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Abstract: Recent imaging techniques enable the joint capture of spectral and polarization image
data. In order to permit the design of computational imaging techniques and future processing
of this information, it is interesting to describe the related image statistics. In particular, in this
article, we present observations for different correlations between spectropolarimetric channels.
The analysis is performed on several publicly available databases that are unified for joint processing.
We perform global investigation and analysis on several specific clusters of materials or reflection
types. We observe that polarization channels generally have more inter-channel correlation than the
spectral channels.
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1. Introduction

Two branches of unconventional imaging are spectral imaging and polarization imag-
ing. In general, those two approaches are considered independently. When they are
considered together, it is often because one modality is a noise for the other, like the
polarization effect compensation for spectroscopy [1,2] or wavelength-shift correction
for polarization optics [3,4]. Mixing Spectral and Polarimetric Imaging (SPI) is an active
emerging research area [5], as it enables a more complete capture of a scene than spectral
or polarimetric imaging. Recent work demonstrated the benefits for applications, like
computer vision [6,7] or computer graphics [8,9].

Technology advances enable the snapshot acquisition of several spectral and polar-
ization data of the same scene. One technology that has been recently developed is what
we call the Generalized Filter Arrays imaging (GFA), which extends the concept of Colour
Filter Arrays (CFA) [10] to Spectral Filter Arrays (SFA) [11,12] and Polarization Filter Arrays
(PFA) [13]. PFA comes historically in between the CFA and SFA, and aims at filtering the
electromagnetic waves relatively to specific polarization directions. The Color Polarization
Filter Arrays (CPFA), which has a practical commercial instance in the Sony IMX250 MYR,
is one interesting tentative tool for fusing those two branches [14]. A spatial modulation
on the focal-plane array permits sampling the intensities of the light field through 12
combined channels; four polarization angles of analyzing uniform-distributed between 0°
and 180° [15], and three color filters arranged in a Quad Bayer [16] configuration. Because
one pixel senses only one channel, computational imaging is used in order to optimize
the captured image through an imaging pipeline [17], e.g., demosaicing to reconstruct the
spatial resolution. Indeed, one can reconstruct the resolution of the images while using
prior knowledge regarding the scene statistics. This is very similar to color and spectral
imaging [18-22] and polarization imaging [23,24] based on GFAs.

With the fusion of imaging modalities into one unique imaging setup, it is important
to collect prior knowledge regarding image statistics, adapting demosaicing methods to
the case of CPFA, and to define an imaging pipeline from sensor design to standardized
data representation.
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In this article, we investigate the image statistics of joint polarization and spectral
information. We implement an experimental protocol and compute the correlation coeffi-
cients over several imaging scenarios, involving either diffuse or specular reflection and
material clusters. We eventually formulate recommendations in order to help to design
performing algorithms for machine vision, help to design sensors of better performance,
and help to design adequate imaging pipeline. In Section 2, we defined the sensor and its
related data. Subsequently, we describe the experiment used for statistical investigation of
data in Section 3. In Section 4, we analyze the results and formulate general observations,
before concluding.

2. Joint Spectral and Polarization Imaging
2.1. Filter Array Imaging

For a general case, light is composed of several wavelengths A and several polarization
states B, so the radiant signal I(A, B), results from an infinite combination of frequencies
and polarization states.

In the sensor case, we characterize the sensing procedure versus the spectral sensitivity
by wavelength and versus the Stokes formalism for the polarization state. The Stokes
formalism is employed in order to describe the state of polarization in an efficient way [25,26]
and it is often visualised within the Poincaré Sphere [27]. In this work, we are only
interested by the linear behavior of polarization of the reflected light, thus we do not need
to model polarization with the Mueller formalism [28].

The spectral and polarimetric acquisition only detects particular wavelengths A and
particular polarization angle B. This selection is performed according to a detector with
given spectral sensitivities and given polarizers, which filter the radiant signal I(A, ) with
filtering functions f, and gives output values py. In fact, this is often separated in two
tracks. One track excludes polarizer and filters the wavelength, and the other track is based
on a polarizer and it can exclude the filtering of wavelengths. If there is no polarization
filter, then the filtering function f is only filtering wavelengths. In that case, all of the
polarization states contribute to py. If there is no wavelength filter, then f is only a linear
polarizer, such that all wavelengths contribute to py. In the case of one filter that combines
a given spectral transmittance and a polarization direction, the detected signal ps results
from a combination of filters, such as f(A, B) = {c(A), p(B)}, where c indexes the spectral
channel and p indexes the polarization channel.

For example, the Sony IMX250 MYR is a combination of three spectral filters (c € R, G, B)
and 4 linear polarizers (p € {0,45,90,135}°). In total, 12 filtering functions f exist, which
result from the k-combinations of the spectral filters with the polarization filters. At every
pixel position, the camera captures the information through only one filtering function, i.e.,
one pair of spectral and polarization filters. In order to obtain the fully resolved image, i.e.,
the vector p of 12 values per pixel position, we can apply a demosaicing algorithm and
estimate I(A, B) at each spatial position. In the rest of the document, for fluid reading, we
will refer to each channel as cp, e.g., RO for {R(A),0°(B)}.

2.2. Reflection Model

The dichromatic reflectance model [29] assumes that the reflection of light is composed
of a diffuse component (sub-scattering and surface roughness) and a specular component
(direct surface reflection). The spectral distribution of the specular reflection component
preserves the spectral distribution of the incident light, in the general cases, according
to [29]. The diffuse component of the reflection keeps the spectral characteristic of the
object multiplied by the light source [29]. The diffuse component is often assumed to be
unpolarized. Contrarily, the specular component is partially polarized. This effect is very
different within two main classes of materials that exhibit a large difference in their Fresnel
reflection coefficients: metal and dielectrics [30], where the typical coefficient plots are
shown in Figure 5 in [6].
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Database

We however cannot tell a priori how ¢(A) and p(B) are mutually dependent. This
could be answered based on measurements and on the characterization of the sensing
elements and is not the scope of this work. On another hand, natural scenes might exhibit
some specific correlations in wavelengths and polarization states depending on the type of
material or the type of reflection involved. We can investigate the difference of correlations
among the pj_1 values. To analyze those correlations, we perform statistical analysis on a
large body of observations, so it involves different reflection modes and types of materials.
This is what we present in the next section.

3. Experimental Protocol

We prepare and unify data from different sets to be processed in a batch. Figure 1
shows the different steps. In this Section, we describe the database and the curation of data
in Section 3.1, and the classification of data in Section 3.2.
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Data & Curation (Section 3.1) Data clustering (Section 3.2) Data analysis (Section 4)

Figure 1. Experimental pipeline. “Data & Curation”, “Data clustering”, and “Data analysis” refer to the Sections 3.1, 3.2 and 4.

3.1. Data & Curation

The first step of our experimental pipeline (Figure 1) addresses the collection and
curation of data. To our knowledge, there are currently three databases of joint spectral and
polarization images in the literature [31-33], but only two are available. Table 1 presents
the characteristics of the available databases. The polarization states, with four polarization
angles of analysis p € {0,45,90,135}, are recovered using a division-of-time procedure,
i.e., by rotating a uniform polarization filter in front of the camera.

Table 1. Summary of the databases that were used in this work.

Database Num. Full Pre-Processing Spectral Polarization
Scenes Resolution Sensing Sensing
Qiu et al. [31] 40 1024 x 1024 Averaging 100 c € {r,g, b}—Bayer RGB p € {0,45,90,135}—
images, 2 x 2 pixel sensor (CMOSIS Rotated linear polarizer
binning CMV4000-3E5) (Thorlabs WP25M-VIS)
Lapray et al. [32] 10 994 x 738 Linearization, FPN,  6-band—Bandpass filters p € {0,45,90,135}—
PRNU and Bayer RGB sensor Rotated linear polarizer

(JAI AD-080GE camera) (Newport 10LP-VIS-B)

For the spectral filtering, the technology used is the Bayer filter for the two databases.
The data from Lapray et al. has six spectral bands, so we converted them into RGB by
selecting three bands, followed by a linear colorimetric transform. In general, the spectral
characteristics of the RGBs from the two cameras are different, and this may have an
impact in our spectral analysis later. However, in this work, we consider that RGB is a
standard representation for color image, and we ignore the differences that are related to
their spectral characteristics.

The images available in the databases have been demosaiced. In order to mitigate any
errors that are introduced by the spatial interpolation, we downsampled all of the images
to reduce their size to 0.5 times the size of the original image. Simulating an optical linear
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filter, a bilinear interpolation, i.e., a weighted average over a 2 x 2 pixel neighbourhood, is
used for the downsampling.

Finally, the data are composed of 12-band images, where each pixel contains a 12-
elements vector (p1_12). The visualization of images is shown in Figures 2 and 3, with their
total intensity RGB representation based on each spectral band Sy Stokes component [25],
such as in Equation 1 of [31]. The scenes consist of different types of material, like manu-
factured objects that are made of plastic, glass, or metal, or natural objects that are made of
organic materials. Illumination is not polarized (i.e., passive polarization imaging), except
for 10 scenes with polarized backlight. This last configuration is often employed in order
to analyze transparent materials through the photoelasticity experiment [34]. Polarized
backlight illumination are used in the scenes of Figure 2g,h,j kt,v,ac,ag,aj,ak.

(@) vall 0 (b) blackstutt () (C) bottles () (d) cablelid () (@) caligraphset (0) (f) camera () (8) carvier (a)

(h) cellphonecases (A) (i) chairs (O) (j) containers (A) (k) cover (A) (l) dinosaur (P+N) (m) door (N+O) (n) fountain (M)

(0) cinstein (0) (P) faxetruit ) (1) fruit (V) (S) funnel (?)

(V) glassplasticcomp (A) (W) kettle (M) (X) lock (P) (y) mirrorcard (P) (Z) mirrorphone (P)

=< T

(ad) prant v (ae) plastik (7)

(t) glasscontainer (A) (u) glasscube (G)

(q) foor ©)
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4
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(ac) penstand (A) (af) plastikcomp (P) (ag) plate (A)

(@j) ruter 4) (ak) scotch (a) (al) screen ) (am) tools (M+P+0) (an) woodwall (N)
Figure 2. Visualization of the 40 scenes of the data from Qiu et al. [31] by alphabetical order. The material clustering for
each scene is represented by the acronym: M (Metallic), N (Natural), A (Active), P (Plastic), G (Glass), and O (Other).
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(e) leaves (P+N)
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(f) liquid (G+P) (g) macbeth classic (O) (h) macbeth enhanc. (O) (i) painting (O) (j) potery (N)

(a) fabrics (O)

Figure 3. Visualization of the 10 scenes of the data from Lapray et al. [32] by alphabetical order. The material clustering for
each scene is represented by the acronym: M (Metallic), N (Natural), A (Active), P (Plastic), G (Glass), and O (Other).

3.2. Data Clustering

As previously described in Section 2, we want to study the correlations within several
scenarios, based on the material type and the mode of reflection involved (Figure 1). We
performed a semantic segmentation for all of the objects in the scenes in order to eliminate
the background and only keep observations that belong to the object. The annotation was
performed manually, with the help of the polygon lasso tool [35] (Adobe® Photoshop).

After object segmentation, we then visually classified the objects by material clusters,
with a relatively well-balanced amount of pixel pertaining to each material. The seven
material clusters are defined, as follows: Total (all objects—100% of the total amount of
object pixels), Total \ {Active} (82.5%—Total without the Active cluster), Metallic (7%),
Natural (17.5%), Active (i.e transparent object, either glass or plastic, with polarized illu-
mination in background—17.5%), Plastic (26.3%), Glass (5.4%), and Other manufactured
objects (26.3%). Some scenes contain pixels that belong to different material clusters (like
the dinosaur and piece of wood in Figure 21), so they have been separated properly. The
result of material clustering is shown in Figures 2 and 3. We considered a split in Active,
Metallic, and dielectric from a polarization perspective; we distinguished Natural ma-
terial from manufactured for the spectral properties; and, we added Plastic and Glass
for both the potential transparency or translucency properties and the relevance in bin
sorting applications.

In addition to material clustering, we also label each object pixel as being a part of a
scene, a part of an object, and also whether it is a specular or a diffuse reflection. Thus, we
obtain four different reflection areas: Scene (all available pixels, background included),
Object (background excluded), Diffuse, and Specular. The classification into specular or
diffuse is done using the method described by Nayar et al. [6], where several assumptions
are considered: reflections follow a dichromatic model [36]; highlights are specular reflec-
tions partially polarized [36]; and, diffuse components are mostly unpolarized. Given the
prior assumptions, a threshold per pixel on the Degree of Linear Polarization, DOLP, is
applied in order to detect whether the polarization signature of one pixel is sufficient to
consider it as specular:

Spec=1 for max (DOLP;) > T else O,
ceR,G,B (1)
Diff =1 for max (DOLP.) < TelseO,
ceR,G,B
where T is the variable threshold described in [6]. Figure 1 shows an example of the
reflection clustering on the fruit scene. The method by Nayar et al. [6] is generally applied
only on dielectrics. Nevertheless, in our experience, we also classified Active and Metallic
clusters with this method.
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3.3. Global Visualization of Data

Figure 4 shows the diversity of polarization signatures for several materials. The
normalized Stokes components for the green channel (¢ = G) are plotted on the equator
plan of the Poincaré Sphere. We see that most of the observations have weak polarization
(yellow spots at the center), as can be expected for the majority of man-made and natural
materials [37]. The active scenes (with polarized backlight) contain a great variety of angles
and degrees of polarization, due to the background polarized illumination. Metallic, Plastic,
and Other clusters have very similar shapes. Glass materials exhibit weak polarization
when compared to the other clusters. The natural cluster has several sparse observations
that have a strong polarization signature; this is due to some noise that is introduced by
low irradiance areas (e.g., shadows in Figure 3b,e).

4 4
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Figure 4. Scatter plots of polarization data for material clusters for the green channel (¢ = G),
approximating the luminance. We also observe similar behaviors on the red and blue channel. Each
plot represents the plane of the equator of the Poincaré sphere (latitude is zero for linear polarization).
The Stokes component values [25] S1 = po,c — P9o,c and Sy = 045, — p135,G are normalized with
respect to the total irradiance So = pg g + p9o,G- The center of the circle represents unpolarized data,
whereas the unit circle represents fully polarized data. The distance from the center is the degree

of linear polarization DOLP = SS+S and the angle with respect to the origin is 28, so that the
orthogonal polarizations are shown to be diametrically opposed.

4. Data Analysis
4.1. Inter-Channel Correlation

In order to analyze the correlation between channels, we computed the Pearson’s
correlation coefficient [38,39] (PCC) between all of the 12 available channels p,, and py,
(u,0) € {f1,..., fi2}?> with Equation (2) [40].

Z(( — pu) v))

u —H
\/Epu Hu) \/va Ho)?

where i is the pixel position and j, is the mean value of channel p,.

The inter-channel correlation coefficients are computed for the four different reflection
areas: Scene, Object, Diffuse, and Specular. The coefficients are computed for the six
material clusters. We obtain 26 correlation coefficient tables, where each table has 12 x 12

PCC Puz Pv = )
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coefficients. Table 2 shows a summary of the correlation results, where the means of
coefficients are classified relative to the defined clusters (reflection and material). Cells in
orange color have to be taken with care, because the method used for diffuse/specular
classification is not valid for Metallic and Active clusters. By computing the mean, we
are smoothing individual differences, but, in Section 4.3, we are looking at the significant
differences between distributions. In order to visualize the spectral and polarization
correlation independently, each table is rearranged in two ways for convenience: by
grouping the polarization bands on the one hand, and by grouping the spectral bands on
the other hand. An example is shown in Tables 3 and 4, with the correlation results for the
scenario Total Object. We provide the 26 data tables and there visualizations in false colors
as supplemental material openly available at [41]. Examples of visualization in false colors
are shown in Figure 5.

Table 2. Means of correlation coefficients for each pair of reflection/material clusters, either in the Spectral (S) or Polarization (P)

channels. The coefficients are calculated from the groups shown in Tables 3 and 4. Blue cells indicate the cases where spectral

correlation coefficient means are higher than polarization. Cells in orange color have to be taken with care.

Reflection
Material

Scene Scene  Object Object Diffuse Diffuse Specular Specular

S P S P S P S P
Total 0.91 0.81 0.86 0.89 0.92 1.00 0.80 0.81
Total \ {Active} 0.92 0.97 0.86 0.95 0.92 1.00 0.80 0.91
Metallic - . 0.99 0.96 0.98 0.99 0.98 0.92
Natural - - 0.86 0.96 0.91 1.00 0.84 0.97
Active - - 0.90 0.22 0.97 0.99 0.88 0.05
Plastic - - 0.89 0.98 0.88 1.00 0.88 0.93
Glass - - 0.97 0.98 0.89 0.98 0.98 0.98
Others - - 0.85 0.92 0.95 1.00 0.75 0.83

Table 3. Correlation results for the Total Object scenario, over all of the 12 channels grouped by
spectral channel. The polarization groups of correlation coefficients (surrounded) are passed to the
MWU computation. Channel groups are distinguished by different colors.

RO R45 R90 R135 GO G45 G990 G135 BO B45 B90 B135

RO 1.00 (090 0.8 09 09 082 078 087 077 071 067 0.75
R45 = 0.90 ‘P.BG\O.97 088 076 088 08 074 061 074 071 0.59
RO 085 097 To8&_089 071 08 08 075 056 070 073 059
R135 097 088 089 100 087 08 081 089 074 068 0.69 0.76
GO 09 076 071 087 1.00 (085 033 0.9 094 084 080 091
G45 082 088 085 080 0.88 TOS\O.% 085 078 092 089 0.76
G9% 078 086 088 081 0.83 096 TI®&_087 073 088 092 077
G135 087 074 075 08 09 08 08 100 091 081 083 0.94

B0 077 061 056 074 094 078 073 091 1.00 (086 0.1 09

B4 071 074 070 068 084 092 088 081 0.86 ‘P.OG\O.% 0.83
B9O 067 071 073 069 080 089 092 083 081 096 I'®&_ 0.85
B135 075 059 059 076 091 076 077 094 097 083 085 1.00
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Table 4. Correlation results for Total Object scenario, over all of the 12 channels grouped by polariza-
tion channel. Polarization channels are grouped with different grayscale values. The spectral groups
of correlation coefficients (surrounded) are passed to the Mann-Whitney U (MWU) computation.
Channel groups are distinguished by different colors.

RO GO B0 R45 G45 B45 R90 G99 B9 R135 G135 B135
RO 100 (0% 074 09 08 071 08 078 067 097 087 075
GO 090 T8 _094 076 088 084 071 083 080 087 09 091
B0 077 094 100 061 078 08 056 073 081 074 091 097
R45 090 076 0.61 | 1.00
G45 082 088 078 | 0.88
B45 071 084 086 074 092 1.00
R9O 085 071 0.56
G9% 078 083 0.73
B90 067 080 0.81
R135 = 097 087 0.74
G135 087 096 091
B135 075 091 097

RO R45 R90R135 GO G45 G90G135 BO B45 B90B135 RO R45 R90R135 GO G45 G90G135 BO B45 B90B135
T T T T T T T 1

0.85 R135

G135

B135

(@) (b)

Figure 5. (a) Total Scene and (b) Total \ {Active} Scene correlation coefficients tables shown in
false colors.

From the analysis of the coefficients by pair of spectral bands (see Total Object results
in Table 4), a general behavior is observed: the further apart the spectral bands are, the less
the correlation is for the same polarization band. In the same way, by looking at Table 3, the
further apart the polarization bands are in term of angle (modulo 77), the less the correlation
is for a same spectral band. This is expected, since intensity variation follows the Malus
law: a modulo 7t sinusoidal function with respect to the polarization angle. Consequently,
the polarization channels are intricately inter-dependent: in the same spectral band, a 0°
pixel value will always be more correlated with a 45° than with a 90°.

The polarization channels are highly correlated in the Diffuse area. This is expected,
since the diffuse pixels have been segmented based on the degree of polarization. The
spectral correlation is always higher in diffuse reflection than in specular reflection, except
for the Glass material.

The Specular scenario exhibits the lowest correlation values for both polarization and
spectral domains. Even in the highlights, which are the areas where polarization is believed
to be present, the polarization bands are still highly correlated when compared to the
spectral. In fact, in all cases except the Active and the Metallic materials, the inter-channel
correlations are stronger in polarization, in both diffuse or specular zones.

4.2. Spatial Correlation

We assess the spatial correlation within a given channel p, while using the PCC
between the value p!, of each pixel i and that of its right next-neighbor pi;"2. We chose i + 2
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instead of i + 1 to mitigate the blur that was introduced by the filter that we applied in
Section 3.1. The coefficient is defined, as follows:

Z((Pu ) (0572 — 1)

\/Z — Hu) \/Z(p”r2 — tu)?

Because the amount of edges is low in most natural scenes, and that most of the
information is contained in the low frequencies, the spatial correlation among the bands
is very high. This is shown in the results presented in Figure 6a. The coefficients have no
specific behavior regarding the channel observed. In order to highlight a different behavior,
we selected a specific region of interest in one of the Active scene, where a large degree of
linear polarization is present. Figure 6b shows the area selected, and Figure 6¢ presents the
spatial correlation results on the selected area. In this specific example, we observe that
polarization bands correlation are ordered similarly for each of the spectral bands. Some
polarization bands have a spatial gradient of intensities significantly different than others,
e.g., the 0° band is the less correlated to the others, whereas the 45° is the polarization band
with the strongest correlation, independent of the spectral band.

RO R45 R90 R135 GO G45 G90 G135 BO B45 BIO B135 RO R45 R90R135 GO G45 G0 G135 BO B45 B9O B135

PCClo,] = ®3)

o

°

8
o
°
8

°

°

8
o
©
8

o

®

£
o
°
£

o
8
°
Y
8

(a) Spatial correlation coeffi- (b) Degree of polarization (c¢) Spatial correlation coeffi-
cients (Total) image and ROI cients (ROI)

(d) Inter-channel correlation co-
efficients (ROI)

Figure 6. (a) Spatial correlation coefficients computed for all of the observations. (c) Spatial correlation
coefficient computed from an active polarization scene (“cellphonecases” scene in Figure 2h), where
the Region Of Interest (ROI) selected is surrounded in red in (b). (d) Inter-channel correlation
computed for the ROL

4.3. Mann—Whitney U (MWU)

We performed a Mann-Whitney U (MWU) test [42] in order to investigate which of
the spectral or polarization interchannel correlations is prominent when compared to the
other. We did it for all scenarios, using the ranksum function in Matlab. The result of the
test permits to verify if the medians distributions are within the same range or not. In our
case, the null hypothesis (h = 0) is when the polarization and spectral correlations are
equivalent. The p-value is giving us the probability of & being true.
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Tables 3 and 4 show the channels that form the two groups of data (one with polariza-
tion channels and one with spectral channels) considered in our test, circled by a dark line.
We do it for all 26 tables.

Table 5 shows the results for the MWU test. In order to make the results more readable
in this table, we define £, a binary variable that is equal to one if the two populations of ob-
servations are significantly different, zero otherwise. Most of the scenarios have significant
differences in their variable distributions (h = 1), which invalidates the hypothesis that
correlations are uniformly distributed.

Table 5. Mann-Whitney U tests p-values and h for the 26 scenarios. i = 1 means the rejection of the null hypothesis, whereas & = 0
means a failure to reject the null hypothesis at 5% significance level. P (Polarization) or S (Spectral) indicates which modality has the
maximum mean correlation coefficient (from Table 2). Cells in orange color have to be taken with care.

Reflection Scene Object Diffuse Specular
Material p-Value h Max p-Value h Max p-Value h Max p-Value h Max

Total 0.133 0 S 0.385 0 P 0.000 1 P 0.751 0 P
Total \ {Active} 0.003 1 p 0.001 1 p 0.000 1 p 0.007 1 P
Metallic - - - 0.000 1 S 0.000 1 P 0.000 1 S
Natural - - - 0.000 1 p 0.000 1 p 0.000 1 P
Active - - - 0.000 1 S 0.029 1 P 0.000 1 S
Plastic - - - 0.000 1 p 0.000 1 p 0.001 1 P
Glass - - - 0.006 1 p 0.000 1 P 0.341 0 P
Other - - - 0.122 0 P 0.000 1 P 0.341 0 P

From this table, we can revise our observations for Section 4.1. We can then strongly
conclude that, if we exclude the Active and Metallic diffuse/specular scenarios, polar-
ization channels exhibit more correlation than spectral channels. In the case of diffuse
reflection, it is always the polarization that is more correlated. This appears to be counter-
intuitive when we consider that diffuse reflection tends to depolarize the light. Thus, the
polarization angles are randomly oriented, which should have, as result, an extremely low
correlation coefficient. However, we are only looking at one particular angle  through an
integration process over time, which is compensating for this effect. In the case of metallic
objects, the spectral correlation dominates. The cases where the interchannel correlation
between polarization or spectral channels is not significantly different (k = 0) are on the
cluster Other and on the specular reflection on Glass. For the Glass, it is difficult to say that
we only have specular component, since an object behind may participate in the radiant
information. For the Other materials, the difference of characteristics of the objects are so
diverse that it is barely useful for performing an analysis. For the Active scenes, there is
no specific correlation in polarization (Table 2), so the spectral correlation dominates. The
Diffuse pixels are very little due to the polarized light and the way that we identified the
diffused pixels.

4.4. Impact on the Development of Spectropolarization Computational Imaging Solutions

This analysis gives us precious indications when it comes to the design or co-design
of sensors and pre-processing algorithms, such as demosaicing.

In the co-design of sensors and computational image solution, we want to provide
standardized representation of the scene into the image data. Standardized data for color
would be encoded in calibrated RGB spaces, spectral data would be encoded as spectral
reflectance or relative radiance, and polarization data would be encoded into Stokes vectors.
The images should be at a full spatial resolution. In the case of CPFA, one of the limitations
is the spatial resolution, and this is addressed by demosaicing. The co-design of the sensor
(band distribution) and algorithm will benefit from our analysis. In particular, we have
shown that the polarization bands are more correlated than the spectral bands. Thus, the
polarization channels should drive the demosaicing process. In other words, better image
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reconstruction that results from demosaicing can be achieved in the polarization domain,
rather than in the spectral domain for dielectric materials. Further investigations must
be conducted on metallic surfaces, because our specular/diffuse segmentation of those
materials was not very accurate. Similarly, investigations that are related to active light
scenes need to be pushed further, because, in this last case, it might be more interesting to
demosaic from the spectral information.

5. Conclusions

In this article, we investigated and analyzed the statistics of joint spectral and po-
larization images. We show that the inter-channel polarization information is generally
more correlated than for the spectral channels for dielectric materials. Further investiga-
tions are required for the case of metallic objects. The case of active lighting is a different
specific scenario; it would be interesting to investigate how emerging illumination tech-
nologies behave as active lighting. This provides basis for the future development of CPFA
imaging solutions.
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