

When a VM fails, the task will be migrated to an idle VM and restart the processing,
as shown in Figure 2. The migration downtime follows an exponential distribution where
the mean service time is 1/α. Note that if all the other VMs are occupied or failed, the
task will stay in the failed VM and wait for an idle VM to migrate. Extremely, when all
the VMs are failed and not ready to reboot, to avoid deadlock of the VMs, the last failed
VM can reboot without migration, reserving the un-migrated task. After the migration of
the task, the failed VM can reboot and become an available VM again. If there are fewer
than S VMs available (capable to process a task), the newly recovered VM will be assigned
as a TVM; otherwise, it will be assigned as a BVM. The reboot time of VM follows an
exponential distribution where the mean reboot time is 1/β. Then, each VM has three
states: available, failed-unmigrated, and failed-migrated. Here, the available state refers
to the state that the VM is capable to process a task. An available VM can be either idle
or occupied. Transitions among the three states are depicted in Figure 3: (1) From 1© to
2©, the running VM fails, transiting from available to failed-unmigrated. (2) If there is at

least one idle VM, the migration begins, or the failed VM needs to wait for an idle VM to
migrate. When the migration completes, the edge server transits from 2© to 3©, where the
failed VM is failed-migrated. (3) By rebooting, the failed-migrated VM can recover to be
available again, edge server transiting from 3© to 1©. If there are fewer than S VMs running,
the newly recovered VM will be assigned as a TVM, or it will be assigned as a BVM. (4) At
1©, when the TVMs are all occupied, the new arrival task will be waiting in the buffer, edge

server transiting from 1© to 4©. If the buffer is full as well, a discard occurs. (5) At 4©, if a
VM completes the processing of a task and becomes an idle VM, the task waiting in the
buffer will get into the idle VM for processing, edge server transiting from 4© to 1©.

In the edge computing server described above, the processing of tasks can be treated
as a revised M/M/s/K queue, where the VM migration and recovery are considered.

Assumptions:

• All the tasks are equal in data size;
• The failures of VM are all transient failures, which can be recovered by rebooting in a

short time;
• Idle VMs do not fail;
• The working times of VMs in the server are independent and identically distributed

with the exponential distribution where 1/θ is the mean time to failure.
Sensors 2021, 21, x FOR PEER REVIEW 8 of 24

Figure 2. Queueing model of an edge server. The dash-lined circles indicate backup VMs.

Figure 3. State transitions of virtual machines (VM) in an edge server.

3.2. Analysis of End-to-End Delay
After the processing at the edge server, a part of task data needs to be transmitted to

the cloud for further processing or storage within a delay constraint of 𝐷 . According
to Burke’s theorem [62], the steady-state departure process of a stable M/M/c queueing
system is a Poisson process with the same rate as the arrival process [63]. Assume that the
service time of the cloud gateway and the cloud server follow exponential distributions
where the mean service time is 1 𝜇⁄ and 1 𝜇 ,⁄ respectively. Then, the queues at the
cloud gateway and the cloud server can be modeled by the M/M/1/K queueing model [64].
As depicted in Figure 4, the tasks are processed at the edge server firstly. Then, a portion 𝑝 of tasks is transmitted to a cloud server by a cloud gateway for further processing. The
delay is caused by the queueing at the edge server, cloud gateway, and cloud server suc-
cessively.

Figure 2. Queueing model of an edge server. The dash-lined circles indicate backup VMs.

Sensors 2021, 21, 93 8 of 24

Sensors 2021, 21, x FOR PEER REVIEW 8 of 24

Figure 2. Queueing model of an edge server. The dash-lined circles indicate backup VMs.

Figure 3. State transitions of virtual machines (VM) in an edge server.

3.2. Analysis of End-to-End Delay
After the processing at the edge server, a part of task data needs to be transmitted to

the cloud for further processing or storage within a delay constraint of 𝐷 . According
to Burke’s theorem [62], the steady-state departure process of a stable M/M/c queueing
system is a Poisson process with the same rate as the arrival process [63]. Assume that the
service time of the cloud gateway and the cloud server follow exponential distributions
where the mean service time is 1 𝜇⁄ and 1 𝜇 ,⁄ respectively. Then, the queues at the
cloud gateway and the cloud server can be modeled by the M/M/1/K queueing model [64].
As depicted in Figure 4, the tasks are processed at the edge server firstly. Then, a portion 𝑝 of tasks is transmitted to a cloud server by a cloud gateway for further processing. The
delay is caused by the queueing at the edge server, cloud gateway, and cloud server suc-
cessively.

Figure 3. State transitions of virtual machines (VM) in an edge server.

3.2. Analysis of End-to-End Delay

After the processing at the edge server, a part of task data needs to be transmitted to
the cloud for further processing or storage within a delay constraint of Dmax2. According
to Burke’s theorem [62], the steady-state departure process of a stable M/M/c queueing
system is a Poisson process with the same rate as the arrival process [63]. Assume that the
service time of the cloud gateway and the cloud server follow exponential distributions
where the mean service time is 1/µlg and 1/µcs, respectively. Then, the queues at the cloud
gateway and the cloud server can be modeled by the M/M/1/K queueing model [64]. As
depicted in Figure 4, the tasks are processed at the edge server firstly. Then, a portion p of
tasks is transmitted to a cloud server by a cloud gateway for further processing. The delay
is caused by the queueing at the edge server, cloud gateway, and cloud server successively.Sensors 2021, 21, x FOR PEER REVIEW 9 of 24

Figure 4. Queueing models through the network.

In the problem, we consider different delay constraints to obtain VTR and ETR of the
edge computing network, according to the parameters of the network shown in Table 2.

Table 2. Notations.

Notation Description 𝜆 Arrival rate of tasks 𝑁 Number of sensors 𝜇 Service rate of virtual machine (VM) 𝑆 Number of task VMs (TVMs) 𝑑 Number of backup VMs (BVMs) 𝐾 Capacity of the buffer of the edge server 𝑍 Total number of VMs 𝑌 Maximum capacity of the edge server 𝜃 Failure rate of VM 𝛼 Migration rate of VM 𝛽 Reboot rate of VM 𝑝 The proportion of tasks requiring cloud service 𝜇 Service rate of cloud gateway 𝐶 Capacity of cloud gateway 𝜇 Service rate of cloud server 𝐶 Capacity of cloud server 𝐷 Maximum allowable delay at the edge server 𝐷 Maximum allowable end-to-end delay 𝑥 Number of available VMs 𝑥 Number of tasks in the edge server 𝑥 Number of failed-unmigrated VMs 𝑖 State row number 𝑗 State block number 𝑘 State column number inside the block 𝑔 Number of about-to-fail VMs ℎ Number of migrating VMs 𝐵 The 𝑤-th block of the CTMC 𝐿 Set of all the states in row 𝑤 of the CTMC

Figure 4. Queueing models through the network.

In the problem, we consider different delay constraints to obtain VTR and ETR of the
edge computing network, according to the parameters of the network shown in Table 2.

Sensors 2021, 21, 93 9 of 24

Table 2. Notations.

Notation Description

λ Arrival rate of tasks
N Number of sensors
µ Service rate of virtual machine (VM)
S Number of task VMs (TVMs)
d Number of backup VMs (BVMs)
K Capacity of the buffer of the edge server
Z Total number of VMs
Y Maximum capacity of the edge server
θ Failure rate of VM
α Migration rate of VM
β Reboot rate of VM
p The proportion of tasks requiring cloud service

µlg Service rate of cloud gateway
Clg Capacity of cloud gateway
µcs Service rate of cloud server
Ccs Capacity of cloud server

Dmax1 Maximum allowable delay at the edge server
Dmax2 Maximum allowable end-to-end delay

x1 Number of available VMs
x2 Number of tasks in the edge server
x3 Number of failed-unmigrated VMs
i State row number
j State block number
k State column number inside the block
g Number of about-to-fail VMs
h Number of migrating VMs

Bw The w-th block of the CTMC
Lw Set of all the states in row w of the CTMC

4. Mathematical Model
4.1. Queueing Model of the Edge Server

To model the queueing at the VMs in the edge server described in the previous section,
we denote the state of the edge server by (x1, x2, x3), where integer x1 ∈ [0, Z] denotes
the number of available VMs, integer x2 ∈ [0, Y] denotes the number of tasks in the edge
server, and integer x3 ∈ [0, min(x2, Z)] denotes the number of failed-unmigrated VMs.
Since x1, x2, and x3 are all limited, the number of states is finite. According to Section 3.1,
x1, x3, and (x1 + x3) shall all be less than Z. In addition, the number of tasks x2 shall not
be more than the present capacity of the edge server [min(x1, S) + x3 + K]. Furthermore,
the number of tasks x3 reaches its maximum when all the tasks stay in failed-unmigrated
VMs, where the maximum value is x2. According to the analysis above, the constraints of
the three state variables are:

0 ≤ x1 ≤ Z
0 ≤ x2 ≤ min(x1, S) + x3 + K

0 ≤ x3 ≤ min(x2, Z − x1)
. (2)

where Z denotes the total number of VMs, S denotes the number of TVMs, K denotes the
capacity of the buffer of the edge server.

We assume that the states violating Equation (2) exist in the CTMC and name them as
pseudo-states. The transitions of pseudo-states are the same as the real states. Furthermore,
to study the state transitions and express the transition rate diagram conveniently, we
divide the states into a few blocks in terms of x2, i.e., the states that have the same value of

Sensors 2021, 21, 93 10 of 24

x2 belong to the same block. Then the total number of blocks is (Y + 1), for x2 ranges from
0 to Y. The j-th block Bj:

Bj = {(x1, x2, x3)|x2 = j− 1, x1 ∈ [0, Z], x3 ∈ [0, min(x2, Z)]}. (3)

The number of columns of Bj. is:

aj = min(j, Z), 1 ≤ j ≤ Y + 1. (4)

Let bj denote the total number of columns from block B1 to block Bj. Then, bj is given
by:

bj = ∑j
u=1 au. (5)

Consequently, the transitions inside a block are all triggered by state transitions of VM
(failure, migration, and reboot). Figure 5 shows transitions inside block Bm+1. There are
three kinds of transition:Sensors 2021, 21, x FOR PEER REVIEW 11 of 24

Figure 5. Transitions inside the blocks, triggered by failure (transitions toward bottom-right), mi-
gration (leftward transitions), and reboot (upward transitions) of VM. 𝑛 = min(𝑥 , 𝑍).

At the same time, transitions between blocks are triggered by the arrival or departure
of tasks. Figure 6 presents the transitions between blocks when 𝑥 = 𝑍 − 𝑖 + 1. The pre-
sented two states in each block are the first two states of the block. When a task arrives,
the 𝑘-th state of block 𝐵 transits to the 𝑘-th state of block 𝐵 with a transition rate of 𝜆; when a task departs, the 𝑘-th state of block 𝐵 transits to the 𝑘-th state of block 𝐵
with a transition rate of 𝑔𝜇.

Figure 6. Transitions between blocks when 𝑥 = 𝑍 − 𝑖 + 1, triggered by the arrival (rightward
transitions) or departure (leftward transitions) of tasks.

Note that the transitions inside the blocks and the transitions between the blocks all
exist in the CTMC of the edge server. We detach the transitions into two types for a concise
and explicit description. Figure 7 presents the states of a case where 𝑆 = 1, 𝑑 = 1, 𝐾 = 1.

Figure 7. Continuous-time Markov chain (CTMC) of a case where 𝑆 = 1, 𝑑 = 1, 𝐾 = 1. The dashed-
line states are pseudo-states.

Figure 5. Transitions inside the blocks, triggered by failure (transitions toward bottom-right), migra-
tion (leftward transitions), and reboot (upward transitions) of VM. n = min(x2, Z).

(1) Transitions caused by failures of VMs. The number of VMs about to fail equals
the number of running VMs, which is the minimum of the number of available TVMs
min(x1, S) and the number of live tasks (x2 − x3). Thus, from state (x1, x2, x3) to state
(x1 − 1, x2, x3 + 1), the transition rate is gθ, where g is the number of about-to-fail VMs (or
the number of running VMs), given by:

g = min(min(x1, S), x2 − x3). (6)

Notably, the transition of migration does not exist when x1 = 0, since none VM is
available.

(2) Transitions caused by migrations of failed VMs. The number of migrating VMs
is the minimum of the number of failed-unmigrated VMs x3 and the number of idle VMs
(x1 − g). Thus, from state (x1, x2, x3) to state (x1, x2, x3 − 1), the transition rate is hα, where
h is the number of migrating VMs, given by:

h = min(x3, x1 − g) = min(x3, x1 −min(min(x1, S), x2 − x3)). (7)

(3) Transitions caused by the reboot of failed-migrated VMs. The number of rebooting
VMs is the number of failed-migrated VMs (Z− x1 − x3). From state (x1, x2, x3) to state
(x1 + 1, x2, x3), the transition rate is (Z− x1 − x3)β.

At the same time, transitions between blocks are triggered by the arrival or departure
of tasks. Figure 6 presents the transitions between blocks when x1 = Z− i + 1. The pre-

Sensors 2021, 21, 93 11 of 24

sented two states in each block are the first two states of the block. When a task arrives,
the k-th state of block Bj transits to the k-th state of block Bj+1 with a transition rate of λ;
when a task departs, the k-th state of block Bj transits to the k-th state of block Bj−1 with a
transition rate of gµ.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 24

Figure 5. Transitions inside the blocks, triggered by failure (transitions toward bottom-right), mi-
gration (leftward transitions), and reboot (upward transitions) of VM. 𝑛 = min(𝑥 , 𝑍).

At the same time, transitions between blocks are triggered by the arrival or departure
of tasks. Figure 6 presents the transitions between blocks when 𝑥 = 𝑍 − 𝑖 + 1. The pre-
sented two states in each block are the first two states of the block. When a task arrives,
the 𝑘-th state of block 𝐵 transits to the 𝑘-th state of block 𝐵 with a transition rate of 𝜆; when a task departs, the 𝑘-th state of block 𝐵 transits to the 𝑘-th state of block 𝐵
with a transition rate of 𝑔𝜇.

Figure 6. Transitions between blocks when 𝑥 = 𝑍 − 𝑖 + 1, triggered by the arrival (rightward
transitions) or departure (leftward transitions) of tasks.

Note that the transitions inside the blocks and the transitions between the blocks all
exist in the CTMC of the edge server. We detach the transitions into two types for a concise
and explicit description. Figure 7 presents the states of a case where 𝑆 = 1, 𝑑 = 1, 𝐾 = 1.

Figure 7. Continuous-time Markov chain (CTMC) of a case where 𝑆 = 1, 𝑑 = 1, 𝐾 = 1. The dashed-
line states are pseudo-states.

Figure 6. Transitions between blocks when x1 = Z− i + 1, triggered by the arrival (rightward transitions) or departure
(leftward transitions) of tasks.

Note that the transitions inside the blocks and the transitions between the blocks all
exist in the CTMC of the edge server. We detach the transitions into two types for a concise
and explicit description. Figure 7 presents the states of a case where S = 1, d = 1, K = 1.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 24

Figure 5. Transitions inside the blocks, triggered by failure (transitions toward bottom-right), mi-
gration (leftward transitions), and reboot (upward transitions) of VM. 𝑛 = min(𝑥 , 𝑍).

At the same time, transitions between blocks are triggered by the arrival or departure
of tasks. Figure 6 presents the transitions between blocks when 𝑥 = 𝑍 − 𝑖 + 1. The pre-
sented two states in each block are the first two states of the block. When a task arrives,
the 𝑘-th state of block 𝐵 transits to the 𝑘-th state of block 𝐵 with a transition rate of 𝜆; when a task departs, the 𝑘-th state of block 𝐵 transits to the 𝑘-th state of block 𝐵
with a transition rate of 𝑔𝜇.

Figure 6. Transitions between blocks when 𝑥 = 𝑍 − 𝑖 + 1, triggered by the arrival (rightward
transitions) or departure (leftward transitions) of tasks.

Note that the transitions inside the blocks and the transitions between the blocks all
exist in the CTMC of the edge server. We detach the transitions into two types for a concise
and explicit description. Figure 7 presents the states of a case where 𝑆 = 1, 𝑑 = 1, 𝐾 = 1.

Figure 7. Continuous-time Markov chain (CTMC) of a case where 𝑆 = 1, 𝑑 = 1, 𝐾 = 1. The dashed-
line states are pseudo-states.

Figure 7. Continuous-time Markov chain (CTMC) of a case where S = 1, d = 1, K = 1. The dashed-line states are
pseudo-states.

Given the partitioned configuration of the CTMC, to locate a state more easily, we
define the coordinate of a state as (i, j, k), where i denotes the row number, j denotes the
block number, and k denotes the column number inside the block. The derivation between
a state and its coordinate is

x1 = Z + 1− i
x2 = j− 1
x3 = k− 1

. (8)

where x1 denotes the number of available VMs, x2 denotes the number of tasks in the edge
server, x3 denotes the number of failed-unmigrated VMs. According to Equations (2) and
(8), the constraints of the three coordinate variables are:

1 ≤ i ≤ Z + 1
1 ≤ j ≤ min(Z− i + 1, S) + k + K

1 ≤ k ≤ min(j, i)
. (9)

To avoid misunderstanding, we define the set of all the states in row i ∈ [1, Z + 1] of
the CTMC as Li:

Li = {(i, j, k)|j ∈ [1, Y + 1], k ∈ [1, min(j, Z)]}. (10)

Sensors 2021, 21, 93 12 of 24

Then, in Li, the number of states (i, j, k) is c = bj − aj + k, where bj denotes the total
number of columns from block B1 to block Bj, aj denotes the number of columns of the
block Bj. Since the number of states is numerous, it is hard to give the expression of
transition rate for each state if we directly construct the generator matrix according to the
sequence of states. Therefore, we construct the generator matrix of the CTMC based on
the matrix-geometric method. Specifically, we obtain the generator matrices of transition
inside a row Li (transitions caused by arrival and departure of tasks and migration of VMs)
and generator matrices of transitions between neighboring rows (transitions caused by
failure and reboot of VMs), respectively. In this way, we can express the generator matrix
as a partitioned matrix with quasi-birth-and-death feature:

A =

A11 A12 0 0 0 0
A21 A22 A23 0 0 0

0 A32 A33
. . .

...
...

... 0
. AZ−1,Z 0

0
... 0 AZ,Z−1 AZ,Z AZ,Z+1

0 0 0 0 AZ+1,Z AZ+1,Z+1

, (11)

where matrix Axy(bY+1×bY+1)
denotes the generator matrix from Lx to Ly. Then, the element

Axy(c1, c2) in row c1 and column c2 of matrix Axy denotes the transition rate from the c1-th
state of Lx to the c2-th state of Ly. The general form of Axy is given by:

Aii
(
bj − aj + k, bj+1 − aj+1 + k

)
= Nλ, 1 ≤ i ≤ Z + 1, 1 ≤ j ≤ Y, 1 ≤ k ≤ min(j, Z)

Aii
(
bj+1 − aj+1 + k, bj − aj + k

)
= gµ, 1 ≤ i ≤ Z + 1, 1 ≤ j ≤ Y, 1 ≤ k ≤ min(j, Z)

Aii
(
bj − aj + k, bj − aj + k− 1

)
= hα, 1 ≤ i ≤ Z + 1, 2 ≤ j ≤ Y + 1, 2 ≤ k ≤ min(j, Z)

Ai,i+1
(
bj − aj + k, bj − aj + k + 1

)
= gθ, 1 ≤ i ≤ Z, 2 ≤ j ≤ Y + 1, 1 ≤ k ≤ min(j, Z)− 1

Ai+1,i
(
bj − aj + k, bj − aj + k

)
= iβ, 1 ≤ i ≤ Z, 1 ≤ j ≤ Y + 1, 1 ≤ k ≤ min(j, Z)

Ai+1,i
(
bj − aj + k + 1, bj − aj + k

)
= (k− 1)β, i = Z + 1, Z + 1 ≤ j ≤ Y + 1, k = Z + 1

, (12)

where g is the number of running VMs, h is the number of migrating VMs.
Identify the pseudo-states according to Equation (2). Then, delete the rows and

columns of the pseudo-states in A and name the remaining l × l matrix as Q. After that,
revise the diagonal elements of Q to subject to:

Ql×l ·1l×1= 0l×1. (13)

The matrix Q is the final form of the generator matrix of the CTMC.
To obtain the PDF of sojourn time at the edge server, we employ the first passage time

method. Among all the states of the edge computing server, the states in block 1 represent
that the edge server is empty, for the numbers of the tasks are 0. Delete the states in block
1. Then, the sojourn time at the edge server approximately equals the time that the edge
server transits from the non-empty states to the empty states when no new task arrives,
which can be obtained by the first passage time method. Obtaining the PDF of sojourn
time at the edge server follows the steps below:

1. Solve Equation (14) to obtain the steady-state probability vector π of the CTMC:{
QTπT = 0
∑ π = 1

; (14)

2. Delete the empty states in the transition rate matrix A, and retain the rest states.
The new matrix is named as M.

3. Delete the probability of empty states in the stable probability vector π. The new
vector is named as γ. Let δ = γ/ ∑ γ.

Sensors 2021, 21, 93 13 of 24

4. The distribution function of sojourn time D is:

Fes(t) = P(D ≤ t) = 1− δ· exp(Mt)·1. (15)

5. Then PDF of the sojourn time D is:

fes(t) = F′es(t). (16)

4.2. Timely Reliability Model

As analyzed in Section 3, the queueing at the cloud gateway and cloud server can
be modeled by the M/M/1/C model. The tasks go through the queue of the edge server,
the queue of cloud gateway, and the queue of the cloud server successively. Then, the
end-to-end delay is determined by the joint distribution of the successive delays of a task
traversing edge server, cloud gateway, and cloud server. The PDF of delay at the VMs in
the edge server has been analyzed in Section 4.1. In the rest of Section 4.2, we present the
analysis method of end-to-end delay and timely reliability, including VTR and ETR.

4.2.1. VMs Timely Reliability

VMs timely reliability (VTR) is defined as the probability that the VMs in an edge
server are capable of processing a task within a required time. For tasks requiring edge
service, the service delay equals the sojourn time at the edge server. According to Equation
(1), VTR is:

RV =
∫ Dmax1

0
fes(t)dt, (17)

where Dmax1 is the maximum allowable delay at the edge server.

4.2.2. End-to-End Timely Reliability

End-to-end timely reliability (ETR) is defined as the probability that a group of end-to-
end nodes in the edge computing network is capable of processing a task within a required
time. For tasks requiring cloud service, the service delay is the sum of delay at the edge
server, cloud gateway, and cloud. Since only a portion p of tasks is transmitted to the cloud
server, the arrival rate of tasks at the cloud gateway and the cloud server is pNλ. Departing
from the edge server, a task arrives at the cloud gateway finding w tasks (0 ≤ w ≤ Clg)
already there with a probability [24]:

Pw
lg =

(1−ρlg)(ρlg)

w

1−ρlg
Clg

, ρlg 6= 1

1
Clg

, ρlg = 1
, (18)

where ρlg = pNλ/µlg is the traffic intensity at the cloud gateway. The processing time of a
task at the cloud gateway follows exponential distribution:

f 0
lg(t) = µlge−µlgt, t > 0. (19)

Then, the sojourn time of a task is the joint distribution of the processing time of all the
(w + 1) tasks (the former w tasks and itself). Since the sum of identically and exponentially
distributed variables follow a Gamma distribution, the PDF of the sojourn time of a task at
the cloud gateway if it arrives at the cloud gateway finding w tasks already there is:

f w
lg(t) =

µlg
w

w!
·tw−1·e−µlgt, t > 0. (20)

Therefore, the PDF of the sojourn time at the cloud gateway:

flg(t) = ∑
Clg−1
w=0 Pw

lg· f
w
lg(t). (21)

Sensors 2021, 21, 93 14 of 24

Similarly, departing from the cloud gateway, a task arrives at the cloud server finding
w tasks (0 ≤ w ≤ Ccs) already there with a probability:

Pw
cs =

(1−ρcs)(ρcs)

w

1−(ρcs)
Ccs , ρcs 6= 1

1
Ccs

, ρcs = 1
, (22)

where ρcs = pNλ/µcs is the traffic intensity at the cloud server. The sojourn time of a task
at the cloud server if it arrives at the cloud server finding w tasks already there is:

f w
cs(t) =

µcs
w

w!
·tw−1·e−µcst, t > 0. (23)

The PDF of the sojourn time at the cloud server:

fcs(t) = ∑Ccs−1
w=0 Pw

cs · f w
cs(t). (24)

According to the above analysis, PDF of the end-to-end delay of the edge computing
network can be obtained by:

f (t3) =
∫ +∞

0

[∫ +∞

0
fes(t1) flg(t2 − t1)dt1

]
fcs(t3 − t2)dt2, (25)

where t1, t2, and t3 are the sojourn time at the edge server, the total time to go through the
edge server, and the cloud gateway, and the total time to go through the edge server, the
cloud gateway, and the cloud server, respectively. According to Equation (1), ETR can be
obtained by:

RN =
∫ Dmax2

0
f (t3)dt3. (26)

4.3. Algorithm

To calculate VTR, the key is to solve the CTMC with a state-space of high dimension
and obtain the PDF of the sojourn time at the edge server. For this purpose, we need to
propose an algorithm to formulate the partitioned generator matrix and obtain the PDF of
the sojourn time at the edge server based on the first passage time method. The obtaining
of PDF of the sojourn time at the edge server is described in Algorithm 1. After that, VTR
and ETR can be calculated according to Section 4.2.

Algorithm 1 Algorithm for obtaining PDF of the sojourn time at the edge server

Input:
Arrival rate of tasks: λ

Number of sensors: N
Service rate of VM: µ

Number of TVMs: S
Number of BVMs: d
Capacity of the buffer: K
Failure rate of VMs: θ

Migration rate of VMs: α

Reboot rate of VMs: β

Output:
PDF of the sojourn time at the edge server: fes(t)

1. initialize A
2. vector a = min(j, Z), 1 ≤ j ≤ Y + 1 % The number of columns of block j
3. vector b = ∑

j
u=1 au, 1 ≤ j ≤ Y + 1 % The number of total columns from block 1 to block j

4. for i = 1: Z + 1 do % Transitions caused by arrival or departure of tasks
5. for j = 1: Y do

Sensors 2021, 21, 93 15 of 24

6. for k = 1: min(a(j), i) do
7. x = b(j) − a(j) + k
8. y = b(j + 1) − a(j + 1) + k
9. A{i, i} (x, y) = Nλ

10. A{i, i} (y, x) = min (min (Z + 1 − i, S), j − k) * µ

11. end for
12. end for
13. end for
14. for i = 1: Z + 1 do % Transitions caused by migration of VMs
15. for j = 2: Y + 1 do
16. for k = a(j): −1: 2 do
17. x = b(j) − a(j) + k
18. A{i, i} (x, x − 1) = min (k − 1, Z + 1 − i −min (min (Z + 1 − i, S), j − k)) * α

19. end for
20. end for
21. end for
22. for j = 2: Y + 1 do % Transitions caused by migration of VMs
23. for k = 1: a(j) − 1 do
24. for i = 1: Z do
25. x = b(j)− a(j) + k
26. A {i, i + 1} (x, x + 1) = min (min (Z + 1 − i, S), j − k) * θ

27. end for
28. end for
29. end for
30. for j = 1: Y + 1 do % Transitions caused by reboot of VMs
31. for k = 1: a(j) do
32. for i = 2: Z + 1 do
33. x = b(j) − a(j) + k
34. A{i, i − 1} (x, x) = iβ
35. end for
36. end for
37. end for
38. for j = Z + 1: Y + 1 do % Transitions caused by reboot without migration when all the VMs are

failed-unmigrated
39. k = a(j)
40. x = b(j) − a(j) + k
41. A{Z + 1, Z} (x, x−1) = (k − 1) * β

42. end for
43. Q = A
44. for j = 1: size (a,2) do % Identify pseudo-states
45. for k = 1: a(j) do
46. for i = 1: Z + 1 do
47. if k ≤ min(j, i)|| j ≤ min(Z− i + 1, S) + k + K
48. x = (i − 1) * b(Y + 1) + b(j) − a(j) + k
49. replace row x of Q with 0
50. replace column x of Q with 0
51. end if
52. end for
53. end for
54. end for
55. replace the rows and columns of absorbing states with 0
56. record the row number (or column number) of the states whose value is 0
57. revise the diagonal elements of Q to ensure the sum of each row equal to 0
58. delete the rows and columns whose value is 0
59. the steady-state probability vector: π = Q/e %e is a column vector whose last element is 1,

and the other elements are 0
60. M = A

Sensors 2021, 21, 93 16 of 24

61. set the arrival rate to 0 in M
62. revise the diagonal elements of M to ensure the sum of each row equals to 0
63. delete the rows and columns of the states of block 1 % The states of block 1 represent that the

edge server is empty
64. delete the rows and columns that equals to 0
65. delete the probability of empty states in the stable probability vector π and name the new

vector as γ
66. let δ = γ/ ∑ γ

67. Fes(t) = 1− δ· exp(Mt)·1
68. calculate the PDF of sojourn time at the edge server: fes(t) = F′es(t)
69. return fes(t)

5. Results and Discussion

In this section, we provide a case study of traffic monitoring for the proposed timely
reliability evaluation method. Simulation results are obtained to verify our model and
numerical results. We also investigate the influence of different factors on timely reliability,
which helps design a better edge computing network.

5.1. Experimental Setup

At a crossroads, the edge computing network for traffic monitoring consists of several
sensors, an edge server, a cloud gateway, and a cloud server. The architecture of this
network is depicted in Figure 1. To monitor the traffic at this crossroads, the sensors
collect task data in real-time and transmit the tasks to the edge server, where the tasks are
processed by VMs. In addition, a part of processed tasks is transmitted to the cloud server
through the cloud gateway for further process or storage. The parameters used in this case
are shown in Table 3. The data on sensor data refer to [65,66]. The data on VM migration
refer to [40]. The data on system failure refer to [10].

Table 3. Inputting parameters of simulation experiments.

Parameter Description Value

λ Arrival rate of tasks 180 per s
N Number of sensors 10
µ Service rate of VM 1000 per s
S Number of TVMs 5
d Number of BVMs 2
K Capacity of the buffer of the edge server 180
Z Total number of VMs 7
Y Maximum capacity of the edge server 187
θ Failure rate of VM 0.0002 per s
α Migration rate of VM 0.2 per s
β Reboot rate of VM 0.002 per s
p The proportion of tasks requiring cloud service 1%

µlg Service rate of cloud gateway 200 per s
Clg Capacity of cloud gateway 100
µcs Service rate of cloud server 300 per s
Ccs Capacity of cloud server 100

Dmax1 Maximum allowable delay at the edge server 0.04 s
Dmax2 Maximum allowable end-to-end delay 0.04 s

5.2. Simulation Experiments

The numerical results are verified by simulation based on OMNeT++ (V5.5.1), a C++
network simulation library and framework. We choose OMNeT++ for its open source and
extensible features. Figure 8 shows the simulation model in OMNeT++. In the simulation
model, the sensors are modeled by the Wireless Host Module; the buffer of the edge server
is modeled by the Passive Queue Module; the VMs of the edge server are modeled by the
Server Module; the cloud gateway is modeled by the Passive Queue Module; the cloud

Sensors 2021, 21, 93 17 of 24

server is modeled by the Cloud Module. Particularly, to model the migration time of the
VM migration, a Downtime Generator (DG), modeled by the Passive Queue Module, is
employed to connect the edge servers and VMs. Once a running VM fails, the task on this
VM will be migrated to an idle VM through the DG, where a migration downtime of an
exponential distribution is needed. Notably, the tasks spend no time to pass the DG unless
it is on the way of migration. As soon as the migrating task arrives at the destination VM,
the failed VM becomes failed-migrated, and its rebooting can begin. The values of the
parameters are the same as those in Table 3.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 24

5.2. Simulation Experiments
The numerical results are verified by simulation based on OMNeT++ (V5.5.1), a C++

network simulation library and framework. We choose OMNeT++ for its open source and
extensible features. Figure 8 shows the simulation model in OMNeT++. In the simulation
model, the sensors are modeled by the Wireless Host Module; the buffer of the edge server
is modeled by the Passive Queue Module; the VMs of the edge server are modeled by the
Server Module; the cloud gateway is modeled by the Passive Queue Module; the cloud
server is modeled by the Cloud Module. Particularly, to model the migration time of the
VM migration, a Downtime Generator (DG), modeled by the Passive Queue Module, is
employed to connect the edge servers and VMs. Once a running VM fails, the task on this
VM will be migrated to an idle VM through the DG, where a migration downtime of an
exponential distribution is needed. Notably, the tasks spend no time to pass the DG unless
it is on the way of migration. As soon as the migrating task arrives at the destination VM,
the failed VM becomes failed-migrated, and its rebooting can begin. The values of the
parameters are the same as those in Table 3.

Figure 8. Simulation model in OMNeT++.

In the simulation, the end-to-end delay converges to a steady-state value as the sim-
ulation time goes by, as shown in Figure 9. We collect the delay values of each 1000 tasks
to calculate ETR. When the variation of ETR is less than 1%, we take the final value as the
stationary simulation result. Let the Boolean variable 𝐹 denote if the end-to-end delay of
a task satisfies the task requirement: 𝐹 = 0, the delay does not satisfy the requirement 𝐷1, the delay satisfies the requirement 𝐷 . (27)

Then ETR can be obtained by: 𝑅 = ∑ . (28)

In the simulation, it takes 5 min for the end-to-end delay to converge. To obtain the
steady-state value of ETR, the simulation takes more than 10 min. We compare the simu-
lation results and the numerical results of ETR when the failure rate 𝜃 equals to 0.0002,
0.0006, and 0.001 with different numbers of sensors. The comparisons are shown in Figure
10, where the bars’ heights represent the relative errors of the numerical results. The rela-
tive errors are all less than 2%. The simulation results verify that the analytical model

Figure 8. Simulation model in OMNeT++.

In the simulation, the end-to-end delay converges to a steady-state value as the
simulation time goes by, as shown in Figure 9. We collect the delay values of each 1000
tasks to calculate ETR. When the variation of ETR is less than 1%, we take the final value as
the stationary simulation result. Let the Boolean variable Fi denote if the end-to-end delay
of a task satisfies the task requirement:

Fi =

{
0, the delay does not satisfy the requirement Dmax2
1, the delay satisfies the requirement Dmax2

. (27)

Then ETR can be obtained by:

RN =
∑n

i=1 Fi

n
. (28)

In the simulation, it takes 5 min for the end-to-end delay to converge. To obtain
the steady-state value of ETR, the simulation takes more than 10 min. We compare the
simulation results and the numerical results of ETR when the failure rate θ equals to
0.0002, 0.0006, and 0.001 with different numbers of sensors. The comparisons are shown
in Figure 10, where the bars’ heights represent the relative errors of the numerical results.
The relative errors are all less than 2%. The simulation results verify that the analytical
model proposed in this paper is valid and applicable for timely reliability analysis of a
computing network considering failure, migration, and reboot of edge server VMs.

Sensors 2021, 21, 93 18 of 24

Sensors 2021, 21, x FOR PEER REVIEW 18 of 24

proposed in this paper is valid and applicable for timely reliability analysis of a computing
network considering failure, migration, and reboot of edge server VMs.

Figure 9. Converging of the end-to-end delay in a simulation.

Figure 10. Numerical results and simulation results with failure rate (FR) equals (a) 0.0002, (b)
0.0006, and (c) 0.0010.

5.3. Timely Reliability Analysis
To investigate the impacts of different factors on the timely reliability of the VMs, we

compare VTR under different conditions based on the analysis methods we proposed.

5.3.1. Analysis of Failure Rate, Migration Rate, and Reboot Rate
It is observed in Figures 11 and 12 that VTR is a monotonic function of the failure

rate, migration rate, and reboot rate of VM. Comparing Figure 11a with Figure 11b, we
find VTR is more sensitive to the failure rate when the reboot rate and migration rate are
smaller since the VMs spend more time to migrate and recover when the reboot rate and
migration rate are smaller. Thus, if the migration time and reboot time are quite short, the
designers do not need to be very rigid on the reliability of VMs. Conversely, if the migra-
tion time and reboot time are relatively long, designers can improve VTR of the edge com-
puting network effectively by reducing the failure rate of VMs.

0 1000 2000
0.00

0.02

0.04

0.06

0.08

En
d-

to
-e

nd
 D

el
ay

 /s

The Number of Tasks

 End-to-end Delay
 Mean End-to-end Delay
 Dmax2

1000 1500 20000.039

0.040

0.041

5 10 15
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

5 10 15
0.90

0.92

0.94

0.96

0.98

1.00

5 10 15

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

(a) FR=0.0002 (b) FR=0.0006

En
d-

to
-e

nd
 T

im
el

y
re

lia
bi

lit
y

The Number of Sensors

 Numerical Results
 Simulation Results

(c) FR=0.0010

En
d-

to
-e

nd
 T

im
el

y
re

lia
bi

lit
y

The Number of Sensors

 Numerical Results
 Simulation Results

En
d-

to
-e

nd
 T

im
el

y
re

lia
bi

lit
y

The Number of Sensors

 Numerical Results
 Simulation Results

0.00

0.01

0.02

0.03

0.04

0.05

R
el

at
iv

e
Er

ro
r

0.00

0.01

0.02

0.03

0.04

0.05

R
el

at
iv

e
Er

ro
r

0.00

0.01

0.02

0.03

0.04

0.05

R
el

at
iv

e
Er

ro
r

Figure 9. Converging of the end-to-end delay in a simulation.

Sensors 2021, 21, x FOR PEER REVIEW 18 of 24

proposed in this paper is valid and applicable for timely reliability analysis of a computing
network considering failure, migration, and reboot of edge server VMs.

Figure 9. Converging of the end-to-end delay in a simulation.

Figure 10. Numerical results and simulation results with failure rate (FR) equals (a) 0.0002, (b)
0.0006, and (c) 0.0010.

5.3. Timely Reliability Analysis
To investigate the impacts of different factors on the timely reliability of the VMs, we

compare VTR under different conditions based on the analysis methods we proposed.

5.3.1. Analysis of Failure Rate, Migration Rate, and Reboot Rate
It is observed in Figures 11 and 12 that VTR is a monotonic function of the failure

rate, migration rate, and reboot rate of VM. Comparing Figure 11a with Figure 11b, we
find VTR is more sensitive to the failure rate when the reboot rate and migration rate are
smaller since the VMs spend more time to migrate and recover when the reboot rate and
migration rate are smaller. Thus, if the migration time and reboot time are quite short, the
designers do not need to be very rigid on the reliability of VMs. Conversely, if the migra-
tion time and reboot time are relatively long, designers can improve VTR of the edge com-
puting network effectively by reducing the failure rate of VMs.

0 1000 2000
0.00

0.02

0.04

0.06

0.08

En
d-

to
-e

nd
 D

el
ay

 /s

The Number of Tasks

 End-to-end Delay
 Mean End-to-end Delay
 Dmax2

1000 1500 20000.039

0.040

0.041

5 10 15
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

5 10 15
0.90

0.92

0.94

0.96

0.98

1.00

5 10 15

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

(a) FR=0.0002 (b) FR=0.0006

En
d-

to
-e

nd
 T

im
el

y
re

lia
bi

lit
y

The Number of Sensors

 Numerical Results
 Simulation Results

(c) FR=0.0010

En
d-

to
-e

nd
 T

im
el

y
re

lia
bi

lit
y

The Number of Sensors

 Numerical Results
 Simulation Results

En
d-

to
-e

nd
 T

im
el

y
re

lia
bi

lit
y

The Number of Sensors

 Numerical Results
 Simulation Results

0.00

0.01

0.02

0.03

0.04

0.05

R
el

at
iv

e
Er

ro
r

0.00

0.01

0.02

0.03

0.04

0.05

R
el

at
iv

e
Er

ro
r

0.00

0.01

0.02

0.03

0.04

0.05

R
el

at
iv

e
Er

ro
r

Figure 10. Numerical results and simulation results with failure rate (FR) equals (a) 0.0002, (b) 0.0006, and (c) 0.0010.

5.3. Timely Reliability Analysis

To investigate the impacts of different factors on the timely reliability of the VMs, we
compare VTR under different conditions based on the analysis methods we proposed.

5.3.1. Analysis of Failure Rate, Migration Rate, and Reboot Rate

It is observed in Figures 11 and 12 that VTR is a monotonic function of the failure rate,
migration rate, and reboot rate of VM. Comparing Figure 11a with Figure 11b, we find VTR
is more sensitive to the failure rate when the reboot rate and migration rate are smaller
since the VMs spend more time to migrate and recover when the reboot rate and migration
rate are smaller. Thus, if the migration time and reboot time are quite short, the designers
do not need to be very rigid on the reliability of VMs. Conversely, if the migration time
and reboot time are relatively long, designers can improve VTR of the edge computing
network effectively by reducing the failure rate of VMs.

Sensors 2021, 21, 93 19 of 24

Sensors 2021, 21, x FOR PEER REVIEW 19 of 24

Figure 11. (a) VTR versus the failure rate with different maximum allowable edge delay 𝐷 ,
when the migration rate 𝛼 = 0.002, the reboot rate 𝛽 = 100𝛼. (b) VTR versus the failure rate with
different 𝐷 , when the migration rate 𝛼 = 0.002, the reboot rate 𝛽 = 100𝛼. In (a) and (b), the
number of sensors is 10, the failure rate of VMs 𝜃 = 0.0002. The other parameters used in (a) and
(b) refer to Table 3.

Figure 12. (a) VTR versus the migration rate with different failure rates (FR). (b) VTR versus the
reboot rate with different failure rates (FR). In (a) and (b), the number of sensors is 10. The other
parameters used in (a) and (b) refer to Table 3.

5.3.2. Analysis of the Number of VMs
The number of TVMs and BVMs are also influential factors of VTR. Results in Figure

13a show that VTR is higher with the increase in the number of TVMs when the failure
rate is high. The reason is that more VMs mean the server can process more tasks at the
same time. However, when the failure rate is low, we have an interesting finding that VTR
monotonically decreases as the number of TVMs grows, such as the cases when the failure
rate equals 0.0002 or 0.0004 in Figure 13a. In fact, the increase in the number of TVMs
influences VTR by two means, i.e., (1) reducing the end-to-end delay by processing more
tasks at the same time and (2) increasing the end-to-end delay by bringing about more
failure, migration, and reboot of VMs in a given time. The second impact is more signifi-
cant when the failure rate is high. Whereas when the failure rate is low, the first impact is
more significant. Similar results are shown by Figure 13b, where with no BVM or ex-
tremely few BVMs, VTR monotonically increases as the number of TVMs grows, indicat-
ing that the first impact is more significant. However, with more BVMs, VTR monoton-
ically decreases as the number of TVMs grows, indicating that the second impact is more
significant. Therefore, the increase in TVMs is not always a good choice for improving
VTR.

According to the above findings, the resource manager can allocate an appropriate
number of TVMs according to the above-mentioned analysis, which can be a guidance for
the initial configuration of VMs. As for the number of BVMs, Figure 14 shows that VTR
monotonically increases as the number of BVM grows.

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.03 0.06 0.09 0.12 0.15
0.0

0.2

0.4

0.6

0.8

1.0

V
M

s
Ti

m
el

y
Re

lia
bi

lit
y

Failure Rate

 Dmax1=0.005
 Dmax1=0.010
 Dmax1=0.015
 Dmax1=0.020
 Dmax1=0.025
 Dmax1=0.030
 Dmax1=0.035

(b)(a)

V
M

s
Ti

m
el

y
Re

lia
bi

lit
y

Failure Rate

 Dmax1=0.005
 Dmax1=0.010
 Dmax1=0.015
 Dmax1=0.020
 Dmax1=0.025
 Dmax1=0.030
 Dmax1=0.035

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

V
M

s
Ti

m
el

y
Re

lia
bi

lit
y

Migration Rate

 FR=0.000
 FR=0.005
 FR=0.010
 FR=0.015
 FR=0.020

(a)

V
M

s
Ti

m
el

y
Re

lia
bi

lit
y

Reboot Rate (10-3)

 FR=0.0002
 FR=0.0006
 FR=0.0010
 FR=0.0020
 FR=0.0030
 FR=0.0040
 FR=0.0050

(b)

Figure 11. (a) VTR versus the failure rate with different maximum allowable edge delay Dmax1, when
the migration rate α = 0.002, the reboot rate β = 100α. (b) VTR versus the failure rate with different
Dmax1, when the migration rate α = 0.002, the reboot rate β = 100α. In (a,b), the number of sensors is
10, the failure rate of VMs θ = 0.0002. The other parameters used in (a,b) refer to Table 3.

Sensors 2021, 21, x FOR PEER REVIEW 19 of 24

Figure 11. (a) VTR versus the failure rate with different maximum allowable edge delay 𝐷 ,
when the migration rate 𝛼 = 0.002, the reboot rate 𝛽 = 100𝛼. (b) VTR versus the failure rate with
different 𝐷 , when the migration rate 𝛼 = 0.002, the reboot rate 𝛽 = 100𝛼. In (a) and (b), the
number of sensors is 10, the failure rate of VMs 𝜃 = 0.0002. The other parameters used in (a) and
(b) refer to Table 3.

Figure 12. (a) VTR versus the migration rate with different failure rates (FR). (b) VTR versus the
reboot rate with different failure rates (FR). In (a) and (b), the number of sensors is 10. The other
parameters used in (a) and (b) refer to Table 3.

5.3.2. Analysis of the Number of VMs
The number of TVMs and BVMs are also influential factors of VTR. Results in Figure

13a show that VTR is higher with the increase in the number of TVMs when the failure
rate is high. The reason is that more VMs mean the server can process more tasks at the
same time. However, when the failure rate is low, we have an interesting finding that VTR
monotonically decreases as the number of TVMs grows, such as the cases when the failure
rate equals 0.0002 or 0.0004 in Figure 13a. In fact, the increase in the number of TVMs
influences VTR by two means, i.e., (1) reducing the end-to-end delay by processing more
tasks at the same time and (2) increasing the end-to-end delay by bringing about more
failure, migration, and reboot of VMs in a given time. The second impact is more signifi-
cant when the failure rate is high. Whereas when the failure rate is low, the first impact is
more significant. Similar results are shown by Figure 13b, where with no BVM or ex-
tremely few BVMs, VTR monotonically increases as the number of TVMs grows, indicat-
ing that the first impact is more significant. However, with more BVMs, VTR monoton-
ically decreases as the number of TVMs grows, indicating that the second impact is more
significant. Therefore, the increase in TVMs is not always a good choice for improving
VTR.

According to the above findings, the resource manager can allocate an appropriate
number of TVMs according to the above-mentioned analysis, which can be a guidance for
the initial configuration of VMs. As for the number of BVMs, Figure 14 shows that VTR
monotonically increases as the number of BVM grows.

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.03 0.06 0.09 0.12 0.15
0.0

0.2

0.4

0.6

0.8

1.0

V
M

s
Ti

m
el

y
Re

lia
bi

lit
y

Failure Rate

 Dmax1=0.005
 Dmax1=0.010
 Dmax1=0.015
 Dmax1=0.020
 Dmax1=0.025
 Dmax1=0.030
 Dmax1=0.035

(b)(a)

V
M

s
Ti

m
el

y
Re

lia
bi

lit
y

Failure Rate

 Dmax1=0.005
 Dmax1=0.010
 Dmax1=0.015
 Dmax1=0.020
 Dmax1=0.025
 Dmax1=0.030
 Dmax1=0.035

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

V
M

s
Ti

m
el

y
Re

lia
bi

lit
y

Migration Rate

 FR=0.000
 FR=0.005
 FR=0.010
 FR=0.015
 FR=0.020

(a)

V
M

s
Ti

m
el

y
Re

lia
bi

lit
y

Reboot Rate (10-3)

 FR=0.0002
 FR=0.0006
 FR=0.0010
 FR=0.0020
 FR=0.0030
 FR=0.0040
 FR=0.0050

(b)

Figure 12. (a) VTR versus the migration rate with different failure rates (FR). (b) VTR versus the
reboot rate with different failure rates (FR). In (a,b), the number of sensors is 10. The other parameters
used in (a,b) refer to Table 3.

5.3.2. Analysis of the Number of VMs

The number of TVMs and BVMs are also influential factors of VTR. Results in Figure
13a show that VTR is higher with the increase in the number of TVMs when the failure
rate is high. The reason is that more VMs mean the server can process more tasks at the
same time. However, when the failure rate is low, we have an interesting finding that VTR
monotonically decreases as the number of TVMs grows, such as the cases when the failure
rate equals 0.0002 or 0.0004 in Figure 13a. In fact, the increase in the number of TVMs
influences VTR by two means, i.e., (1) reducing the end-to-end delay by processing more
tasks at the same time and (2) increasing the end-to-end delay by bringing about more
failure, migration, and reboot of VMs in a given time. The second impact is more significant
when the failure rate is high. Whereas when the failure rate is low, the first impact is more
significant. Similar results are shown by Figure 13b, where with no BVM or extremely few
BVMs, VTR monotonically increases as the number of TVMs grows, indicating that the first
impact is more significant. However, with more BVMs, VTR monotonically decreases as the
number of TVMs grows, indicating that the second impact is more significant. Therefore,
the increase in TVMs is not always a good choice for improving VTR.

Sensors 2021, 21, 93 20 of 24

Sensors 2021, 21, x FOR PEER REVIEW 20 of 24

Figure 13. (a) VTR versus the number of task VMs (TVMs) with different failure rate (FR). The
number of backup VMs (BVM) 𝑑 = 2. (b) VTR versus the number of TVMs with different num-
bers of BVMs where the failure rate 𝜃 = 0.0002. In (a) and (b), the number of sensors is 10 and the
total number of VMs is not fixed. The other parameters used in (a) and (b) refer to Table 3.

Figure 14. (a) VTR versus the number of backup VMs (BVM) with different failure rates (FR). (b)
VTR versus the number of BVMs with different numbers of task VMs (TVMs) where the failure
rate 𝜃 = 0.0002. In (a) and (b), the number of sensors is 10. The other parameters used in (a) and
(b) refer to Table 3.

5.3.3. Management of VMs
Since the increase in the number of TVMs and the number of BVMs both improve

VTR generally, to achieve the highest VTR, there is a trade-off between the number of
TVMs and the number of BVMs when the total number of VMs is limited. Figure 15a re-
veals that when the failure rate of VM is low, only assigning one VM as TVM is the best
solution. Figure 15b shows that when the failure rate is high, more VMs should be as-
signed as TVMs to achieve the highest VTR. Therefore, to achieve the highest VTR, based
on the analysis method of this paper, the resource manager can find the optimal allocation
of VMs according to the related parameters of the edge computing network and the tasks.

0 2 4 6 8 10

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7
0.4

0.5

0.6

0.7

0.8

0.9

1.0
V

M
s T

im
el

y
Re

lia
bi

lit
y

The Number of TVMs

 FR=0.0002
 FR=0.0004
 FR=0.0010
 FR=0.0020
 FR=0.0030
 FR=0.0040
 FR=0.0050

(a)

V
M

s T
im

el
y

Re
lia

bi
lit

y

The Number of TVMs

 The Number of BVMs=0
 The Number of BVMs=1
 The Number of BVMs=2

(b)

0 1 2 3 4 5 6
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 1 2 3 4 5 6

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

V
M

s
Ti

m
el

y
Re

lia
bi

lit
y

The Number of BVMs

 FR=0.0002
 FR=0.0010
 FR=0.0020
 FR=0.0030
 FR=0.0040
 FR=0.0050

(a)

V
M

s
Ti

m
el

y
Re

lia
bi

lit
y

The Number of BVMs

 The Number of TVM=11
 The Number of TVM=12
 The Number of TVM=13
 The Number of TVM=14
 The Number of TVM=15

(b)

Figure 13. (a) VTR versus the number of task VMs (TVMs) with different failure rate (FR). The number of backup VMs
(BVM) d = 2. (b) VTR versus the number of TVMs with different numbers of BVMs where the failure rate θ = 0.0002. In
(a,b), the number of sensors is 10 and the total number of VMs is not fixed. The other parameters used in (a,b) refer to
Table 3.

According to the above findings, the resource manager can allocate an appropriate
number of TVMs according to the above-mentioned analysis, which can be a guidance for
the initial configuration of VMs. As for the number of BVMs, Figure 14 shows that VTR
monotonically increases as the number of BVM grows.

Sensors 2021, 21, x FOR PEER REVIEW 20 of 24

Figure 13. (a) VTR versus the number of task VMs (TVMs) with different failure rate (FR). The
number of backup VMs (BVM) 𝑑 = 2. (b) VTR versus the number of TVMs with different num-
bers of BVMs where the failure rate 𝜃 = 0.0002. In (a) and (b), the number of sensors is 10 and the
total number of VMs is not fixed. The other parameters used in (a) and (b) refer to Table 3.

Figure 14. (a) VTR versus the number of backup VMs (BVM) with different failure rates (FR). (b)
VTR versus the number of BVMs with different numbers of task VMs (TVMs) where the failure
rate 𝜃 = 0.0002. In (a) and (b), the number of sensors is 10. The other parameters used in (a) and
(b) refer to Table 3.

5.3.3. Management of VMs
Since the increase in the number of TVMs and the number of BVMs both improve

VTR generally, to achieve the highest VTR, there is a trade-off between the number of
TVMs and the number of BVMs when the total number of VMs is limited. Figure 15a re-
veals that when the failure rate of VM is low, only assigning one VM as TVM is the best
solution. Figure 15b shows that when the failure rate is high, more VMs should be as-
signed as TVMs to achieve the highest VTR. Therefore, to achieve the highest VTR, based
on the analysis method of this paper, the resource manager can find the optimal allocation
of VMs according to the related parameters of the edge computing network and the tasks.

0 2 4 6 8 10

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7
0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
M

s T
im

el
y

Re
lia

bi
lit

y

The Number of TVMs

 FR=0.0002
 FR=0.0004
 FR=0.0010
 FR=0.0020
 FR=0.0030
 FR=0.0040
 FR=0.0050

(a)

V
M

s T
im

el
y

Re
lia

bi
lit

y
The Number of TVMs

 The Number of BVMs=0
 The Number of BVMs=1
 The Number of BVMs=2

(b)

0 1 2 3 4 5 6
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 1 2 3 4 5 6

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

V
M

s
Ti

m
el

y
Re

lia
bi

lit
y

The Number of BVMs

 FR=0.0002
 FR=0.0010
 FR=0.0020
 FR=0.0030
 FR=0.0040
 FR=0.0050

(a)

V
M

s
Ti

m
el

y
Re

lia
bi

lit
y

The Number of BVMs

 The Number of TVM=11
 The Number of TVM=12
 The Number of TVM=13
 The Number of TVM=14
 The Number of TVM=15

(b)

Figure 14. (a) VTR versus the number of backup VMs (BVM) with different failure rates (FR). (b) VTR versus the number of
BVMs with different numbers of task VMs (TVMs) where the failure rate θ = 0.0002. In (a,b), the number of sensors is 10.
The other parameters used in (a,b) refer to Table 3.

5.3.3. Management of VMs

Since the increase in the number of TVMs and the number of BVMs both improve
VTR generally, to achieve the highest VTR, there is a trade-off between the number of
TVMs and the number of BVMs when the total number of VMs is limited. Figure 15a
reveals that when the failure rate of VM is low, only assigning one VM as TVM is the best
solution. Figure 15b shows that when the failure rate is high, more VMs should be assigned
as TVMs to achieve the highest VTR. Therefore, to achieve the highest VTR, based on the
analysis method of this paper, the resource manager can find the optimal allocation of VMs
according to the related parameters of the edge computing network and the tasks.

Sensors 2021, 21, 93 21 of 24

Sensors 2021, 21, x FOR PEER REVIEW 21 of 24

Figure 15. (a) VTR versus the number of task VMs (TVMs) where the total number of VMs is 10
and the failure rate (FR) ranges from 0.002 to 0.04. (b) VTR versus the number of TVMs where the
total number of VMs is 10 and the FR ranges from 0.05 to 0.1. In (a) and (b), the number of sensors
is 10. The other parameters used in (a) and (b) refer to Table 3.

5.4. Section Summary
In this section, we provide a case study of traffic monitoring for the proposed timely

reliability evaluation method and introduce the simulation method based on OMNeT++.
Simulation results verify that the analytical model proposed in this paper is valid and
applicable for timely reliability analysis of VMs of an edge server, considering failure,
migration, and reboot of VMs.

We also investigate the influence of different factors on timely reliability. Results
show that: (1) VTR is a monotonic function of the failure rate, migration rate, and reboot
rate of VM and is more sensitive to the failure rate when the reboot rate and migration
rate are smaller. (2) VTR monotonically increases as the number of BVM grows, but the
increase in TVMs does not always improve VTR. (3) To achieve the highest VTR, there is
a trade-off between the number of TVMs and the number of BVMs when the total number
of VMs is limited.

6. Conclusions
In this paper, we analyzed the VTR and the ETR of the edge computing network,

considering the failure, migration, and reboot of VMs. To model the state transitions of
VMs, we define three states of VMs (available, fail-unmigrated, fail-migrated) and con-
struct a partitioned CTMC for the edge server. We express the generator matrix as a par-
titioned matrix based on the matrix-geometric method. An algorithm is proposed to re-
solve the CTMC and obtain the sojourn time at the edge server as well as VTR. Moreover,
to analyze ETR of the network, we build the delay analysis model based on Burke’s theo-
rem and propose an end-to-end delay analysis method. The proposed method is more
eligible to model the multi-state system of VMs. When the dimension of CTMC states is
high, the constructing method of the generator matrix proposed in this paper can effec-
tively reduce the difficulty of algorithm designing.

We investigate VTR of the edge computing network under different conditions. The
numerical results are verified to be correct by simulation based on OMNeT++. Results
show that VTR is a monotonic function of the migration rate, reboot rate of VM, the num-
ber of TVMs, and the number of BVMs. However, in some cases, the increase in TVMs
may conversely decrease VTR, since more TVMs also bring about more failures in a given
time. Moreover, we find that there is a trade-off between the number of TVMs and the
number of BVMs when the total number of VMs is limited. The resource manager can find
the optimal allocation of VMs according to the migration rate, reboot rate, failure rate, etc.,
of the edge computing network and the arrive rate, computation complexity, etc., of the
tasks. Based on the trade-off of TVMs and BVMs, in future research, we will further study

1 2 3 4 5 6 7 8 9
0.94

0.95

0.96

0.97

0.98

1 2 3 4 5 6 7 8 9
0.88

0.89

0.90

0.91

0.92

0.93

0.94

V
M

s T
im

el
y

Re
lia

bi
lit

y

The Number of TVMs

 FR=0.002
 FR=0.006
 FR=0.010
 FR=0.020
 FR=0.030
 FR=0.040

(a)

V
M

s T
im

el
y

Re
lia

bi
lit

y

The Number of TVMs

 FR=0.05
 FR=0.06
 FR=0.07
 FR=0.08
 FR=0.09
 FR=0.10

(b)

Figure 15. (a) VTR versus the number of task VMs (TVMs) where the total number of VMs is 10 and the failure rate (FR)
ranges from 0.002 to 0.04. (b) VTR versus the number of TVMs where the total number of VMs is 10 and the FR ranges from
0.05 to 0.1. In (a,b), the number of sensors is 10. The other parameters used in (a,b) refer to Table 3.

5.4. Section Summary

In this section, we provide a case study of traffic monitoring for the proposed timely
reliability evaluation method and introduce the simulation method based on OMNeT++.
Simulation results verify that the analytical model proposed in this paper is valid and
applicable for timely reliability analysis of VMs of an edge server, considering failure,
migration, and reboot of VMs.

We also investigate the influence of different factors on timely reliability. Results show
that: (1) VTR is a monotonic function of the failure rate, migration rate, and reboot rate of
VM and is more sensitive to the failure rate when the reboot rate and migration rate are
smaller. (2) VTR monotonically increases as the number of BVM grows, but the increase in
TVMs does not always improve VTR. (3) To achieve the highest VTR, there is a trade-off
between the number of TVMs and the number of BVMs when the total number of VMs is
limited.

6. Conclusions

In this paper, we analyzed the VTR and the ETR of the edge computing network,
considering the failure, migration, and reboot of VMs. To model the state transitions of
VMs, we define three states of VMs (available, fail-unmigrated, fail-migrated) and construct
a partitioned CTMC for the edge server. We express the generator matrix as a partitioned
matrix based on the matrix-geometric method. An algorithm is proposed to resolve the
CTMC and obtain the sojourn time at the edge server as well as VTR. Moreover, to analyze
ETR of the network, we build the delay analysis model based on Burke’s theorem and
propose an end-to-end delay analysis method. The proposed method is more eligible to
model the multi-state system of VMs. When the dimension of CTMC states is high, the
constructing method of the generator matrix proposed in this paper can effectively reduce
the difficulty of algorithm designing.

We investigate VTR of the edge computing network under different conditions. The nu-
merical results are verified to be correct by simulation based on OMNeT++. Results show
that VTR is a monotonic function of the migration rate, reboot rate of VM, the number
of TVMs, and the number of BVMs. However, in some cases, the increase in TVMs may
conversely decrease VTR, since more TVMs also bring about more failures in a given time.
Moreover, we find that there is a trade-off between the number of TVMs and the number
of BVMs when the total number of VMs is limited. The resource manager can find the
optimal allocation of VMs according to the migration rate, reboot rate, failure rate, etc.,
of the edge computing network and the arrive rate, computation complexity, etc., of the
tasks. Based on the trade-off of TVMs and BVMs, in future research, we will further study

Sensors 2021, 21, 93 22 of 24

the optimization of computing resources to obtain a better performance of the edge server.
We will also study the case when the sizes of task data are different in future work.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-822
0/21/1/93/s1.

Author Contributions: Conceptualization, K.L. and L.G.; methodology, K.L., L.G., and Y.W.; software,
K.L. and X.C.; validation, K.L., L.G., Y.W. and X.C.; formal analysis, L.G. and Y.W.; investigation,
K.L.; resources, K.L. and L.G.; data curation, K.L. and X.C.; writing—original draft preparation,
K.L.; writing—review and editing, K.L., L.G., and Y.W.; visualization, K.L.; supervision, L.G.; project
administration, L.G.; funding acquisition, L.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by NATIONAL NATURAL SCIENCE FOUNDATION OF
CHINA, grant number 61304148 and 61871013.

Data Availability Statement: The data presented in this study are available in the supplementary
material, Data.zip.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hassan, S.R.; Ahmad, I.; Ahmad, S.; Alfaify, A.; Shafiq, M. Remote Pain Monitoring Using Fog Computing for e-Healthcare:

AnEfficient Architecture. Sensors 2020, 20, 6574. [CrossRef] [PubMed]
2. Qadri, Y.A.; Nauman, A.; Zikria, Y.B.; Vasilakos, A.V.; Kim, S.W. The Future of Healthcare Internet of Things: A Survey of

Emerging Technologies. IEEE Commun. Surv. Tutor. 2020, 22, 1121–1167. [CrossRef]
3. Osanaiye, O.; Chen, S.; Yan, Z.; Lu, R.; Choo, K.-K.R.; Dlodlo, M. From Cloud to Fog Computing: A Review and a Conceptual

Live VM Migration Framework. IEEE Access 2017, 5, 8284–8300. [CrossRef]
4. Tao, Z.; Xia, Q.; Hao, Z.; Li, C.; Ma, L.; Yi, S.; Li, Q. A Survey of Virtual Machine Management in Edge Computing. Proc. IEEE

2019, 107, 1482–1499. [CrossRef]
5. Jennings, B.; Stadler, R. Resource Management in Clouds: Survey and Research Challenges. J. Netw. Syst. Manag. 2015, 23,

567–619. [CrossRef]
6. Grigorescu, S.; Cocias, T.; Trasnea, B.; Margheri, A.; Lombardi, F.; Aniello, L. Cloud2Edge Elastic AI Framework for Prototyping

and Deployment of AI Inference Engines in Autonomous Vehicles. Sensors 2020, 20, 5450. [CrossRef] [PubMed]
7. Zhang, F.; Liu, G.; Fu, X.; Yahyapour, R. A Survey on Virtual Machine Migration: Challenges, Techniques, and Open Issues.

IEEE Commun. Surv. Tutor. 2018, 20, 1206–1243. [CrossRef]
8. Nkenyereye, L.; Nkenyereye, L.; Adhi Tama, B.; Reddy, A.G.; Song, J. Software-Defined Vehicular Cloud Networks: Architecture,

Applications and Virtual Machine Migration. Sensors 2020, 20, 1092. [CrossRef]
9. Garraghan, P.; Townend, P.; Xu, J. An Empirical Failure-Analysis of a Large-Scale Cloud Computing Environment. In Proceedings

of the 2014 IEEE 15th International Symposium on High-Assurance Systems Engineering, Miami Beach, FL, USA, 9–11 September
2014; pp. 113–120, ISBN 978-1-4799-3466-9.

10. Xu, J.; Kalbarczyk, Z.; Iyer, R.K. Networked Windows NT system field failure data analysis. In Proceedings of the 1999 Pacific Rim
International Symposium on Dependable Computing, Hong Kong, China, 16–17 December 1999; pp. 178–185, ISBN 0-7695-0371-3.

11. Bernstein, P.A.; Newcomer, E. System Recovery, In Principles of Transaction Processing; Morgan Kaufmann: San Francisco, CA, USA,
2009; pp. 185–222. ISBN 9781558606234.

12. Voorsluys, W.; Broberg, J.; Venugopal, S.; Buyya, R. Cost of Virtual Machine Live Migration in Clouds: A Performance Evaluation.
In Cloud Computing; Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O.,
Pandu Rangan, C., Steffen, B., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 254–265. ISBN 978-3-642-10664-4.

13. Noshy, M.; Ibrahim, A.; Ali, H.A. Optimization of live virtual machine migration in cloud computing: A survey and future
directions. J. Netw. Comput. Appl. 2018, 110, 1–10. [CrossRef]

14. Zhang, J.; Ren, F.; Lin, C. Delay guaranteed live migration of Virtual Machines. In Proceedings of the IEEE INFOCOM 2014-IEEE
Conference on Computer Communications, Toronto, ON, Canada, 27 April–2 May 2014; pp. 574–582, ISBN 978-1-4799-3360-0.

15. Li, S.; Huang, N.; Chen, J.; Kang, R. Analysis for application reliability parameters of communication networks. In Proceedings of
the 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, Chengdu, China, 15–18
June 2012; pp. 206–210, ISBN 978-1-4673-0788-8.

16. Zhao, F.; Huang, N.; Chen, J.X. Impact Analysis of Communication Network Reliability Based on Node Failure. Appl. Mech. Mater.
2013, 347–350, 2100–2105. [CrossRef]

17. Babay, A.; Wagner, E.; Dinitz, M.; Amir, Y. Timely, Reliable, and Cost-Effective Internet Transport Service Using Dissemination
Graphs. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA,
USA, 5–8 June 2017; pp. 1–12, ISBN 978-1-5386-1792-2.

https://www.mdpi.com/1424-8220/21/1/93/s1
https://www.mdpi.com/1424-8220/21/1/93/s1
http://dx.doi.org/10.3390/s20226574
http://www.ncbi.nlm.nih.gov/pubmed/33217896
http://dx.doi.org/10.1109/COMST.2020.2973314
http://dx.doi.org/10.1109/ACCESS.2017.2692960
http://dx.doi.org/10.1109/JPROC.2019.2927919
http://dx.doi.org/10.1007/s10922-014-9307-7
http://dx.doi.org/10.3390/s20195450
http://www.ncbi.nlm.nih.gov/pubmed/32977409
http://dx.doi.org/10.1109/COMST.2018.2794881
http://dx.doi.org/10.3390/s20041092
http://dx.doi.org/10.1016/j.jnca.2018.03.002
http://dx.doi.org/10.4028/www.scientific.net/AMM.347-350.2100

Sensors 2021, 21, 93 23 of 24

18. Li, R.; Li, M.; Liao, H.; Huang, N. An efficient method for evaluating the end-To-End transmission time reliability of a switched
Ethernet. J. Netw. Comput. Appl. 2017, 88, 124–133. [CrossRef]

19. Zurawski, R. The Industrial Information Technology Handbook; CRC Press: Boca Raton, FL, USA, 2005; ISBN 0-8493-1985-4.
20. Liou, C.-D. Markovian queue optimisation analysis with an unreliable server subject to working breakdowns and impatient

customers. Int. J. Syst. Sci. 2015, 46, 2165–2182. [CrossRef]
21. Yang, D.-Y.; Wu, Y.-Y. Analysis of a finite-capacity system with working breakdowns and retention of impatient customers.

J. Manuf. Syst. 2017, 44, 207–216. [CrossRef]
22. Jiang, T.; Xin, B.; Chang, B.; Liu, L. Analysis of a queueing system in random environment with an unreliable server and geometric

abandonments. RAIRO-Oper. Res. 2018, 52, 903–922. [CrossRef]
23. Chakravarthy, S.R.; Shruti; Kulshrestha, R. A queueing model with server breakdowns, repairs, vacations, and backup server.

Oper. Res. Perspect. 2020, 7, 100131. [CrossRef]
24. El Kafhali, S.; Salah, K. Efficient and dynamic scaling of fog nodes for IoT devices. J. Supercomput. 2017, 73, 5261–5284. [CrossRef]
25. Pereira, P.; Araujo, J.; Torquato, M.; Dantas, J.; Melo, C.; Maciel, P. Stochastic performance model for web server capacity planning

in fog computing. J. Supercomput. 2020, 4, 33. [CrossRef]
26. Ke, J.-C.; Lin, C.-H.; Yang, J.-Y.; Zhang, Z.G. Optimal (d, c) vacation policy for a finite buffer M/M/c queue with unreliable

servers and repairs. Appl. Math. Model. 2009, 33, 3949–3962. [CrossRef]
27. Liu, C.-F.; Bennis, M.; Poor, H.V. Latency and Reliability-Aware Task Offloading and Resource Allocation for Mobile Edge

Computing. In Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, 4–8 December 2017; pp. 1–7,
ISBN 978-1-5386-3920-7.

28. Xie, M.; Haenggi, M. Towards an end-To-End delay analysis of wireless multihop networks. Ad. Hoc. Netw. 2009, 7,
849–861. [CrossRef]

29. Wang, B.; Chang, X.; Liu, J. Modeling Heterogeneous Virtual Machines on IaaS Data Centers. IEEE Commun. Lett. 2015, 19,
537–540. [CrossRef]

30. Chang, X.; Wang, B.; Muppala, J.K.; Liu, J. Modeling Active Virtual Machines on IaaS Clouds Using an M/G/m/m+K Queue.
IEEE Trans. Serv. Comput. 2016, 9, 408–420. [CrossRef]

31. Li, L.; Guo, M.; Ma, L.; Mao, H.; Guan, Q. Online Workload Allocation via Fog-Fog-Cloud Cooperation to Reduce IoT Task
Service Delay. Sensors 2019, 19, 3830. [CrossRef] [PubMed]

32. Huang, N.; Chen, Y.; Hou, D.; Xing, L.; Kang, R. Application reliability for communication networks and its analysis method.
J. Syst. Eng. Electron. 2011, 22, 1030–1036. [CrossRef]

33. Yousefpour, A.; Ishigaki, G.; Gour, R.; Jue, J.P. On Reducing IoT Service Delay via Fog Offloading. IEEE Internet Things J. 2018, 5,
998–1010. [CrossRef]

34. Yang, D.-Y.; Chen, Y.-H.; Wu, C.-H. Modelling and optimisation of a two-Server queue with multiple vacations and working
breakdowns. Int. J. Prod. Res. 2020, 58, 3036–3048. [CrossRef]

35. Gu, X.; Ji, C.; Zhang, G. Energy-Optimal Latency-Constrained Application Offloading in Mobile-Edge Computing. Sensors 2020,
20, 3064. [CrossRef]

36. Rodrigues, T.G.; Suto, K.; Nishiyama, H.; Kato, N. Hybrid Method for Minimizing Service Delay in Edge Cloud Computing
Through VM Migration and Transmission Power Control. IEEE Trans. Comput. 2017, 66, 810–819. [CrossRef]

37. Zhang, J.; Ren, F.; Shu, R.; Huang, T.; Liu, Y. Guaranteeing Delay of Live Virtual Machine Migration by Determining and
Provisioning Appropriate Bandwidth. IEEE Trans. Comput. 2016, 65, 2910–2917. [CrossRef]

38. Khazaei, H.; Miic, J.; Miic, V.B.; Mohammadi, N.B. Modeling the Performance of Heterogeneous IaaS Cloud Centers. In Proceed-
ings of the 2013 IEEE 33rd International Conference on Distributed Computing Systems Workshops, Philadelphia, PA, USA, 8–77
July 2013; pp. 232–237, ISBN 978-1-4799-3248-1.

39. Liu, B.; Chang, X.; Liu, B.; Chen, Z. Performance Analysis Model for Fog Services under Multiple Resource Types. In Proceedings
of the 2017 International Conference on Dependable Systems and Their Applications (DSA), Beijing, China, 31 October–2
November 2017; pp. 110–117, ISBN 978-1-5386-3690-9.

40. Fernando, D.; Terner, J.; Gopalan, K.; Yang, P. Live Migration Ate My VM: Recovering a Virtual Machine after Failure of Post-Copy
Live Migration. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29
April–2 May 2019; pp. 343–351, ISBN 978-1-7281-0515-4.

41. Groesbrink, S. Virtual Machine Migration as a Fault Tolerance Technique for Embedded Real-Time Systems. In Proceedings of the
2014 IEEE Eighth International Conference on Software Security and Reliability-Companion, San Francisco, CA, USA, 30 June–2
July 2014; pp. 7–12, ISBN 978-1-4799-5843-6.

42. Callegati, F.; Cerroni, W. Live Migration of Virtualized Edge Networks: Analytical Modeling and Performance Evaluation.
In Proceedings of the 2013 IEEE SDN for Future Networks and Services (SDN4FNS), Trento, Italy, 11–13 November 2013; pp. 1–6,
ISBN 978-1-4799-2781-4.

43. Chen, P.-C.; Lin, C.-I.; Huang, S.-W.; Chang, J.-B.; Shieh, C.-K.; Liang, T.-Y. A Performance Study of Virtual Machine Migration vs.
Thread Migration for Grid Systems. In Proceedings of the 22nd International Conference on Advanced Information Networking
and Applications-Workshops (Aina Workshops 2008), Gino-Wan, Japan, 25–28 March 2008; pp. 86–91, ISBN 978-0-7695-3096-3.

44. He, T.; Toosi, N.A.; Buyya, R. Performance evaluation of live virtual machine migration in SDN-Enabled cloud data centers.
J. Parallel Distrib. Comput. 2019, 131, 55–68. [CrossRef]

http://dx.doi.org/10.1016/j.jnca.2017.01.038
http://dx.doi.org/10.1080/00207721.2013.859326
http://dx.doi.org/10.1016/j.jmsy.2017.05.010
http://dx.doi.org/10.1051/ro/2018021
http://dx.doi.org/10.1016/j.orp.2019.100131
http://dx.doi.org/10.1007/s11227-017-2083-x
http://dx.doi.org/10.1007/s11227-020-03218-w
http://dx.doi.org/10.1016/j.apm.2009.01.008
http://dx.doi.org/10.1016/j.adhoc.2008.04.010
http://dx.doi.org/10.1109/LCOMM.2015.2403832
http://dx.doi.org/10.1109/TSC.2014.2376563
http://dx.doi.org/10.3390/s19183830
http://www.ncbi.nlm.nih.gov/pubmed/31487947
http://dx.doi.org/10.3969/j.issn.1004-4132.2011.06.022
http://dx.doi.org/10.1109/JIOT.2017.2788802
http://dx.doi.org/10.1080/00207543.2019.1624856
http://dx.doi.org/10.3390/s20113064
http://dx.doi.org/10.1109/TC.2016.2620469
http://dx.doi.org/10.1109/TC.2015.2500560
http://dx.doi.org/10.1016/j.jpdc.2019.04.014

Sensors 2021, 21, 93 24 of 24

45. Kumar, N.; Zeadally, S.; Chilamkurti, N.; Vinel, A. Performance analysis of Bayesian coalition game-Based energy-aware virtual
machine migration in vehicular mobile cloud. IEEE Netw. 2015, 29, 62–69. [CrossRef]

46. Li, S.; Huang, J. GSPN-Based Reliability-Aware Performance Evaluation of IoT Services. In Proceedings of the 2017 IEEE Interna-
tional Conference on Services Computing (SCC), Honolulu, HI, USA, 25–30 June 2017; pp. 483–486, ISBN 978-1-5386-2005-2.

47. Liu, H.; Jin, H.; Xu, C.-Z.; Liao, X. Performance and energy modeling for live migration of virtual machines. Cluster. Comput.
2013, 16, 249–264. [CrossRef]

48. Begam, R.; Wang, W.; Zhu, D. TIMER-Cloud: Time-Sensitive VM Provisioning in Resource-Constrained Clouds. IEEE Trans.
Cloud Comput. 2020, 8, 297–311. [CrossRef]

49. Chaufournier, L.; Sharma, P.; Le, F.; Nahum, E.; Shenoy, P.; Towsley, D. Fast transparent virtual machine migration in distributed
edge clouds. In Proceedings of the Second ACM/IEEE Symposium on Edge Computing, San Jose, CA, USA, 12–14 October 2017;
Zhang, J., Chiang, M., Maggs, B., Eds.; ACM: New York, NY, USA, 2017; pp. 1–13, ISBN 9781450350877.

50. Genez, T.A.L.; Tso, F.P.; Cui, L. Latency-Aware joint virtual machine and policy consolidation for mobile edge computing.
In Proceedings of the 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV,
USA, 12–15 January 2018; pp. 1–6, ISBN 978-1-5386-4790-5.

51. Wang, X.; Chen, X.; Yuen, C.; Wu, W.; Zhang, M.; Zhan, C. Delay-Cost tradeoff for virtual machine migration in cloud data centers.
J Netw. Comput. Appl. 2017, 78, 62–72. [CrossRef]

52. Elbamby, M.S.; Perfecto, C.; Liu, C.-F.; Park, J.; Samarakoon, S.; Chen, X.; Bennis, M. Wireless Edge Computing With Latency and
Reliability Guarantees. Proc. IEEE 2019, 107, 1717–1737. [CrossRef]

53. Liu, Y.; Li, R.; Li, Q. Reliability Analysis of Cloud Computing Systems with Different Scheduling Strategies under Dynamic
Demands. In Proceedings of the 2017 4th International Conference on Information Science and Control Engineering (ICISCE),
Changsha, China, 21–23 July 2017; pp. 1108–1113, ISBN 978-1-5386-3013-6.

54. Klimenok, V.; Breuer, L.; Tsarenkov, G.; Dudin, A. The tandem queue with losses. Perform. Eval. 2005, 61, 17–40. [CrossRef]
55. Gómez-Corral, A.; Martos, M.E. Marked Markovian Arrivals in a Tandem G-Network with Blocking. Methodol. Comput.

Appl. Probab. 2009, 11, 621–649. [CrossRef]
56. Phung-Duc, T. An explicit solution for a tandem queue with retrials and losses. Oper. Res. Int. J. 2012, 12, 189–207. [CrossRef]
57. Kim, C.; Dudin, A.; Dudina, O.; Dudin, S. Tandem queueing system with infinite and finite intermediate buffers and generalized

phase-type service time distribution. Eur. J. Oper. Res. 2014, 235, 170–179. [CrossRef]
58. Wu, K.; Shen, Y.; Zhao, N. Analysis of tandem queues with finite buffer capacity. IISE Trans. 2017, 49, 1001–1013. [CrossRef]
59. Li, R.; Huang, N.; Kang, R. Modeling and simulation for network transmission time reliability. In Proceedings of the 2010

Proceedings-Annual Reliability and Maintainability Symposium (RAMS), San Jose, CA, USA, 25–28 January 2010; pp. 1–6,
ISBN 978-1-4244-5102-9.

60. He, W.; Liu, X.; Zheng, L.; Yang, H. Reliability Calculus: A Theoretical Framework to Analyze Communication Reliability.
In Proceedings of the 2010 IEEE 30th International Conference on Distributed Computing Systems, Genoa, Italy, 21–25 June 2010;
pp. 159–168, ISBN 978-1-4244-7261-1.

61. Shen, J.; He, W.-b.; Liu, X.; Wang, Z.-b.; Wang, Z.; Yao, J.-G. End-To-End delay analysis for networked systems. Front. Inf. Technol.
Electron. Eng. 2015, 16, 732–743. [CrossRef]

62. Burke, P. Output process and tandem queues. In Proceedings of the Symposium on Computer-Communications Networks and
Teletraffic, New York, NY, USA, 4–6 April 1972; pp. 419–428.

63. Gass, S.I.; Fu, M.C. Encyclopedia of Operations Research and Management Science; Springer: Boston, MA, USA, 2013; ISBN 978-1-4419-
1153-7.

64. Ross, S.M. Queueing Theory. In Introduction to Probability Models; Academic Press: Salt Lake City, UT, USA, 2019; pp. 507–589.
ISBN 9780128143469.

65. Sarker, V.K.; Queralta, J.P.; Gia, T.N.; Tenhunen, H.; Westerlund, T. A Survey on LoRa for IoT: Integrating Edge Computing.
In Proceedings of the 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC), Rome, Italy, 10–13 June
2019; pp. 295–300, ISBN 978-1-7281-1796-6.

66. Ortin, J.; Cesana, M.; Redondi, A. Augmenting LoRaWAN Performance with Listen Before Talk. IEEE Trans. Wirel. Commun. 2019,
18, 3113–3128. [CrossRef]

http://dx.doi.org/10.1109/MNET.2015.7064905
http://dx.doi.org/10.1007/s10586-011-0194-3
http://dx.doi.org/10.1109/TCC.2017.2777992
http://dx.doi.org/10.1016/j.jnca.2016.11.003
http://dx.doi.org/10.1109/JPROC.2019.2917084
http://dx.doi.org/10.1016/j.peva.2004.09.001
http://dx.doi.org/10.1007/s11009-008-9080-8
http://dx.doi.org/10.1007/s12351-011-0113-7
http://dx.doi.org/10.1016/j.ejor.2013.12.012
http://dx.doi.org/10.1080/24725854.2017.1342055
http://dx.doi.org/10.1631/FITEE.1400414
http://dx.doi.org/10.1109/TWC.2019.2910512

	Introduction
	Related Work
	Network Delay Analysis
	VMs Timely Reliability Analysis
	End-to-End Timely Reliability Analysis

	Problem Description
	Analysis of Delay at the VMs in the Edge Server
	Analysis of End-to-End Delay

	Mathematical Model
	Queueing Model of the Edge Server
	Timely Reliability Model
	VMs Timely Reliability
	End-to-End Timely Reliability

	Algorithm

	Results and Discussion
	Experimental Setup
	Simulation Experiments
	Timely Reliability Analysis
	Analysis of Failure Rate, Migration Rate, and Reboot Rate
	Analysis of the Number of VMs
	Management of VMs

	Section Summary

	Conclusions
	References

