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Abstract: Particulate matter is a common health hazard, and under certain conditions, an ecological
threat. While many studies were conducted in regard to air pollution and potential effects, this paper
serves as a pilot scale investigation into the spatial and temporal variability of particulate matter (PM)
pollution in arid urban environments in general, and Beer-Sheva, Israel as a case study. We explore
the use of commercially off the shelf (COTS) sensors, which provide an economical solution for spatio-
temporal measurements. We started with a comparison process against an A-grade meteorological
station, where it was shown that under specific climatic conditions, a number of COTS sensors
were able to produce robust agreement (mean R2 = 0.93, average SD = 17.5). The second stage
examined the COTS sensors that were proven accurate in a mobile measurement campaign. Finally,
data collected was compared to a validated satellite prediction model. We present how these tests and
COTS sensor-kits could then be used to further explain the continuity and dispersion of particulate
matter in similar areas.

Keywords: particulate matter; dust sensors; mobile measurements; micro-controllers; bike;
Brompton bicycle

1. Introduction

Atmospheric particular matter (PM), or aerosols, is the general term used for a mix-
ture of solid particles and liquid droplets found in the atmosphere emanating from either
natural or anthropogenic aerosols [1]. PM products are classified commonly as PM10 and
PM2.5, that is particular matter with a diameter less than 10 µm and 2.5 µm, respectively.
Natural sources of air pollution act as a main source of suspended matter, which includes
events such as dust storms, sea spray, and crustal material. In addition, the contribution
of transported dust, which is a result of soil erosion and dust storm episodes, may reach
more than 60% of total PM10 in Mediterranean countries during a strong dust pollution
event [2]. The main sources of anthropogenic air pollution in the form of PM were pre-
viously measured in the EU as transportation (terrestrial, naval, and aerial), residential,
manufacturing industries and construction, metal production, mineral products, direct soil
emissions, manure management, and other various categories [3].

In Israel, the complexity of the geo-climatic regions gives way to changing disper-
sal sources. For example, dust storm events in southern-Israel can reach hourly av-
erages of 1000–5197 mg/m3 [4]. A research by Ganor et al. [5] showed an increasing
trend in the total annual number of days with dust, with a slope of 0.27 days per year,
concluding that the effects of dust storms on PM levels will only increase in the coming
years. Krasnov et al. [6] showed that from 2009 onwards, average dust levels in Beer Sheva
have risen by 30% from contributing dust storms.
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There is a strong body of literature showing the adverse human health effects caused
by exposure to both PM2.5 and PM10. The World Health Organization has estimated that
PM2.5 contributes to approximately two million premature deaths per year, ranking it
as the thirteenth leading cause of mortality worldwide [7–9]. Studies looking at both
the long term and short term of PM exposure have shown associations with, inter alia,
increased risk of myocardial infarction [9–13], reduced birth weights [1,14,15],
cardiovascular disease [11,16–20], and respiratory disease [21–23]. Based on these findings
it has been established that long-term exposure to ambient particulate matter is a major
risk factor to the global burden of disease [24].

Typically, exposure to PM in epidemiological studies is assessed using measurements
from air quality monitoring stations. However, in many geographical areas ground PM
monitoring networks are sparse and distributed heterogeneously, which creates bias in
environmental health studies [25]. Alternatively, Satellite remote sensing data can be used
to assess PM in these areas. The broad spatial coverage provided by satellite based mod-
els [1,14,26–28] allowed us to expand exposure data far beyond the range of conventional
ground monitoring networks which greatly enhances our ability to estimate subject-specific
exposures. Although the use of satellite models in recent years for exposure modeling has
been successfully, intra urban high resolution and real time exposure assessment methods
are still needed for residence level acute health events.

There are several well established methods for measurements of high resolution
robust particulate matter, such as the Tapered Element Oscillating Microbalance (TEOM).
The gravimetric principle describes a quantitative determination of an analysis based on
the mass of a solid. These well-established high-precision devices are all typically large,
stationary, and expensive, and therefore very sparsely deployed. Typically, only a few
stations will cover large urban areas [29]. The method we have used for more fine-grained
measurements was laser diffraction; It relies on a device which transmits a laser beam
inside the containment chamber, and based on the size and shape of the particles, the light
refracts and gives different values of PM [30]. High resolution of PM measurements is
important, since exposure levels have been observed to vary even in close proximity.
Krasnov [31] has shown that fine grained measurements with the TSI DustTrak DRX 8534
gave a strong correlation between the spatial distribution values of PM2.5 and PM10 for
the different measurement points. During dust days, however, the DustTrak’s RMSE
values, when compared with the nearby station, for the averaged dust data were high,
from 48 for PM10 to 25 for PM2.5, which shows that the calculated average PM spatial
distributions during dust storm events were not accurate representations of the presented
model, despite the relatively proximate measurements.

Given the financial and spatial limitations of these devices, researchers have started
looking into portable instruments for mobile measurements based on optical light transmis-
sion. Previous studies considered the possibility of using mobile, commercial off-the-shelf
(COTS) devices for a more plausible solution, giving high temporal resolution along with a
wider spatial one [29,32,33]. The emergence of COTS technologies can lower the technologi-
cal and financial barriers for developing countries to monitor air pollution emissions, and it
can bring more citizens to participate in collecting environmental data. Access to environ-
mental COTS sensors for measuring concentrations of carbon dioxide, nitrogen dioxide,
methane, and ozone in the atmosphere can improve and democratize environmental data
collection. One of the approaches that were suggested was a similar PM measurement
method, using a node system of spatially distributed smart COTS sensors. Along with a
connection to a wireless network at sink nodes, COTS sensors have the potential to increase
spatial resolution significantly with limited effects on temporal resolution [32]. While most
research are in agreement that some COTS sensors’ use in outdoor environments is possible,
there is a plethora of devices that have not been vetted through scientific means. Given the
multitude of devices and the lack of exposure data, it can be concluded that a proper
calibration, as well as a validation, process needs to take place before they could be relied
on scientifically and commercially.
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The small size of the COTS sensors and their simple operation also make them very
useful for mobile measurements. The choice to use bicycles as the mobile campaign’s
means of transport was made given their ability to traverse longer distances without
emitting additional pollutants that might intervene with accurate readings, along with
their increased mobility and range in urban areas [34–36]. Liu [37], for instance, arranged a
study where multiple public bicycles were attached with a GPS, a Bluetooth transmitter
and sensing boxes that measure air quality. Once ridden, the bicycles would log pollution
data and send it back to the servers once they are parked at a public bicycle station, giving a
high resolution and updated map of the Air Quality Index (AQI) in the area.

Our goal in this was to evaluate, validate and compare all locally available leading
COTS PM sensors. In addition, we aim at identifying a robust sensing kit for an accurate
representation of PM dispersal data outdoors, specifically in a hot urban environment.

2. Materials and Methods
2.1. Study Area

Located in the Negev desert in southern Israel, Beer Sheva has hot and dry summers,
those of which are mostly attributed to daily land and sea breeze circulation, along with cold
and slightly wet winters that include considerable cyclonic activity (Figure 1). The Persian
trough is the main synoptic influence during the summer, which brings dry air with its
northwesterly winds, as well as stable PM conditions. During winter, a calm southeasterly
flow is entwined with northwesterly subtropical storms, which traverse the region on
a weekly basis. During autumn, the Red Sea trough has the most effect in our region,
which induces high PM levels and a stronger probability of forming dust storms. This semi-
arid desert averages around 100 mm of annual rainfall, mostly during the winter season.
Average annual temperature in the area is 18.3 ◦C, with extreme ranges that vary between
seasons, as well as daily and nightly cycles. With a population of over 200,000 people,
and a population density of 1700 residents for every km2, the effects of urban renewal
along with resident’s dispersal are factors which can very much influence the susceptibility
of dust events in the city, along with their epidemiological ramifications. The desert
climate in Beer Sheva could simulate a global warming scenario; High levels of particulates
and air pollution, given anthropogenically induced dust events; Along with the single
measurement station at the center of the city. All those provided fertile ground in our
attempt to calibrate and use said COTS sensors in high PM levels.

Figure 1. A map of the study site and the 28 mobile measurement points, along with the location of the monitoring station.

2.2. Environmental Data

Air quality data for preliminary comparison was collected from the single monitoring
station set up by the Israel Ministry of Environmental Protection (www.sviva.gov.il) in Beer
Sheva. The station is located on top of a building at the center of the city (31.25764◦ N,
34.78132◦ E), and serves as the only air quality monitoring station in the area. The station

www.sviva.gov.il
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provides other meteorological data as well, including wind speed and direction, air tem-
perature, relative humidity and more. The PM10 and PM2.5 data is recorded every 5 min
by a dichotomous ambient particulate monitor (Thermo Scientific 1405-DF) for continuous
direct measurements of PM, by utilizing two tapered element oscillating microbalances
(TEOM) calibrated using the volumetric air flow calibrator technique (National Institute of
Standards and Technology, NIST).

2.3. Hardware
2.3.1. COTS Sensors

We included available leading COTS sensors in our measurement campaign (Table 1).
The Dylos DC1700 was proven efficient in hot and dry climates (35 ◦C and 15%) [38] and
has an internal power source. Most COTS sensors, however, excluding the Sharp GP2Y1010
(and possibly the NIDS PSX-01E) use a heating resistor to create an updraft of particles.
The use of such heating has several drawbacks: First, since a current is needed to heat the
resistor, the power consumption is generally higher. Second, the response time is higher,
since it takes some time, usually around 30 second, until the resistor is heated up. It is
noteworthy that some of these small COTS sensors (as does some professional equipment)
sample the Total Suspended Particles (TSP) rather than specific size classes, so that readings
are PM class equivalents. Still, for their price range they can achieve remarkable results.
If used as a network of sensors [32], they are able to provide better resolution for intra-
urban PM variation; Residence level exposure could be better assessed [30], and enhance
station measurement’s data; and, if proven reliant, even assist in predicting and monitoring
variability in extreme weather conditions in the form of dust events. Given the fact
urbanized areas are also denser in population, the COTS sensors’ utility would increase
given the residents’ proximity. In an attempt to explore untested instruments, two COTS
sensors were selected because they have not been tested against reference instruments,
the OPC-N3 and the newest Sharp GP2Y1030AU0F, along with two COTS sensors that have
been used in ample scientific research [39–41], the DylosDC1700 and the HP Honeywell.
The PurpleAir COTS sensor was considered for use in earlier stages, but was withdrawn
from the study due to faulty data logging and inaccurate COTS sensor measurements.

Table 1. Description of commercially off the shelf (COTS) sensors, including their operation method,
range of particulate matter concentration and approximated cost (accurate as of 13 October 2018).

COTS Sensor
(Manufacturer)

Sharp-
GP2Y1030AU0F

Alphanese-
OPC-N3

Honeywell-
HPMA115S0-

XXX
Dylos-DC1700

Method

An infrared
emitting diode

and a
phototransistor
are diagonally
arranged into
this device, to

allow it to detect
the reflected

light of dust in
air.

OPCs provide
digital outputs
of PM1, PM2.5

and PM10 every
second, along

with histograms
of the particle
count for each
size. Device’s

flow correction
improves stable
readings, even in

high dust
environments.

utilizes a
laser-based light

scattering
particle sensing
method to detect
particulates from
0.3 µm to 5 µm

Counts
individual

particles, gives
immediate
response to
change in

environment
and provides
three different
history modes;
minute, hour

and day, up to 30
days of stored
history data.

Range 0–500 µg/m3 0–2000 µg/m3 0–1000 µg/m3 Unspecified
Price $12 $250 $25 $450



Sensors 2021, 21, 63 5 of 22

2.3.2. Kit Development

Given the fact COTS sensors have an analogue output, a micro-controller was used
in the construction of the kit in order to convert those signals to digital ones, which are
more statistically viable. The Arduino Uno was a natural choice due to its low power
consumption and price, along with its ability to utilize coding for clearer and tidied
results. A power bank was also needed given the mobile aspect of the measurement
campaign; The Romoss Sense 6P was used, given its high battery capacity and a dual-USB
output, which allowed us to use 2 COTS sensors at once, hence reducing the size of the air
quality kit.

2.4. PM Measurements

In order to evaluate the COTS sensors’ validity in the field, 4 separate tests were
conducted based on different criteria. The first was performed in a sterile setting in-
side the lab to check for similar trends and explore different variations of lag intervals.
The second test tried to address the effects of wind on the reliability of the measurements.
Measurements conducted outside the lab in the university campus at clear (non-dust) days.
The third test was done outdoor in close proximity to a reference station, to gauge the COTS
sensors’ accuracy and their sensitivity to the meteorological conditions at clear (non-dust)
days. The last test was a mobile measurement campaign, to test whether or not the COTS
sensors could detect spatial variations in dust concentration along specific areas in the city,
while comparing them to a verified satellite model. More details on each test are given in
the next sections.

2.4.1. Measurements under Laboratory Conditions

The COTS sensors in Table 1 were selected based on their extended measurement
ranges as well as compatibility with our micro-controller units (Figure 2). The Dylos
was chosen given its built-in power source and its longevity in the field. For a better
understanding on the sensors’ association to one another, preliminary measurements were
made inside the laboratory to examine standard (non-dust) day’s pollution levels in an
office space. Measurements were made under ambient temperature of around 25 ◦C,
with no ventilation or external air sources, except for a small 5 V fan, given the Sharp COTS
sensor’s requirement for mild airflow in order to cause particle suspension [42]. For each
COTS sensor, the measurements took place at two intervals of 30 min each, in order to
compile enough data for a statistical confidence analysis. The collected values were then
tested against one another, to check for a correlation between the different instruments to
provide a view of the ability to calibrate and/or predict dust concentration.

Figure 2. The COTS sensors that were used for the measurements: (a) Sharp-GP2Y1030AU0F; (b) OPC-N3;
(c) Dylos DC1700; (d) Honeywell HPMA115S0-XXX.

2.4.2. Preliminary Outdoor Testing

Once the kits were assembled and functional, the COTS sensors were monitored
outdoors under various wind conditions. The aim was to test its effect on the dust concen-
tration’s measurements, and to deduce which sensors are more susceptible to bias caused
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by external factors, given that wind is a deciding factor in aerosol dispersion and levels [43]
and may affect the validity of the COTS sensors results. The measurements were conducted
in an open area, in the campus of the Ben Gurion University in Beer-Sheva under conditions
of non-dust days, while wind speed was measured and evaluated at around 2.6 m/s and
remained stable throughout the test for all the sensors. The COTS sensors were placed
0.5 m above the ground, their orientation remained secured and unchanging, while only
their protective cardboard cover was adjusted to provide different wind exposure levels.
The samples were collected for 30 min per set, which were divided into three categories
according to the wind conditions. For “Full shelter” conditions, the COTS sensors were
placed outdoors on a stable stone bench, but in a designated cardboard box (0.5 × 0.6 ×
0.3 m). The box had an open top, and a cut up corner that allowed minor air flow at a
roughly 45◦ exposure radius but negated the effects of wind speed and intensity on the
readings. In “Partial shelter”, conditions were similar, but the protective box was cut up
to provide 180◦ of exposure to incoming wind. Under “No shelter”, no box was used for
this set of measurements, in order to provide a 360◦ exposure rate to test the full impact of
wind speed on gathered data.

2.4.3. Comparison with TEOM Data

For the next phase, for comparison purposes, the devices were tested against the
PM data collected from the meteorological station in the city (Figure 1), which uses a
TEOM instrument, which is a well-established reference instrument for PM measurements.
This was done as a preliminary filtering process, to better understand the effects of external
factors on the COTS sensors, and to discern which ones are more suitable for outdoor
measurements. The COTS sensors were placed near the TEOM instrument under four
different conditions: Directly next to it, on the top roof, exposed to sunlight (TE); On the
bottom roof, a 3 m height difference, under shaded (BS) and not shaded (BE) conditions;
and on the ground level of the building, a roughly 15 m height difference from the TEOM,
which was partially exposed during the morning, and mostly shaded during the afternoon
(G). The measurements used the specified cardboard box to partially shelter the COTS
sensors from the wind, while the ground measurements received less wind than most,
due to higher friction with the ground. Over 100 h of measurements were collected under
different climatic conditions in the summer season, in order to minimize dust storm or
rain effects. The testing was done during the day with an average temperature of 30 ◦C.
Values were generated between 40 and 1300 times a minute, depending on the device.
A satisfactory association between some of the COTS sensors and the station was achieved
under shaded and leeward conditions (protected from direct radiation and wind). Based on
the calibration’s results and their good correlation to tests in the field, the HP Honeywell
and the OPC-N3 were chosen for the following measurement campaign in this study.

2.4.4. Mobile Measurement Campaign by Bicycle

The final part of the PM measurements involved an urban mobile measurement
campaign, using bicycles as a means of collecting measurements. The use of bicycles was
important since there is no elevation of dust or car emission levels which might affect
COTS sensor readings, based on previous works that used this method [36–39]. The goal
of the campaign was to check the viability of measuring PM levels at high spatial scale and
to compare the results with our satellite-based model (Section 2.4.4). The bicycles used for
the mobile measurements (Brompton, London, UK) were equipped with the COTS sensors
and a GPS. These instruments were installed by mounts and clamps on the front of the
bike (see Figure 3). Four busy streets were picked based on their location and the amount
of commute they generate inside the city (Figure 1). Six measurement points were picked
alongside each of these streets in 200 m intervals, for proper value separation. Along with
the road points, each street was added a checkpoint that is located around 50 m away
from the main road to understand the effects of transportation and our proximity to it on
pollution levels. The measurements took place at each point separately, providing distinct
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values for each site, on 4 separate days during the summer season at an average of ~30 ◦C,
to avoid any bias caused by rain and dust storms.

Figure 3. Brompton bicycles used for mobile measurements: (a) equipped with the COTS sensors and GPS and (b) in the
field campaign.

2.4.5. Satellite Based PM Models

Satellite PM estimations were based on a novel satellite spatiotemporal models de-
veloped by our group [44] for predicting PM10 and PM2.5. These relied on the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor on top of the Terra and Aqua
satellites, based on their overpass times which differ in time (3 h apart). The instrument
captures data in 36 spectral bands at varying spatial resolutions. Together, the satellites
image the entire Earth every one to two days.

Specifically, the 1 × 1 km MAIAC aerosol optical depth (AOD) product from the
Terra platform is available over Israel between 09:00 and 12:40 Israel Standard Time (IST),
and from the Aqua platform between 11:10 and 15:00 IST. The mobile measurement times
were in accordance with Terra and Aqua satellite coverage times of Beer Sheva (09:00–15:00
GMT+2) for a minimal deviation.

AOD is one of the widely-used satellite based product for PM modeling. The AOD
measures light extinction at given wavelengths due to aerosol and gaseous compounds
scattering absorption along the measured atmospheric column, therefore making it useful
for estimating PM concentrations. The AOD product is available from several algorithms
of the MODIS sensor (Deep blue, Dark target, MAIAC), on-board the two satellite plat-
forms (Terra and Aqua). The latest developed MAIAC algorithm was recently used in
various locations for PM estimation [26,45–48], due to its advantages for PM modeling
including relatively high spatial resolution of 1 km, long time coverage (2000 to present
time for Terra, and 2003 to present time for Aqua), and improved accuracy over bright
surfaces. Daily MAIAC AOD was retrieved from Terra and Aqua Collection 6 data for
the period of 2005–2015. This time period was chosen due to the higher availability of
PM monitoring stations and dust events classification data. Additional details about the
MAIAC product and algorithm can be found in previous publications [49]. Our models
produce daily 1 × 1 km estimation for PM2.5 and PM10. The model is run in 3 stages:
We start by calibrating the satellite-based aerosol optical depth (AOD) data grid-level
observations to the relevant PM monitoring data collected within 1 km of an AOD read-
ing. This is done using mixed model regressions for observed PM monitoring data that
contains both fixed and day-specific random effects for the intercept, the AOD slopes,
and the temperature slopes. We also incorporate additional spatial and temporal (daily)
covariates as predictors in this calibration stage: Raster based spatial predictors (land-use,
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population density, NDVI, elevation, and road density), which were assigned to the
1 × 1 km grid cell using zonal statistics tool that allows calculating the mean raster values
for each grid cell; and Meteorological temporal predictors (Air temperature, relative hu-
midity, wind speed, rainfall, and Nitrogen Oxides concentration), which were matched
to grid cells, and was averaged based on the nine closest weather stations with available
meteorological variables. Dust day classification was used as well as a predictor in the
satellite model. Half-hourly dust events classification data were used from the study of
Yuval [50]. For each AQM PM monitor, dust events classification was attributed from the
closest available PM monitor. Each daily and intra-daily time windows were classified
either as a dust day (if a dust event occurred at least once during that time period) or as
non-dust days (if no dust events occurred). In the second stage, we use the stage 1 model
fits to estimate PM concentrations in grid cells without monitors but with available AOD
measurements. Finally, estimation of continuous PM concentration levels for all grid cells in
the study domain is performed by a modeling phase that estimates the PM concentrations
in locations where there are no satellite based AOD observations. This stage is implemented
by modeling the relationships between the estimated PM from stage 2, and the PM value
from an inverse distance weighting (IDW) interpolation of PM observations from AQM
stations each day, accounting for possible variability of the relationships in space using the
mixed modeling approach. The exposure model was rigorously validated using standard
validation methods such as “ten-fold” out of sample cross validation techniques. Model
performance was excellent, with out-of-sample cross validation R2 values of 0.84–0.87 for
the PM2.5 model and 0.90–0.92 for the PM10 model. Model predictions had little bias,
with cross-validated slopes of 1.00 to 1.09 for both PM fractions.

2.4.6. Data Structuring and Interpolation

In order to confirm the COTS sensors’ reliability, a sterile lab test was performed
for a comparison of all the chosen COTS sensors. The goal of this examination was to
test whether an agreement exists within the COTS sensors’ different measurement trends,
to subsequently eliminate any irrelevant instruments from the experiment. After adjust-
ments were made to the Arduino code in order to evoke different lag times between
readings, Figure 4 shows the different measurements performed inside the lab under the
different lag intervals, to test whether the data could be gathered in a more efficient man-
ner, without any surplus data entries. During our preliminary tests with the TEOM, we
examined to what extent could the calibration of the COTS sensors’ be improved using
the TEOM measurements, as well as surrounding meteorological conditions at the time
of measurement. To do that, we fitted three types of models per PM type (2.5 and 10,
respectively) and per COTS sensor (Honeywell, Sharp, Dylos, and OPC-N3):

1. Linear regression of COTS sensor PM as a function of TEOM PM
2. Linear regression of COTS sensor PM as a function of TEOM PM and four meteoro-

logical variables (temperature, relative humidity, wind speed and wind direction)
3. A random forests model of COTS sensor PM as a function of TEOM PM and the

abovementioned four meteorological variables. The random forest framework was
used given that its highly equipped to deal with non-linear relationships, since de-
cision tree models in general, and random forest specifically, are able to choose by
which features to split the data, with no limitation on the amount of splits. It can
create a decision boundary, which is complex and non-linear.

To perform model cross-validation, and thus assess predictive ability, for each of the
24 models (2 PM types * 4 COTS sensors * 3 models), the measurements dataset was ran-
domly split to training data (60%) and test data (40%). Each model was fitted to the training
data, then model predictions on the test data were compared with the test observations.
The association between predicted and observed values was evaluated by fitting a linear
regression model and examining its intercept, slope, and R2, All analyses were done in R
version 4.0.2. Random Forests were fitted using the ‘randomForest’ R package.
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Figure 4. Lab measurement correlation matrix between four COTS sensors, for two particle size classes (PM.25 and PM10)
and six measurements lag intervals (10, 15, 30, 45, 60 s and “original”). (H = Honeywell, D = Dylos, O = OPC, S = Sharp).
Astrix denotes the signifiance level: * < 0.05, *** < 0.001, ** < 0.001.

The COTS sensor data were saved on localized SD cards during measurements and
was taken to the laboratory for further analysis. After formatting and cleaning the data
to be used in the analysis stage, geographic information systems (GIS) tools were used
to provide a spatial layout for the mobile measurement campaign, along with a location
comparison between the measurement points and the closest satellite model’s grid nodes.
To enable the quantitative comparison of the different map layers, they were all produced
at the same spatial scale and on the same grid under ArcGis software version 10.6.

3. Results

The preliminary tests and comparison assessments used Pearson’s correlation to
determine whether or not a relationship exists between the COTS sensors’ PM readings and
those of the TEOM. The laboratory tests showed a good correlation between the different
COTS sensors (mean R2 = 0.75), while some of the COTS sensors excelled outdoors as well,
with varying correlations (R2 = 0.85− 0.95) when compared to the TEOM. Once the mobile
campaign was finished, the results were statistically tested using regression analysis which
included COTS sensor data, wind speed and direction, temperature, relative humidity
and the prediction model. The values and results of the two layers were averaged and
compared using R version 3.0.1+.

3.1. Lab Tests

Since the COTS sensors are calibrated slightly differently from one another, based on
their various factory settings, it could be assumed that the results will not coincide perfectly
with one another. The test was performed on 13 June 2019 at the Ben Gurion University
campus (PM10: 35 µgm, PM2.5: 16 µgm, Temperature: 27 ◦C, Relative humidity: 45%,
based on the nearby measurement station) (Figure 5). While the best result came under
a 60 s delay (R2 = 0.83 between the Honeywell and Dylos), the rest of the readings were
less convincing, giving lower correlation values. Using the original lag time (ranging from
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10 milliseconds to 1 s depending on the COTS sensor), however, gave a more acceptable
output between the OPC and Honeywell (R2 = 0.7), along with the Sharp and Dylos
(R2 = 0.79). Given these results, the original lag time was elected when moving forward
with the research for a more reliable result. It should also be stated that the guidelines
for annual mean PM levels indoors should be under 10 µg/m3 of PM2.5 and 20 µg/m3 of
PM10 (WHO guidelines), which will have to be taken into consideration when moving on,
by observing standard deviation units.

Figure 5. COTS Sensor readings over time under different exposure levels to wind.

3.2. Outdoor Tests

In Figure 6, wind speed was tested outdoors as the main environmental factor affecting
measurement precision based on previous studies [43,51], along with previous pilot attempts
to record measurements outdoors which were heavily affected by changing wind conditions.
The use of the makeshift cardboard wind-protector allowed us to control the direction and
intensity of this parameter, so we could control wind exposure levels to an optimal fixed
degree. While the COTS sensors were completely sheltered from the wind, they showed
varying correlations (OPC and Honeywell : R2 = ∼ 0.5, Dylos and Honeywell : R2 = ∼
0.7, OPC and Dylos : R2 = ∼ 0.6). It was noted that under partial shelter (exposure of
180◦, as opposed to 360◦ or less than 45◦), the average R2 rose to 0.8 between the COTS sensors
(OPCandHoneywell : R2 = ∼ 0.75, Dylos and Honeywell : R2 = ∼ 0.95, OPCandDylos : R2 = ∼
0.75), confirming that wind was a crucial factor in the validity of the COTS sensors results.
The Sharp COTS sensor’s sensitivity to these conditions led to an overall low correlation
value (average R2 = ∼ 0.4). It could be safe to assume that while a low wind speed does
not induce enough particle suspension for a proper reading, elevated wind levels could
in turn jam the photo-electric measurement chamber, which could result in faulty values.
While the COTS sensors’ application guide does not instruct potential ranges for bias
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caused by wind speed, a test that was done with the Sharp COTS sensor [51] showed a
small negative wind speed trend, while most successful readings were done at a speed of 1
to 3 m/s.

Figure 6. Difference between COTS sensor readings and tapered element oscillating microbalances
(TEOM) station measurements, as function of TEOM measurements, per COTS sensor and particle
type (D = Dylos, H = Honeywell, O = OPC-N3, S = Sharp). Dashed times are +1 SD around the y = 0
line, to emphasize the variability and bias in each case (T = Top roof, G = Ground level, BS = Bottom
roof-shaded, BE = Bottom roof-exposed to sun). The shaded area represents a convex hull.

3.3. Comparison with TEOM

Once the wind tests were completed, the COTS were taken to the monitoring station
to be compared with the TEOM out in the field. The kits were placed at different loca-
tions throughout a one month measuring period during the summer (T = Top roof, G =
Ground level, BS = Bottom roof-shaded, BE = Bottom roof-exposed to sun), which is consid-
ered less dusty than the preceding months. Figure 6 shows the distribution of differences
between the COTS sensors’ readings and the corresponding TEOM station measurements,
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i.e., the COTS sensor measurement accuracy. The figure’s shaded background represents
a convex hull, which divides the measurements’ locations into groups, in order to better
assess their values’ divergence from one another.

The results show a steady trend with the OPC and the Honeywell COTS sensors,
which have a PM2.5 SD of the deviation from station measurement of 4.8 and 22.7, and a
PM10 SD of 19.4 and 23.1, respectively. The Dylos and Sharp COTS sensors, which have
deviations that are closer or greater than 50 regardless of their position, were proven
unreliable for our goals and were therefore omitted from the continuation of the research.
The results’ division into the four measurement spots also helps in understanding the
effects of wind and solar radiation exposure on the different COTS sensors; based on the
readings, it was evident that the BS, followed by the BE, were the closest readings to the
TEOM baseline, proving that the partial shelter exposure along with a minimal exposure to
sunlight could result in better, more accurate measurements. While BS exhibited positive
correlations between PM readings and wind direction, association to the TEOM was hardly
noticeable for that location, along with G and T, as well. On the other hand, BS showed a
high correlation between the station and the OPC, Honeywell, and Dylos COTS sensors
( R2 = ∼ 0.93). A similar comparison test was done when several COTS sensors were set
up next to an automatic urban and rural network (AURN) station in Southampton, UK [52]
for a full year. Despite finding some hardware difficulties with the Honeywell COTS sensor,
the remaining COTS sensors’ uptime was well over 90%, and statistical analysis results
were excellent when compared to the station’s readings (Pearson and Spearman coefficients
at ~0.85 when facing east, and 0.8 when facing south or north).

Models of COTS sensor PM as a function of the TEOM measurement and meteo-
rological conditions (temperature, relative humidity, wind speed and wind direction)
(Table A1 in Appendix A) showed varying degrees of predictive ability among the four
COTS sensors. Dylos sensor PM could be accurately predicted using the TEOM mea-
surements combined with the meteorological parameters

(
cross validation, R2 = 0.8

)
.

However, the OPC-N3 had weaker association with the same variables (R2 = 0.6). The Hon-
eywell and Sharp sensors’ did not present the same robustness (R2 = 0.01 and R2 =
0.2, respectively). The results may suggest that the sensitivity of Dylos and OPC-N3 sen-
sors to the examined environmental variables is higher than that of Honeywell and Sharp.
It should also be noted that the Honeywell and Sharp are exposed to external factors more
than the OPC-N3 and Dylos COTS sensors, due to their less intricate design and their lack
of protective exterior. The random forests model did provide a better association with
the Sharp COTS sensor (PM2.5 R2 = 0.32 and PM10 R2 = 0.42), but the results were not
conclusive enough to draw a definite effect on one another. Despite the varying results,
for the purpose of the present study we focus on the accuracy of the COTS sensors’ raw
measurements, i.e., the accuracy and bias of the association between COTS sensor PM and
the TEOM PM measurements (Figure 7). For that reason, we consider OPC and Honeywell
as the best options for outdoor measurements, given their consistency with the station’s
values (see above and Figure 6).
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Figure 7. Mobile measurements campaign and spatial layout.

3.4. Mobile Measurement Campaign

For the final stage of the experiment, the Honeywell and OPC COTS sensors were
assorted into a mobile sensing kit to be used with a bicycle along pre-determined routes.
The goal was to compare the COTS sensors that were proven accurate with the satellite
prediction model, to validate their efficiency in field conditions. We used the previous
stages’ conclusions to set up an ideal measuring platform, with partial exposure to wind
and minimal exposure to sunlight, while devoiding the COTS sensors of physical vibration
that may affect its accuracy.

To ensure the results were not biased given specific extreme pollution conditions or an
ongoing trend, we have averaged and mapped the preceding months based on the satellite
readings, over a period of 10 years, as seen in Figure 8 It should be stated that PM levels
during 2015 were affected by a noticeable dust storm that exceeded most of the area’s
historic PM data (Average of 3372 µg/m3 PM10, Max; 10,280 µg/m3 PM10). This, in turn,
has shown a tremendous rise in PM values in our analysis.

Figure 9 shows the mobile measurement campaign, and the 4 outdoor measurement
sessions compared to the satellite predictions from 2015. While the readings did not
correlate perfectly with the predictions, PM2.5 readings were closer to the prediction
model ( linear model R2 = ∼ 0.3) than the PM10 values ( R2 = ∼ 0.15). Given the fact the
regression is based off of the closest neighbor method, spatially joining the closest point
on the grid to its measurement counterpart, its values remain stable since the average
of that period was taken into consideration. The first and fourth measurement sessions
(based on date of measurements) showed a larger deviation than the other tests—this could
be due to the fact that on those days (23 September 2019 and 8 October 2019, respectively),
the monitoring station showed higher values of pollutants throughout the day (peaking at
80 µg/m3 PM10 and 25 µg/m3 PM2.5), which could have disrupted the COTS’ integrity
given the more severe weather conditions. The issue of the COTS’ location, as well,
is crucial for system identification, control, and damage detection which requires accurate
measurement of the responses of the system. This is based off comparing recorded values
and trend analysis to the TEOM to ensure compatibility. While the COTS showed promising
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results on some of the trials, the expectation was that they required additional manual
calibration before operating in different environments, with emphasis on more extreme
ones (dust storms, extreme heat, etc.). Figure 10 is added to enhance our understanding
of the linearity of the data and shows the linear association between the both OPC-N3
and Dylos sensors and the TEOM device, along with various environmental parameters.
It could be inferred from the results that relative humidity and temperature show a more
linear relationship with the measured PM, mostly for the Dylos COTS sensor. There is also
a clear positive, linear association based on the plots between the sensors and the TEOM
device, although PM2.5 readings show a slight deviation from the station’s measurements.

Figure 8. Average particulate matter (PM) per 1 km2 pixel in September of 2005–2015 in the city of
Beer Sheva based on satellite model predictions (Top: PM2.5, bottom: PM10).
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Figure 9. Mobile measurements comparison to satellite data, categorized by number (date of measurement).

Figure 10. Statistical correlation between ground measurements and satellite-based PM data from September of 2005–2015.

Figure 10 shows the results of the statistical analysis performed on the ground mea-
surements in comparison with the Satellite model PM data. It was divided per year for
PM10 and PM2.5, for a better understanding of the association and in order to spot any
outliers. The results showed a slight positive correlation, but not significant enough to
draw a concrete conclusion. It was noticed that PM2.5 had a lower association than PM10,
likely due to proximity to main roads which incurred less stable conditions for measure-
ments, which enhances our conclusions from Figure 11 regarding the PM2.5 association to
mobile measurements.
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Figure 11. Scatter plot linearity test between the Dylos, OPC-N3 sensors and the satellite model, along with environmental
parameters (PM_D = Dylos readings, PM_O = OPC-N3 readings, PM_M = TEOM readings, RH = Relative humidity).

4. Discussion

The project set out to evaluate, validate and compare all available leading COTS PM
sensors in order to identify a robust sensing kit for an accurate spatio-temporal represen-
tation of PM. We hypothesized that land cover and built environment design parameters
are key levers for local control of chronic PM and that current measurement networks are
insufficient to adequately capture the spatiotemporal variation of PM. Our results show
that under specific conditions, some COTS sensors were reliable capturing particulate
occurrences on a much smaller spatial scale. This could in turn lead to a better understand-
ing of morbidity related to particulate matter, while providing valuable data for various
treatment plans.

While the original plan was to use additional COTS sensors, such as the Novafitness
SDS011 [53–55] and the PurpleAir [56–58], lack of funds and availability in the region
prevented us in doing so. The choice to use the four COTS sensors we examined was
based off of numerous studies [32–44] and was done in hopes of narrowing down the
choices and select the most effective COTS sensors, both in terms of reliability and costs.
One of the problems we faced was the need for a manual calibration for each of the COTS
sensors separately, based on their origin and the region in which measurements are to
take place. A study testing the advantages of particle COTS sensors [59] examined six
performance aspect: linearity of response, precision of measurement, limit of detection,
dependence on particle composition, dependence on particle size, and relative humidity
and temperature influences. The standard deviations of the COTS sensors varied from 15
to 90 µg/m3 for a concentration range of 0–1000 µg/m3, which could prove problematic in
higher pollution environments. The outputs of all three COTS sensors depended highly
on particle composition and size, resulting in a difference that is as high as 10 times from
each other in the COTS sensor outputs. These deviations prove the need for an individual
calibration process for each of the COTS sensors.
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The spatial resolution of the satellite models [44] was relatively large, at 1 × 1 km,
compared to the smaller spatial resolution of the COTS sensors, which could have proven to
be a hinderance in comparing the two methods. A recent study [60] investigated the lack of
reference instruments, which created a gap in air quality information,
especially in developing countries. They developed an observation-based method by
combining satellite remote sensing techniques, along with low cost PM2.5 COTS sensors in
California to quantify the impact of wildfires during October 2017. They have shown that a
smaller, local scale for the satellite (0.1 × 0.1 km) has greater promise in utilization with
ground monitors, while exhibiting difficulties in correlating them when the scale was larger.
However, even at a 1 × 1 km scale, studies have shown that assimilating ground measure-
ments in satellite based models using COTS could improve correlation value by ~0.2 [61].
Additional research is required in order to utilize 1 × 1 km models more effectively in
exposure assessment, while taking into consideration different areas and pollution levels.

Along with the aforementioned limitations, such as hardware reliability and the large
spatial scale, at the end of 2019, the first cases with pneumonia associated with Coronavirus
(COVID-19) were reported in Wuhan, China. At some point, in a few months’ span,
half the world’s population was placed on an enforced lockdown. The effects on PM
levels throughout the world were noticed, and as of 9 April 2020, emissions in China have
dropped by over 30% [62]. It was our hope to investigate the COTS sensors’ stability during
dust episodes, but the decline in anthropogenic PM during that time would have caused
bias in results that would have been compared to times with an increase in human activity,
instead of a massive decline.

A study on surveying hourly PM levels, performed by Krasnov [31], discovered that
a slight increase in PM10, from 38 µg/m3 to 45 µg/m3, is induced during the morning
and afternoon rush hours, with a decrease after 5 p.m. This could attest to a single
measurement method being a more accurate one, but on the other hand, possibly lacking in
the explanation of different variables. The measurements, that were performed in the Beer
Sheva and Tel Aviv areas (although the latter is less affected by the afternoon rise of natural
PM10 due to Mediterranean breeze), highlight the difference between days with or without
anthropogenic activity, and has shown that anthropological involvement contributes less
than 15% of the measured PM10 concentration in the studied area that is close to the desert.

An outdoor evaluation performed in Salt Lake City [60] tested that theory, using two
Plantower PMS 1003 and two PMS 5003 for a period of 320 days. The COTS sensors
generally tracked PM2.5 concentrations compared to co-located reference air monitors
(TEOM, federal gravimetric device, etc.) for optimal reliability. During elevated dust events,
the COTS sensors overestimated the reference instrument by a factor of 1.47–1.89. One of the
COTS sensors also exhibited a significant drift in mid-research, and continued to deteriorate
through the end of the study. The COTS sensors proved satisfactory during low dust levels
( R2 = ∼ 0.88), which could indicate either a need for a more resilient kit to be built,
or the specific COTS sensor’s lack of ability to operate in high PM environments, a fact that
coincides with our tests which took place in a higher pollution level area. Additional testing
is required under dust storm conditions in order to rely on the COTS sensors’ output,
and to ensure the measuring chamber or internal fan are not hindered by the larger
amounts of dust. The COTS optical-sensors’ refraction could also be affected by high
amounts of dust, and should be considered when developing continuous measurement
campaigns. Such lengthy campaigns require additional manpower and time to sustain a
more continuous form of measurement, and the lack thereof within our study made us
focus more intently on specific spatial and temporal points of interest.

5. Conclusions

The use of commercial off the shelf sensors in portraying a larger picture in patterns
of particulate matter could be a significant advantage when assessing pollution rates in
areas that have little to none environmental data tracking, with only a fraction of the cost
of a gravimetric station. This study used the city of Beer-Sheva, which has a semi-arid hot
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climate and is subjected to both natural dust and anthropogenic effects, to study spatial
and temporal variations of PM.

While satellite models provide a good amount of information using spectral imaging
and remote sensing tools, their spatiotemporal resolution could be lacking at times given
their specific overpass coverage times. Such satellite based data could be enhanced using
matching ground measurements, especially in urban areas and around daily commute
hotspots, by placing a network of COTS sensors for a more refined exposure profile
(hourly and daily, instead of imaging-based prediction models).

The results of this paper were diverse, and showed that while the COTS sensors were
relatively matched in their readings during lab conditions, different levels of exposure to
wind could be a deciding factor in the values’ integrity. In situ outdoor measurements
conducted next to a TEOM device showed great promise when the COTS sensors were
confined to a limited exposure to radiation and wind, in which case, a proper calibration
process must take place in order to take into account different areas with changing pollution
levels.

Overall, it appears the compatibility between the ground measurements at high spatial
resolution and satellite model (1 × 1 km) was lacking, which could also be attributed to
topographic and climatic differences which are harder to take into consideration when
comparing a theoretic model to actual measurements. The difference between the methods
could also be explained by the discrepancy in measurement times, as dust levels have been
proven to rise in the preceding years [5].

The results of this study could further help exposure assessment two folds: It will
validate the use of COTS instruments as a viable PM measurement tool and enhance air
pollution modeling by expanding much needed ground level data.
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Appendix A

Table A1. Linear and Random Forests model results between COTS sensor PM measurement and
TEOM PM values, with and without meteorological factors.

Variable Model Slope Intercept R2

Honeywell-
PM2.5

Linear
model—TEOM 30.6388 −0.011 −0.022722584

Honeywell-
PM2.5

Linear model:
TEOM +

Meteorological
factors

27.9802 0.0552 −0.001513723

Honeywell-
PM2.5

Random Forests:
TEOM +

Meteorological
factors

28.46 0.0968 0.161438272

Honeywell-
PM10

Linear model:
TEOM 32.4745 −0.0534 0.019061521
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Table A1. Cont.

Variable Model Slope Intercept R2

Honeywell-
PM10

Linear model:
TEOM +

Meteorological
factors

29.133 0.0436 −0.028409946

Honeywell-
PM10

Random Forests:
TEOM +

Meteorological
factors

32.4729 0.0417 −0.008819204

OPC-N3-PM2.5 Linear model:
TEOM 6.7076 0.3038 0.483495144

OPC-N3-PM2.5

Linear model:
TEOM +

Meteorological
factors

2.6469 0.7821 0.57609834

OPC-N3-PM2.5

Random Forests:
TEOM +

Meteorological
factors

6.1345 0.3937 0.554083995

OPC-N3-PM10 Linear model:
TEOM 24.7203 0.4026 0.581336121

OPC-N3-PM10

Linear model:
TEOM +

Meteorological
factors

25.6637 0.3808 0.589789448

OPC-N3-PM10

Random Forests:
TEOM +

Meteorological
factors

34.1448 0.194 0.362786724

Sharp-PM2.5 Linear model:
TEOM 54.9663 0.0014 −0.048504135

Sharp-PM2.5

Linear model:
TEOM +

Meteorological
factors

64.0294 0.3702 0.124500294

Sharp-PM2.5

Random Forests:
TEOM +

Meteorological
factors

50.3221 0.276 0.325243306

Sharp-PM10 Linear model:
TEOM 126.2785 0.055 0.191369713

Sharp-PM10

Linear model:
TEOM +

Meteorological
factors

159.4208 0.189 0.104123008

Sharp-PM10

Random Forests:
TEOM +

Meteorological
factors

131.6534 0.1987 0.422302067

Dylos-PM2.5 Linear model:
TEOM 52.8526 0.2487 0.140869256

Dylos-PM2.5

Linear model:
TEOM +

Meteorological
factors

12.6777 0.9736 0.858485926

Dylos-PM2.5

Random Forests:
TEOM +

Meteorological
factors

43.0559 0.2858 0.384341244
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Table A1. Cont.

Variable Model Slope Intercept R2

Dylos-PM10 Linear model:
TEOM 97.8045 0.4519 0.390104326

Dylos-PM10

Linear model:
TEOM +

Meteorological
factors

5.205 1.2015 0.828236601

Dylos-PM10

Random Forests:
TEOM +

Meteorological
factors

103.1206 0.2891 0.661054684
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