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Abstract: As a detection tool to identify metal or alloy, metallographic quantitative analysis has re-
ceived increasing attention for its ability to evaluate quality control and reveal mechanical properties.
The detection procedure is mainly operated manually to locate and characterize the constitution in
metallographic images. The automatic detection is still a challenge even with the emergence of several
excellent models. Benefiting from the development of deep learning, with regard to two different
metallurgical structural steel image datasets, we propose two attention-aware deep neural networks,
Modified Attention U-Net (MAUNet) and Self-adaptive Attention-aware Soft Anchor-Point Detector
(SASAPD), to identify structures and evaluate their performance. Specifically, in the case of analyzing
single-phase metallographic image, MAUNet investigates the difference between low-frequency
and high-frequency and prevents duplication of low-resolution information in skip connection used
in an U-Net like structure, and incorporates spatial-channel attention module with the decoder to
enhance interpretability of features. In the case of analyzing multi-phase metallographic image,
SASAPD explores and ranks the importance of anchor points, forming soft-weighted samples in
subsequent loss design, and self-adaptively evaluates the contributions of attention-aware pyramid
features to assist in detecting elements in different sizes. Extensive experiments on the above two
datasets demonstrate the superiority and effectiveness of our two deep neural networks compared to
state-of-the-art models on different metrics.

Keywords: metallographic analysis; image segmentation; object recognition; attention mechanism

1. Introduction

As a primary goal of metal science, physical or chemical properties are critical to
inspect the quality of casting metal production. Among all the techniques of describing the
properties, metallography has been widely used to reveal mesoscopic structural elements
via the examination of metallurgical microscopes. Therefore, the quantitative analysis
of metallographic images has achieved increasing attention to study the correlation be-
tween microstructure and metal properties. Generally, a steel microstructure is always
a combination of different phases that refer to a physically homogeneous state of matter.
Within an alloy, two and more different phases can be present, leading to irregular and
complex substructures in metallographic image. In terms of single-phase metal image,
accurate and effective segmentation results directly measure the quality and properties of
given metal. In terms of the multi-phase metal image, only a fraction of the microstructure
is taken into account to describe this correlation, so object detection is suitable to detect
desirable constituents.

To date, in order to explore the correlation among metallographic images with single-
phase or multi-phase, current metallography analysis still heavily relies on the advanced
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experts who evaluate a given picture of structure manually. Since the success of computer
vision and image processing, we have witnessed their applications in face recognition,
automatic driving, quantitative analysis of metal materials, and so on. In the past decades,
enormous methods of image segmentation and object recognition have been developed
to accomplish the above tasks efficiency. For image segmentation, the models roughly
range from early rule-based and learning-based methods to recent deep-learning methods.
The rule-based methods could offer accurate segmentation results, but often involve the
prior rules, which greatly limit the generality in other applications [1,2]. The learning-based
methods work based on handcrafted features, but they always suffer from the sensitively
to constructed features for metallographic images with complex features [3–5]. Owing to
the powerful ability of automatically learning the discriminable features, the recent surge
of interest in deep learning methods has appeared in material science [6–9]. However,
the major drawback of these methods is the poor ability of identifying microstructure
instances. For object recognition, the current state-of-the-art object detectors are dominated
by CNN-based algorithms. Both two-stage and one-stage detectors adopt region-based
approaches to classify and local sampled regions [10–16]. Furthermore, to achieve better
performance, most of them resort to Feature Pyramid Network (FPN) or multi-scale anchor
boxers to explicitly handle objects with various size and shape. As an anchor box is
associated with a certain level of feature map guided by handcrafted rules, these models
are purely based on ad-hoc heuristics and unable to select the optimal feature level for each
instance. To address the limitation, several anchor-free methods have been developed to
assign each instance to the best feature level [17,18]. However, in metallographic practice,
the data distribution of different components is biased and imbalanced, and the samples
with similar appearance and shapes are difficult to be recognized. Namely, the issues of
hard samples and imbalanced samples hinder the development of anchor-free detectors.
To alleviate the problems, DeepMask [19], and RPN [12] rapidly narrow the number of
candidates and object while filtering out background samples. Focal loss acts as a more
effective loss for dealing with class imbalance and hard samples [17]. Nevertheless, they
still assign equal or inaccurate weights to the training samples in the network design.

To address the above mentioned problems, we propose Modified Attention U-Net
(MAUNet) and Self-adaptive Attention Soft Anchor-Point Detector(SASAPD) for analyz-
ing metallographic images with single-phase and multi-phase, respectively. MAUNet,
a reliable segmentation model based on U-Net and attention mechanism, puts empha-
sis on high-frequency loss during the connection used in an encoder-decoder network
and introduces dual-path attention to improve the interpretability of features map at any
resolution. SASAPD, a self-adaptive anchor-point detector based on SAPD, reranks and
reweights the samples around the instance boxes to explicitly focus on hard samples,
and assign optimal feature levels to given sample based on the loss distribution. For the
pyramid features, light-weight attention modules are plugged in to boost detection ac-
curacy. To verify the effectiveness of our proposed models, we conduct experiments on
two metallographic datasets with single-phase and multi-phase, respectively. The experi-
mental results demonstrate that our methods produce convincing results compared with
state-of-the-art methods. Additionally, we make a series of ablation studies to verify the
effectiveness of core components in our models.

In summary, our overall contributions are three-fold: (1) We propose MAUNet
based on U-Net to segment single-phase metallographic images. The mentioned-above
improvements allow our model to focus on the lost high-frequency information when
transferring high-resolution information across the network, and enhance feature inter-
pretability in decoders with the aid of spatial-channel attentions. (2) We propose SASAPD
based on SAPD to detect constituents in multi-phase metallographic images. It improves
soft-weighting scheme by reranking anchor points with powerful feature representation,
and self-adaptively selects the reasonable features for each instance from attention-aware
pyramid levels. (3) We conduct extensive experiments on metallographic images and
compare with other state-of-the-art to figure out the superiority of our methods.
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The rest of this paper is organized as follows. Section 2 displays the discussion of
related work. In Section 3, the proposed method is described, and the experimental settings
and evaluation metrics are described in Section 4. Section 5 presents the analysis and
discussion of experimental results. Finally, Section 6 concludes the paper and suggests
topics for future research.

2. Related Work

The topics of metallographic analysis are similar to those of general image segmenta-
tion and object detection. In this section, we will illustrate the related works of single-phase
and multi-phase metallographic images using recent deep learning models.

With respect to the analysis of single-phase metallographic images, several researchers
resort to CNN-based image segmentation methods and achieve significant performance [7].
3D convolutional neural network [7] is proposed to extract microstructural properties.
The 3DCNN is yet too heavy to apply in real-time application. Fully Convolution Networks
(FCNs) have shown a lot of promise towards semantic segmentation [20]. The pioneers are
DeepLab and its subsequent versions [21] which utilize atrous spatial pooling and multi-
scale atrous pyramid features to enhance contextual information. However, these models
fail to work well on the devices with limited computation resources, and require mas-
sive volumes of training data. Another line of works is encoder-decoder network, which
combines deep, semantic, coarse-grained feature maps from the decoder with shallow,
low-level, fine-grained feature map from the encoder. As a representative method, U-Net
comprises an encoder and an decoder network which are connected by skip connection [22].
Owing to the low requirement of labeled training data, U-Net and U-Net like models have
shown potential in different image segmentation application [23,24]. However, there are
two obvious drawbacks when they are applied to metallographic image. One drawback is
caused by the skip connection between low-level features and high-level features without
enough high-frequency information, the other is the existence of irrelevant and redundant
features, which prevents the interpretability of representative features in image segmenta-
tion. To address those drawbacks, we propose MAUNet with the assistance of extraction
of high-frequency and dual-path attention module.

With regard to the analysis of multi-phase metallographic images, only a few works
have been found to transfer classical object detector to recognize different constitutions [25].
Chen etc. use Mask R-CNN as the basic network to complete the learning and recognition
of the latent feature of an aluminum alloy microstructure, but it suffers from the complex
generation procedure of candidate proposals. In general, there are two main streams
of object detection in the field of computer vision and image processing. As prevailing
object detectors, anchor-based methods, which evolve from early proposal-based detectors,
regard pre-defined proposals as priors for bounding box classification. They mainly include
two branches for localization and classification: one-stage detector and two-stage detector.
Recently, although a large number of anchor-based detectors have been developed [14,26].
The performance of anchor-based methods heavily depend on the pre-defined proposals.
In most cases, the proposals are reluctant while ignoring the critical objects. Very recently,
more and more attentions have been paid to anchor-free detectors. Instead of anchor
boxes, the detectors based on keypoints locate several keypoints of the bounding boxes [27,
28]. However, they have limitations such as relying on handcrafted clustering or post-
processing steps to compose whole obvious objects from the detected points. Unlike
keypoint-based detectors, anchor-point based detectors view a bounding box as an anchor
point and its location. FCOS is an anchor-free detector to solve object detection in a per-
pixel prediction fashion [29]. However, it treats all the sample equally, which cannot
distinguish the positive and negative samples well. FSAF applies online feature selection to
train anchor-free branches in the feature pyramid [18], but it only selects the optimal feature
level for each instance. SAPD assigns optimal feature levels to given sample based on the
loss distribution in object detection [30]. Whereas, it fail to obtain discriminable features
due to the poor sample weighting strategy. AutoAssign [31] automatically determines
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positive/negative samples by generating positive and negative weight maps to modify
each location’s prediction dynamically. Faced with the objects with similar appearances
and shapes, AutoAssign fails to output satisfying results. Table 1 provides a summary of
the related methods included in this study.

Table 1. A summary of the related methods.

Ref. Proposed Finding Limitation

[7] 3D CNN proposes 3DCNN to extract microstructural. The computation cost is too much.

[20] FCN adapts contemporary classification networks
(AlexNet,and GoogLeNet) into FCNs.

needs extra fine-tuning layer
for postprocessing.

[21] DeepLab utilizes atrous spatial pooling and multi-scale atrous
pyramid features with encoder-decoder. The computation cost is too much.

[22] U-Net use a contracting path to capture context and a
symmetric path that enables precise localization.

High-frequency information in skip connection
is lost.

[23] U-Net Based
GCN

adapts a per-pixel feedback to the generator and a
per-pixel consistency regularization technique.

High-frequency information in skip connection
is lost.

[24] BCDU-Net U-Net included BConvLSTM and inserts a densely
connected convolutional block. dense layer brings too much computation cost.

[25] Mask-RCNN uses Mask RNN for instance segmentation with
different loss functions.

complex generation procedure of
candidate generation.

[14] Yolov4 applies some tricks on Yolov3. The heavily dependent on pre-defined
proposals; Poor performance for tiny objects.

[26] TridentNet constructs a parallel multi-branch architecture where
each branch shares the same parameters. treats all the scales equally.

[27] Cornernet reformulates the detection problem as locating several
key points of the bounding boxes. The corner points still models a bounding box.

[28] ExtremeNet locate the extreme points of objects with supervision
from ground-truth mask annotation.

relies on handcrafted clustering to compose
whole objects.

[29] FCOS regresses the four sides from the center points to form
the final bounding box outputs.

Better performance comes at a high
computation cost.

[18] FSAF applies online feature selection to train anchor-free
branches in the feature pyramid.

only selects the optimal feature level for
each instance.

[30] SAPD assigns optimal feature levels to given sample based
on the loss distribution in object detection.

fails to obtain discriminable features with poor
sample weighting.

[31] AutoAssign determines positive/negative samples by generating
proper weights to modify each location’s prediction.

fails to output satisfying results when the
objects are with similar appearances
and shapes.

3. Methodology

In this section, we instantiate our two proposed models for image segmentation and
object detection for metallographic images, respectively.

3.1. Network Structure of MAUNet

Our proposed network is inspired by U-Net that captures feature information from
encoders to decoders of similar resolutions. The architecture of our proposed MAUNet is
depicted in Figure 1. Compared with original U-Net network [32,33], we mainly contribute
three points to boost the segmentation performance on metallographic images. (1) For
each encoder, high-frequency is extracted and transferred with skip connection to prevent
smoothing the object boundary information in segmentation result. (2) For each decoder, a
dual-path attention block is proposed to yield strong results with inherent interpretability,
and give importance to a certain region out of the entire image. (3) The overlap tile strategy
is ignored to reduce the effects of overlapped results, and Batch Normalization (BN) is
added to speed up network training.
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Figure 1. The architecture of Modified Attention U-Net (MAUNet). The proposed model has two main improvements, one
is for the encoder part and the other is for the decoder.

In our work, we keep the basic architecture of U-Net, and make improvements on
the encoders and decoders. In convolutional U-Net, skip connections between encoders
and decoders are utilized to pass high-resolution information throughout the network.
In this way, only the low-frequency information filtered by pooling operations passes on
to the next encoder while the high-frequency information is lost. As reported in [34,35],
the low-frequency duplication in U-Net will lead to the missing high-frequency informa-
tion. To avoid it, skip connection is employed to ensure that U-Net preserves the full
context of the input images. However, the low-frequency information goes along with
this skip connection as well, which will always smooth object boundary. Therefore, we
design a frequency-aware encoder (FAE) to transfer high-frequency information with con-
volutional skip connection. Let Ol−1 and Dl−1 denote the outputs before and after the last
downsampling layer of stage (l − 1). We first adopt two dilated convolutions to extract
features in different receptive fields. The two convolutions fd1 and fd2 are kernel = 1 with
dilation rate= 3 and kernel = 1 with dilation rate= 3, respectively. Then, we consider a
high-frequency ratio map rl−1 between these two groups.

rl−1 = sigmoid( fd1(Ol−1)− fd2(UP(Dl−1))) (1)

where UP(·) is upsampling layer and sigmoid is sigmoid function . Lastly, we multiply
Ol−1 by rl−1 to obtain high-frequency map Hl−1 = Ol−1 · rl−1. In skip connection, we
append a block of convolution layers to provide enough high-frequency content for higher
level feature maps.

In convolutional U-net, the decoder fuses feature maps from FAE with skip connection
along with the feature maps from lower-resolution decoder. In order to increase feature
representation power, we propose dual-path attention models by blending cross-channel
and spatial information together. Now, as illustrated in Figure 2, we will detail the two
attention models as follows. (1) Spatial attention path. Inspired by [36], we use max-pooling
and average-pooling along the channel axis to extract spatial attention. For the branch
of FAE with skip connection Bsk with C channels, max-pooling operation and 1× 1× C

2
convolution are applied to generate the feature descriptor denoted by Fs

max. For the branch
of lower resolution decoder Bpr with C channels, average-pooling operation and 1× 1× C

2
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are applied to compute the average statistics of all channels denoted by Fs
avg. The above

Fs
max and Fs

avg are concatenated and forwarded to a 1× 1 convolution layer followed by a
sigmoid function, generating spatial attention map Fs. Besides, as described in Equation (2),
the concatenation of Con1_ 1

C (Bsk) and Con1_ 1
C (Bpr) is scaled by Fs to obtain spatial-aware

feature map Fs′ .

Fs
max = max-p(Con1_

C
2
(Bsk))

Fs
avg = avg-p(Con1_

C
2
(Bpr))

Fs = sigmoid(Con1(concat(Fs
max, Fs

avg)))

Fs′ = Concat(Con1_
1
C
(Bsk), con1_

1
C
(Bpr))⊗ Fs

(2)

where Concat denotes concatenation operation, max-p(·) and avg-p(·) are max-pooling
and average-pooling, respectively. Con1_ C

2 is the convolution with 1× 1× C
2 and ⊗ is

element-wise multiplication. (2) Channel attention path. As suggested in [36], we replace
global average-pooling with max-pooling in Squeeze-and-Excitation to infer fine channel
attention Fc. With the output of spatial-ware feature map Fs′ , the channel and spatial
attention map Fs

c can be written as Fs
c = Fs′ ⊗ Fc.

Skip Connection skB

Lower Resolution
Decoder prB 

Max pooling

Average pooling

SigmoidCon1

CCon1
2

_

Squeeze  and Excitation
Module

CCon1
2

_

Spatial Attention Path

Channel Attention Path

Figure 2. The flowchart of dual-path attention models.

Apart from the above-mentioned improvements, U-net is first proposed to handle
segmentation problem in medical image processing. In our case, the resolution of metallo-
graphic image is less than the one of medical image. Hence, we don’t decide to take the
overlap title strategy into consideration. Besides, BN is added to speed up the training
procedure in our model. The learning process of MANU is illustrated in Algorithm 1.
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Algorithm 1 The learning process of MAUNet

Input: The training images Itrain, max-epochs E = 12, the number of Itrain Ntrain, The testing image Itest and the
groundtruth labels G

Output: The output prediction G
′
, and its performance results G

′
Dice, G

′
IoU , G

′
RoC and G

′
time

All the images are preprocessed according to the steps in Section 4.2.

Training Stage:

Initialize the network weights, learning rate, batch size, and other parameters;

for i = 1; i ≤ E; i ++ do

Get the data batch from Itrain

for j = 1; j ≤ Ntrain; j ++ do

Compute IoU loss function LIoU ;

Compute Dice loss LDice;

Compute Focal loss LFocal ;

Train MAUNet by optimizing loss LMAUNet and update the weights and parameters;

end for

end for

Testing Stage:

Feed Itest into the well-trained MAUNet and then output the prediction segmentation G
′
;

Compute the performance results G
′
Dice (Equation (14)), G

′
IoU (Equation (15)), G

′
RoC (Equation (16)) and running time

G
′
time

return G
′
, G

′
Dice, G

′
IoU , G

′
RoC and G

′
time.

3.2. Hybrid Loss for MAUNet

Aside from network architecture, loss function also plays a key part in network design.
It often measures the similarity between the ground-truth and predicted result. In this
section, we present a hybrid loss as follows:

LMAUNet = LIoU + 0.01LDice + 0.8LFocal (3)

where LIoU is the IoU loss optimized for segmentation mismatch error [37]. LDice measures
the overlap and similarity between prediction and ground-truth labels [38], and LFocal
is introduced to solve the problem of serious imbalance between positive and negative
samples [17]. Intuitively, the model learns to predict individual pixel values correctly
through LFocal and LIoU , and also learns to consider overlap through LDice. Here, the
settings of those three weights are referred to [39].
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3.3. Network Structure and Loss of SASAPD

In this section, we propose a Self-adaptive Attention-aware Soft Anchor-Point Detector
(SASAPD) to detect the constitutions in multi-phase metallographic images. In Figure
3, we present the architecture of SASAPD which almost has the same structure as SAPD
except the part of the pyramid levels. Similar to SAPD, it aims at solving the tasks of
classification and location simultaneously. The classification subset is designed to obtain
the probability of each anchor point of q(q = 5) object classes, and the location subnet
predicts 4-dimensional location of each anchor point when it is positive. Inspired by SAPD
and attention mechanism, our proposed model mainly makes the following improvements:
(1) A new Sampling Reweighting Strategy (SRS) is designed to prevent attention bias, which
is an effective way of perceiving the constitution in smaller size. (2) A Soft Self-adaptive
Selection (3S) strategy is proposed to get rid of the reliance on pre-trained one-hot vector
indicating the pyramid level with minimal loss. (3) Attention blocks are integrated into
pyramid-level features to focus on the locations related for target constitution. The details
of the above improvements are listed as follows. During the process of multi-phase
metallographic structures, the performance of traditional object detector is degraded due
to dirty spots and similar appearance, and it can be ascribed to the attention bias problem.

ALFP

… …

ALFP

detection
head 

detection
head 

detection
head 

Classification
subnet

location
subnet

𝑾
𝑺𝒕

x 𝑯𝑺𝒕
𝑾
𝑺𝒕

x 𝑯
𝑺𝒕

𝑾
𝑺𝒕

x 𝑯
𝑺𝒕

𝑾
𝑺𝒕

x 𝑯
𝑺𝒕

Focal loss

loU loss

“pearlite” cls targets

location

256´

256´

q´

4´

…

4´

4´

backbone
…

d

Figure 3. The network architecture of self-adaptively attention-aware soft anchor-point detector.

In Figure 4, we visualize the attention bias of pearlite (P) in a multi-phase metallo-
graphic image. As can be seen, the pearlite (P) with larger size gets higher response in the
heatmap, and it tends to expand towards the other underrepresented areas. In practice,
attention bias will cause attention to the obvious areas while ignores the others with insuf-
ficient features. To tackle this difficulty, SAPD assigns weight for each point depending on
the distance between its location and the corresponding instance center. However, given
two anchor points with the same distance but with different locations, SAPD will assign
the same weight in spite that they make different contributions to final loss. Now, let us
revisit the influence of the true positives and true negatives. We define a ground-truth
instance box B = (c, x, y, w, h) and its central shrunk box Bv = (c, x, y, εw, εh), where c
is class id, (x, y) is the box center, and w, h, ε are the box width, height and the shrunk
factor, respectively. Given an anchor point plij with predicted class clij inside instance box
B(k)l appeared in pyramid level l, it will be marked as true positive (TP) if clij == ĉlij ,
otherwise it is true negative (TN) when clij 6= ĉlij . In our case, TN is much less important
than TP since TN is easily discarded after Non-Maximum Suppression(NMS). Among all
the TP anchor points, the one with the highest IoU has the greatest impact as it directly
affects the performance precision and recall. Moreover, for the negative anchor points, they
only involve the classification procedure, which can be balanced with the following focal
loss. To overcome the above shortcoming, we propose SRS to rerank and reweight the true
samples. For each shrunk instance Bv(k)l , we descend the anchor points plij according to
the following score.

score = |sign(clij − ĉlij)|(1− α)IoU(dlij , d̂lij) (4)
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where sign(·) denotes symbol function and α is the modulating factor and set to 0.1.
Here, dlij and d̂lij indicate the ground-truth location and predicted location, respectively.
With SRS strategy, we assign lower scores to TN examples which are less important
than TP ones. For instance, for box Bv(k), its size is n(k)v = area(Bv(k)), with the above
resultant scores, we compute the collection f (plij) that maps anchor point plij to the ranking
indexes 1, 2, · · · , nmax where nmax denotes the maximum value of n(k)v over all the instance
boxes. Also, given instance set UB = Bv(1)l ∪ Bv(2)l · · · ∪ Bv(k)l · · · Bv(N)l in an image,
the weight of plij in UB is formulated as follows:

wlij =

{
1−

f (plij
)

nmax
plij ∈ UB

1 otherwise
(5)

(a) An example of multi-phase metallographic image (b) The heatmap of pearlite (P) in an metallographic image

Figure 4. The visualization of the attention bias of pearlite (P) in a multi-phase metallograph.

The anchor-free idea allows us to learn informative representation from an arbitrary
pyramid-level. Unlike selecting feature depending on box size like FPN [40], we borrow
the idea from FASF [18] and Foveabox [41]. As mentioned in SPAD, the contributions of
multiple feature levels rely on the pattern of feature response. Therefore, we propose 3S
strategy to reweight the pyramid levels of each instance. A weight is assigned to each
pyramid level according to the feature response, which can be viewed as assigning a
proportion of the instance to a level. As FoveaBox [41] suggests, assigning instances to
multiple but not all pyramid levels can boost the performance. So, the 3S strategy only
assigns instance to topk(k = 3) pyramid levels, and determines the weights of each pyramid
level by evaluating the loss defined in Equation (7). For anchor point plij , its ground-truth

and predicted pair (class id, location) are written as vlij = (clij , dlij) and v̂lij = (ĉlij , d̂lij),
respectively. For instance, for Bv(k)l , the per anchor point loss Llij is written as

Llij =

{
LFL(clij , ĉlij) + LIoU(dlij , d̂lij) plij ∈ Bv(k)l

LFL(ĉlij , clij) otherwise
(6)

The loss for pyramid level l is the sum of all anchor point losses. For all the pyramid
levels, we calculate loss wlijLlij for each level, and define the weights for instance box
Bv(k)l that acts as a good reflection of distinct contributions.

Ll =
1

area(Bv(k)l)
∑
i,j
Llij (7)
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wl = (1− σ)
Ll

∑Ll
+ σ (8)

where σ represents the minimum sample weight and is set to 0. With the pyramid level
weight wl , Equations (5) and (7) are augmented into Equations (9) and (10), respectively.

wlij =

{
wl(1−

f (plij
)

nmax
) plij ∈ UB

1 otherwise
(9)

L =
1

∑plij
∈p+ wlij

∑ wlijLlij (10)

where p+ is the set of positive anchor points.
A good attention module can help the detector to perceive indistinguishable con-

stitution, such as steel element in multiple-phase metallographic images. To implement
this, we replace the above pyramid level with an attention-aware lightweight feature
pyramid (ALFP). In Figure 5, we consider the context between adjacent feature maps and
then use an attention map to increase the receptive ability of pyramid features. In detail,
a pyramid level is denoted as Pl where l is the level number and it has 1

sl
resolution of

the input image. sl is the feature stride and sl = 2l . At first, two pyramid levels Pl and
Pl−1 are all passed through 1× 1 convolutions to align along the channel dimension. Then,
Con1(Pl) is downsampled ×2 and then concatenated by Con1(Pl−1) followed by ReLu
activation function.

Cl−1 = ReLu(Con1(Pl) ↓ ⊕Con1(Pl−1)) (11)

where Con1 refers to 1× 1 convolution and ⊕ refers to addition operation. In order to
exploit the context information from adjacent levels, we flatten Cl−1 followed by sigmoid
function and then reshape it to the original size of Cl−1. The P

′
l−1 is obtained by element-

wise multiply reshape(sig( f lat(Cl−1))) with Pl−1. To sum up, the learning process of
SASAPD is placed in Algorithm 2.

P
′
l−1 = reshape(sig( f lat(Cl−1)))⊗ Pl−1 (12)

Con1↓

Con1

Add

Flatten

Multiply

Sigmoid ReshapeReLu

1P
'
l

P'llP

1Pl
Figure 5. The procedure of attention-aware lightweight feature pyramid (ALFP).



Sensors 2021, 21, 43 11 of 23

Algorithm 2 The learning process of SASAPD

Input: The training images Itrain, max-epochs E = 12, the number of Itrain Ntrain, The testing image Itest and the
groundtruth labels G

Output: The output prediction G
′
, and its performance results G

′
Dice, G

′
Recall , G

′
Precision and G

′
FPS

All the images are preprocessed according to the steps in Section 4.2.

Training Stage:

Initialize the network weights, learning rate, batch size, and other parameters;

for i = 1; t ≤ 6; i ++ do

for j = 1; j ≤ Ntrain; j ++ do

Get the data batch from Itrain

Compute loss function Ll (Equation (7))

Each instance is assigned to the pyramid level which has the minimal loss Ll

Train SASAPD by optimizing loss L (Equation (10)) where wl = 1 , and update the weights and parameters;

end for

end for

for i = 7; i ≤ E; i ++ do

for j = 1; j ≤ Ntrain; j ++ do

Get the data batch from Itrain

Compute loss function Ll (Equation (7))

Train SASAPD by optimizing loss L (Equation (10)), and update the weights and parameters;

end for

end for

Feed Itest into the well-trained SASAPD and then output the prediction segmentation G
′
;

Compute the performance results G
′
Dice (Equation (14)), G

′
Recall (Equation (17)), G

′
Precision (Equation (17)) and running

time G
′
FPS

return G
′
Dice, G

′
IoU , G

′
RoC and G

′
FPS.

4. Experiments
4.1. Dataset and Data Preparation

To facilitate the learning of the proposed models, we have prepared two new metallo-
graphic image datasets that cover single-phase and multi-phase types. All the images are
collected and built with Zeiss intelligent microscope Axio Imager A2m under the optical
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microscopy 100×magnification. In terms of Single-Phase Metallographic Image Dataset
(SPMID), we treat the microscopic images of cross section of hot rolled section steel 20G
as our observations. Based on carbon level (level A~E) and segregation degree (degree
1~5), we illustrate the distribution of all the samples in Table 2. Through the segmentation
results of SPMID, we can explore the roundness of MC-type carbide, which could be used
for quality evaluation of steel production. The dataset includes 7500 training images,
500 validating images and 1433 testing images. In view of Multi-Phase Metallographic
Image Dataset (MPMID), we build it on the longitudinal section of round steel 42CrMo.
As shown in Figure 6b, the sample contains a series of structures such as upper bainite
(up B), ferrite (F), pearlite (P) and segregation band (Segband). Apparently, the sizes of
those objects have large differences. For each sample, Segband is much larger than up
B. We annotate all the structures by drawing an bounding box around target object with
annotation tool-LabelMe. With the well-trained detector, we can easily evaluate steel qual-
ity by calculating the statistics of constitutions. To prevent overfitting, horizontal image
flipping is utilized in data augmentation. In total, we use 6500 metallographic images for
training, 500 images for validating and the remaining 1000 for testing. In Table 3, we count
the proportions of F, P, up B, Segband and background in dataset MPMID. As can be seen,
the distribution of data samples is biased and imbalanced. The F elements make up nearly
41.8% while the up B elements are in the minority.

Table 2. The data distribution of dataset Single-Phase Metallographic Image Dataset (SPMID) based
on carbon level and segregation degree.

Segregation

Carbon
A B C D E

1 345 432 341 456 298
2 353 451 357 419 370
3 367 386 394 373 451
4 346 401 410 402 269
5 296 447 391 323 355

Table 3. The data distribution of dataset Multi-Phase Metallographic Image Dataset (MPMID).
The first row is the number of pixels, and the second row is the proportion.

F P Segband Up B Background Total

632,880 369,920 68,560 25,200 417,520 1,514,080
41.80% 24.43% 4.53% 1.66% 27.58% -

(a) An example of SPMID (b) An example of MPMID

Segband

up B

PF

Figure 6. The examples of our built datasets. (a) SPMID (b) MPMID.
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4.2. Dataset Preprocessing

With the purpose of obtaining better result, it is necessary to carry out preprocessing
procedure for removing noise and enhancing quality. As illustrated in Figure 7, we apply a
series of operations to the above two datasets. (1) Grayscale transformation. To enhance
image quality and reduce computation cost, as a preliminary step, the metallography in
RGB is transformed to grayscale format. (2) Noise elimination. During acquiring metallo-
graphic samples, there are undesirable noise and digital artifacts caused by microscope
equipment and operating environment. With the presence of noise, the subsequent image
processing tasks, image segmentation or object detection, are adversely affected. As an
effective and efficient method, Robust PCA has been widely used for denoising in different
fields [42,43]. In fact, RPCA (Robust PCA) only works well when the noise is in accordance
with sparse and low-rank representation. If we directly apply it to our datasets, the subtle
microstructures will be removed. Thus, we propose Patch-constrained Robust Principal
Component Analysis (PRPCA) denoising algorithm which adds patch constraint to the
following objective function.

min
A,E

(‖A‖∗ + λ|E|1 + γ
n

∑
i=1
‖Ai‖2

2), s.t.A + E = D (13)

where ‖·‖∗ is nuclear norm. ‖·‖1 and ‖·‖2 are l1 norm and l2 norm, respectively. Parameters
λ and γ are weight coefficients. A and E stand for clean image and additional noise,
respectively. D ∈ Rm×n is noisy image. Ai denotes the ith patch of image A with size of
m
4 ×

n
4 where m and n are the width and height of image A, respectively. After denoised

by RPCA, nearly clean images can be obtained. (3) Image sharpening. Image sharpening
is a technique for enhancing fine details and edges. We use Butterworth high filter with
4th order and cut-off lower frequency to improve image quality. (4) Image binarization.
Image binarization is the process of taking a grayscale image and converting it to black-and-
white. In our step, Sauvola binarization is applied to dataset SPMID with ill illumination.
Note that the images in MPMID are not involved as the detection accuracy heavily depends
on gray change and object details. (5) Morphological processing. Morphological processing
pursues the goal of removing imperfections. After a combination of erosion, dilation
and simple set-theoretic operations, imperfections are eliminated and image quality is
improved. When finishing the above operations, as shown in Figure 7, we see that image
quality is obviously improved.

Grayscale
Transformation

Noise
Reduction

Image
Sharpening

Image
Binarization

Morphological
Processing

Figure 7. The pipeline of image preprocessing for morphological images
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4.3. Performance Evaluation Metrics
4.3.1. Evaluation Metrics for Segmentation

In this section, we first introduce two popular overlap-based metrics to evaluate the
performance quantitatively. Dice coefficient (Dice) is double the area of overlap divided
by the total number of pixels in both image samples. It ranges from 0 to 1 and could be
described as:

Dice =
2|G ∩ G

′ |
|G|+ |G′ |

(14)

where Dice with value 1 denotes perfect and complete overlap. G and G
′

are the ground-
truth and predicated segmentation, respectively. Herein, another common-used metric
named IoU is introduced and calculated as:

IoU =
|G ∩ G

′ |
|G|+ |G′ | − |G ∩ G′ |

(15)

As we all know in metallographic science, the roundness of carbide is closely relevant
to the steel quality. So, we introduce a specific metric for our dataset-Roundness of Carbides
(RoC). RoC is crucial to evaluate the steel quality. The diameter is easily acquired by Image-
Pro Plus 2D image analysis software. In most cases, the more rounded the carbide is, the
better is the steel. Mathematically, RoC is formulated as

RoC =
4πS
L2 (16)

where S and L are the size and diameter of a given carbide tissue.

4.3.2. Evaluation Metrics for Object Detection

It is an important issue to evaluate the performance of the proposed method on
multi-phase dataset. At present, there are three main performance evaluation metrics:
Precision, Recall and Dice. Dice has been present in Equation (14) where G and G

′
mean

the ground-truth and predicted bounding box, respectively. Precision and Recall are based
on the statistical True Positives (TP), False Positives (FP), True Negatives (TN) and False
Negatives (FN). Here, whether the predicted G

′
is correct or not is determined by the IoU

threshold. In our experiments, when IoU > 0.5, the result is considered correct Otherwise,
it is wrong. Therefore, the Precision and Recall of each class can be computed as:

Precision =
TPCij

TPCij + FPCij

Recall =
TPCij

TPCij + FNCij

(17)

where Cij represents class Ci of the jth image. In actual scene, the grain size plays a critical
role in estimating the steel quality. For simplicity, we can use metric Recall as the measure
of grain size.

4.4. Learning Parameters and Training Details

Our experiments are implemented in Pytorch and performed on a NVIDIAr Tesla
P100 GPU by optimizing the loss mentioned in Sections 3.2 and 3.3. All the models are
trained by the Adam optimizer with β1 = 0.9 and β2 = 0.999 along with weight decay
of 1× 10−4. The initial learning rate of 7× 10−4 exponentially decayed with parameter
0.99. At the step of image preprocessing, λ and γ are set to 1√

max(m,n)
and 1

ceil(
√

max(m,n)/t)
,

respectively where ceil is the ceiling fnctuion. In terms of MAUNet, the input images are
resized to 512× 512 to reduce computation cost. The stage of Figure 1 is set to 5, and it is
trained for 12 epochs with a batch size of 4. The base hyperparameters of the networks is
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consistent with original U-Net. In terms of SASAPD, the input size is 224× 224 which is
compatible with pre-trained ResNeXt-101 network [44]. The number of pyramid level is set
to 5. The classification layers in detection head are initialized with bias −log((1− π)/π)
where π = 0.01 and a Gaussian weight filled with σ = 0.01. The location layers in the
detection head are initialized with bias 0.1 and a Gaussian weight filled with σ = 0.01. The
shrunk factor ε is set to 0.2. In order to stabilize the training model, at the first 6 epochs, each
instance is assigned to the pyramid level which has the minimal loss. For the next 6 epochs,
3S strategy is adopted to reweight the contributions of pyramid features. All relevant codes
will be available in https://github.com/ZhangYuewan/Metallographic-Image-Analysis.

4.5. Experiments on Dataset SPMID

To clarify the comparison, we conduct several experiments to verify the superior-
ity of MAUNet on the task of image segmentation. The experiment includes two parts:
The first part make ablation study of our framework, and the second part evaluates our pro-
posed framework against several state-of-the-art methods quantitatively and qualitatively.
The proposed MAUNet evolves from U-Net network, so we choose U-Net as our baseline.
To further verify the effectiveness of each part, we have done the following experiments on
dataset SPMID comprehensively. (1) UNet: It is trained with the above-mentioned parame-
ters and hyperparameters. (2) MAUNet(Dual): Compared with U-Net, it only replaces the
decoder with our dual-path attention module and keep the rest unchanged. (3) MAUNet-:
Compared with MAUNet, the overlapped strategy is adopted and BN layer is removed.
Besides, we quantitatively and visually compare our model with several state-of-the-art
segmentation models, including mU-Net [45], UNet++ [46], ANU-Net [47], SAUNet [48]
and Deeplab V3+ [49]. Besides, we also visualize the feature maps before and after the
last downsampling layer of stage 1. The above comparative results are placed in Table 4,
Figures 8 and 9.

Table 4. The quantitative comparison of the segmentation results on dataset SPMID. The best results
are highlighted in bold.

Model Dice IoU RoC Params Runing Time (s)

U-Net 0.786 0.645 0.981 7.8 M 4.86
MAUNet (Dual) 0.836 0.715 1.079 7.9 M 4.92
MAUNet- 0.934 0.873 1.260 8.2 M 5.17
SAUNet 0.831 0.711 1.037 9.3 M 4.99
UNet++ 0.875 0.777 1.264 9.0 M 8.73
ANU-Net 0.906 0.828 1.149 8.9 M 6.42
mU-Net 0.940 0.886 1.257 8.5 M 5.25
Deeplab V3+ 0.793 0.652 1.037 352.5 M 16.76
MAUNet(Ours) 0.963 0.923 1.257 8.8 M 5.02
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Ground Truth

Input MAUNet(Dual)U-Net MAUNet-

mU-Net

MAUNet(Ours)

SAUNet UNet++ ANU-Net

Figure 8. The visual comparison of the segmentation results on dataset SPMID.

(a) Input (b) Before (c) After (d) High-frequency Map
Figure 9. The visual feature maps and the high-frequency map. (a) Input image (b) The feature before the last downsampling
layer (c) The feature after the last downsampling layer (d) High-frequency map.

4.6. Experiments on Dataset MPMID

In this section, we report ablation study and user study against other outstanding
models. To demonstrate effectiveness of the three improvements mentioned in Section 3.3,
we design the following experiments as our ablation studies. (1) SAPD: As a baseline, it is
trained with the settings reported in work [30]. (2) SASAPD(SRS): It uses SRS to prevent
attention bias while keeps the rest unchanged. (3) SASAPD(3S): Based on SASAPD(SRS),
it adopts self-adaptive strategy to assign different contributions of pyramid features. In
order to evaluate the performance, we further compare SASAPD with other state-of-the-art
detectors on dataset MPMID, including SAPD [30], AutoAssign [31], YoloV4 [14] and
ATTS+GFL [50]. For a fair comparison, all the models except YoloV4 are equipped with
backbone network ResNeXt-101 that proves effective in most cases. Besides, YoloV4
considers EfficientNet-B3 as the backbone network. The detection results on MPMID are
present in Table 5, Figures 10 and 11. In addition, we also output the feature maps of the
comparative models in Figure 12. Detailedly, for SAPD, ATTS+GPL and SASAPD, we
present the feature maps before detection head. YoloV4 visualizes the output of Neck
network, and AutoAssign outputs the features of confidence map.
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Table 5. The quantitative comparison of identifying the elements of ferrite (F) and pearlite (P) on dataset MPMID. The best
results are highlighted in bold.

Input Backbone The Number
of Phases

Anchor
Free or

not

Dice
(F)

Precision
(F)

Recall
(F)

Dice
(P)

Precision
(P)

Recall
(P) FPS

SAPD(SRS) X-101-32x4d-
DCN one yes 0.918 0.928 0.908 0.911 0.943 0.881 25

SAPD(3S) X-101-32x4d-
DCN one yes 0.932 0.942 0.921 0.931 0.956 0.905 22

SAPD X-101-32x4d-
DCN one yes 0.876 0.893 0.857 0.887 0.913 0.865 28

SASAPD X-101-32x4d-
DCN one yes 0.963 0.971 0.954 0.947 0.967 0.928 20

AutoAssign X-101-32x4d-
DCN one yes 0.951 0.964 0.938 0.937 0.958 0.914 20

Yolo V4 EfficientNet-B3 one no 0.943 0.953 0.930 0.931 0.951 0.911 31

ATSS+GFL X-101-32x4d-
DCN one yes 0.914 0.934 0.895 0.918 0.936 0.903 18

SASAPD(SRS) SASAPD(3S) SASAPDSAPD

Yolo v4 ATTS+GPL AutoAssign GroundTruth
Figure 10. The visual comparison of identifying ferrite (F) on dataset MPMID.

SASAPD(SRS) SASAPD(3S) SASAPDSAPD

Yolo v4 ATSS+GPL AutoAssign GroundTruth
Figure 11. The visual comparison of identifying pearlite (P) on dataset MPMID.
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SASAPD(SRS) SASAPD(3S) SASAPDSAPD

Yolo v4 ATTS+GPL AutoAssign Input Image
Figure 12. The visual comparison of the feature maps obtained by different models.

5. Results and Discussion
5.1. Analysis of Segmentation Results on Dataset SPMID

In this section, we undertake discussions about the ablation study and user study on
dataset SPMID.

5.1.1. Discussion about Ablation Study on Dataset SPMID

We present the results of ablation study in Table 4. From the results, it can be observed
MAUNet(Dual) consistently outperforms U-Net on all metrics. This improvement is
attributed to the dual-path attention. Using module FAE, MAUNet- increases the IoU by
up to 0.228 points, which meets the expectations for the design in Section 3.1. With the
help of common-used tricks, MAUNet could achieve slightly better performance than
MAUNet-. Besides, we take a closer look at the ablation study in the first row of Figure 8.
From empirical observation, MAUNet(Dual) could focus on the location of carbide when
compared with U-Net. After introducing FAE module, we find that MAUNet- is more
successful in fine detection of edges or the shape of carbide. Furthermore, the removal
of overlapping strategy and other tricks used in MAUNet aids in refining the details of
carbide, providing a closer segmentation result to the ground-truth. Therefore, we can
safely draw the conclusion that our model offers more accurate results than other methods
quantitatively and qualitatively.

5.1.2. Discussion about User Study on Dataset SPMID

The quantitative analyses from all the test cases are reported in Table 4. As can
be seen, our method MAUNet significantly outperforms all the comparative methods
in terms of metrics Dice and IoU. Compared with the second best method(mU-Net),
MAUNet achieves the Dice value increased by 2.17% and the IoU value increased by 4.18%.
As for RoC, MAUNet is closer to the ground-truth RoC (1.25). Additionally, benefiting
from complex structures and attention module, the other comparative methods (SAUNet,
UNet++, ANU-Net, mU-Net, Deeplab v3+) always perform better than U-Net on these
three performance metrics.

In Figure 8, we visually present the segmentation results of different methods on
Dataset SPMID. It can be seen that U-Net and ANU-Net cause too many fragments with
lower accuracy. Since dense skip connections are utilized, it appears that UNet++ fails to
produce clear and pleasing segmentation because of outliers and noises. Also, we observe
that mU-Net is able to reject those outliers and display finer results. This is due to the fact
that adaptive filter could prevent duplication of low-resolution feature that does harm to
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the clear texture. In Figure 9, we can see that the response of high-frequency map could
describe the edges and textures better, which verifies the effectiveness of high-frequency
extraction procedure in skip connection.

Apart from the superior to the competing models, we also evaluate the parameters
and running speed and place the results in the last two columns of Table 4. All models are
improved based on conventional U-Net, which bring additional parameters and longer
running time, but they are all in the same scale. Note that MAUNet elapses less time than
MAUNet- even with more layers. The phenomenon is explained by the removal of overlap
strategy that needs additional cost. For Deeplab V3+ model, it takes almost three days
for training on our device, and requires more than 10 times longer than U-Net. Therefore,
we observe that our model achieves comparable performance in terms of parameters and
running time, which is appropriate for the devices with limited computation resources.

5.2. Analysis of Detection Results on Dataset MPMID

In this section, we make discussions about ablation study and user study on dataset
MPMID.

5.2.1. Discussion about Ablation Study on Dataset MPMID

As summarized in the top half of Table 5, comparable results are achieved to verify the
effectiveness of each component of the proposed SASAPD. When compared with SAPD,
6.7% Dice, 5.9% Precision, and 7.4% Recall values are gained by SASAPD to identify pearlite
(P). The role of SRS puts emphasis on positive samples, which facilitates the improvements
on metrics Precision(P) and Precision(F). Next, we study the effect of 3S strategy and apply
it to SASAPD(SRS). As long as each instance is assigned to more pyramid levels with
self-adaptive weights, we find that SASAPD(3S) obtains 2.23% Dice, 1.33% Precision and
3.07% Recall improvements over SASAPD(SRS) while detecting pearlite (P). To analyze the
design of ALFP, we compare SASAPD(SRS) with SASAPD and report the result in Table 5.
Since ALFP tends to perceive smaller objects, we find that it brings more improvements on
the detection result of ferrite (F). Besides, we display the visual results of ablation study
Figures 10 and 11. SASAPD(SRS) is good at recognizing positive objects in larger size,
and SASAPD(3S) is able to find more objects with the help of weighted pyramid features.
However, the detection result of F obtained by SASAPD(3S) illustrated in Figure 11 has
uncertain and inaccurate bounding boxes.

5.2.2. Discussion about User Study on Dataset MPMID

We present the comparative results over several state-of-the-art detection methods
in the bottom half of Table 5. Our proposed SASAPD has clear advantages over all
competing methods on the tasks of detecting P and F. After joint representation of local-
ization quality estimation and classification estimation, ATSS+GPL improves the baseline
SAPD by absolute 3.45% Dice, 2.44% Precision and 4.43% Recall when detecting P. As a
representative one-stage anchor-based detector, Yolov4 combines universal features in-
cluding Weighted-Residual-Connections (WRC), Cross-Stage-Partial-Connections (CSP),
Self-Adversarial-Training (SAT) and Cross-mini-Batch Normalization (CmBN), achieving
major improvements on all metrics compared with SASAPD. Moreover, benefiting from the
automatic assign strategy of determining positive/negative samples, AutoAssign achieves
consistent improvement to all existing methods except SASAPD. Owing to the score hy-
pothesis for each anchor point, in comparison with the second best method AutoAssign,
our SASAPD gains 1.2%, 0.9% and 1.7% performance on metrics Dice, Precision and Recall
when detecting F. Now, let’s take a look at all the results in terms of Recall (grain size).
The more the grain size is, the better the detection method is. We can see our proposed
SASAPD outperforms the other comparative methods. At the time of inference, the infer-
ence speed is measured by Frames-per-Second (FPS). Thanks to the lightweight module,
we observe that the running speeds of all the listed modes are close.
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In order to understand the performance of all the models better, we demonstrate some
detection results of P and F in Figures 10 and 11. By introducing attention mechanism into
pyramid level, SASAPD generates few false negatives as well as false positives for both
P and F. ATTS+GPL suffers from false negative samples despite that it assigns different
weights based on the location quality. The result of YoloV4 is affected by the detection error
of smaller objects. We speculate that it mainly because the fixed weights are adopted in
Spatial Pyramid Pooling(SPP). We also compare our SASAPD with AutoAssign, which also
designs a reweighing strategy to boost detection performance. However, we see that the
center weighting proposed in AutoAssign fail to recognize overlapped objects and false
positive samples with similar appearances and shapes. Besides, we make a brief discussion
about the discriminable ability of the features obtained by different models. From the
results in Figure 12, it can be observed that SASAPD shows more discriminable features
for identifying microstructure instance than the others. Therefore, it can safely come to the
conclusion that SASAPD yields the closest results to the ground-truth in this experiment.

6. Conclusions and Future Work

In this paper, we have established two attention-aware deep neural networks (MAUNet
and SASAPD) to analyze metallographic images. For the case of SPMID, MAUNet re-
builds the encoder and skip connection by processing high-frequency and low-frequency
information independently, and reconstructs the decoder by using dual-path attention
blocks. For the case of MPMID, SASAPD is proposed to detect different constitution in
an anchor-free way. It adopts SRS strategy to prevent attention bias, and designs a soft
self-adaptive selection strategy for the attention-aware pyramid-levels to perceive smaller
objects. Extensive experiments have been conducted on self-proposed datasets and detailed
analysis are reported on issues such as the effectiveness of each key components, and the
computation cost. When applied to dataset SPMID, MAUNet increases Dice and IoU by
22.20% and 42.67% compared with baseline U-Net. When applied to dataset MPMID,
SASAPD gains 10.12%, 8.68% and 11.54% performance on metrics Dice, Precision and
Recall in comparison with the baseline SAPD when detecting F. In terms of computation
cost and running time, these two models can be equipped in the devices with lower com-
putation resources. These experiments, together with a carefully designed user study,
consistently validate the effectiveness and robustness of our models in comparison to the
state-of-the-art.

However, there still remain the following limitations and possible directions of our
work. (1) The number of stages and pyramid levels are determined by experience. The two
parameters in our manuscript are set as the same as those in UNet and SAPD, which play
significant roles in network design. Though our models with the mentioned settings in
Section 4.4 achieve better performance, it is still a challenging task to design a reasonable
network automatically. Now, we try to address it with the technology of network architec-
ture search (NAS). (2) The initialization of pyramid levels is essential. At the first 6 epochs,
each instance is assigned to the pyramid level which has the minimal loss to stabilize the
training model. Namely, the performance of our model heavily relies on the initialization
results. In our future work, we are working to get rid of the initialization procedure.
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