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Abstract: In this article, a non-contact laser Doppler strain sensor designed for fatigue testing with
the resonance-testing machine is presented. The compact sensor measures in-plane displacements
simultaneously from two adjacent points using the principle of in-plane, laser-Doppler vibrometry. The
strain is computed from the relative displacements divided by the distance between these two points.
The optical design, the mathematical model for estimating noise-limited resolution, the simulation results
of this model, and the first measurement results are presented. The comparison of the measurement
results of our sensor with the results of a conventional strain gauge shows that our design meets the
measurement requirements. The maximum strain deviation compared to conventional strain gauges of
the laser-Doppler extensometer is below 4× 10−5 in all performed experiments.

Keywords: dynamic strain measuring; remote sensing; in-plane laser Doppler vibrometry

1. Introduction

In fatigue testing, strain gauges are widely used to measure strain. Even though
these traditional sensors are inexpensive and technically well developed, they have some
disadvantages. An additional measuring error, which is not included in the uncertainty
specifications of the strain-gauge manufacturer, results from the elasticity of the adhesive
material that must be applied between the strain gauge and the measuring surface. Sen-
sitivity alters with changing temperatures at the measuring point [1]. The influences of
displacements transverse to the direction of strain measurement cannot be avoided. A
zero signal drift occurs as a characteristic feature, resulting from fatigue damage caused by
dynamic stress in the strain gauge after a certain number of load cycles [1]. A measurement
configuration with many measurement points also causes considerable cost and effort
during setup. The quality of the installation greatly influences the accuracy and reliability
of the measurement [1].

The use of fiber optic strain sensors with Bragg gratings [2] enables better accuracy at
the sub-microstrain level. Fabricated in polarization-maintaining fiber, the strain resolution
of the fiber Bragg gratings sensor can be pushed below 10−9 1/

√
Hz [3]. However, the

coupling problem of tactile strain measurement still exists. This problem can be solved
with contactless optical measurement methods. Camera-based measuring devices such as
digital image correlation [4–7], electronic speckle interferometry [8,9], and laser speckle
correlation [10,11] are widely used for strain measurement, even with special measuring
conditions like measuring strain under high temperature [12,13]. A maximum strain error
of about 3× 10−5 can be reached, but only with a low sampling rate of about 100 Hz due to
the camera image frequency and the time-consuming calculation of image processing [6,7].
Shearography, as an interferometric technique, can also be applied for in-plane displace-
ment or strain measurement [14–16]. The common implementation with the Michelson
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interferometer as the shearing device limits the light efficiency up to 50%. Similar to
other speckle interferometric techniques, shearography has limited tolerance to rigid body
motion including object translation. At high image repetition rates, image processing
usually does not produce a real-time signal. Therefore, such methods are not suitable
for dynamic strain measurement, especially in a high-frequency range. Moreover, the
maximal measurable displacements of these methods as well as strain gauges are limited.
In the case of 3D-scanning laser Doppler vibrometry [17–19], scanning also results in a
long measuring time (about 30 scan points per second), so that no real-time signal of the
strain can be obtained. Such methods fit better for full-field strain measurement. Spatial-
filtering sensors [20,21] employ the detection of spatial frequency components with fast
photodiodes by means of apertures. A corresponding sensor provides a real-time signal as
a result but the spatial filterwhich has not a pure sine transfer behavior (usually due to its
binary transmittance [22]), causes phase distortion of the detector signals and consequently
distorts the displacement signal that is demodulated from the detector signals [20]. Besides,
only a part of the scattered light is used since the light through the receiving lens system
with a large numerical aperture is spatial filtered. Therefore, the signal-to-noise ratio (SNR)
is reduced.

Compared with other optical methods, laser Doppler velocimetry [23] has the advan-
tages of very high time resolution and low cost of data processing. It measures in-plane
velocity by calculating the Doppler frequency shift and in-plane displacement via the calcu-
lating phase (integration of the Doppler frequency shift). M. Hercher demonstrated a laser
Doppler technique for extensometers in 1987 [24] and astonishingly no further work on
this method has been published, although strain measurements with two separate in-plane
laser Doppler vibrometers are state-of-the-art. However, in-plane laser Doppler vibrom-
eters were explored by other groups. As a result of these publications, reflective power
and surface roughness are the parameters that mostly influence the accuracy [25,26]. Later,
the measuring accuracy of in-plane displacement was improved to the sub-micrometer
area [27]. By rotating the direction of incident beams and receiving optics, even the in-plane
motion of objects with a glossy and specular surface can be measured using a laser Doppler
technique [28].

We wondered why the approach of Hercher was not further investigated since 1987
and explored if this technique can be realized as a single sensor with one beam path,
whereby the sensor analyzes two measuring points simultaneously. Assuming that the
technique was not advanced further due to physical limitations, we developed a sophis-
ticated model to explore the physics of this sensor principle. Our simulations convinced
us that strain resolutions in the range of classical strain gauges can be achieved. The
model allowed us to find optimal design parameters for a compact laser Doppler strain
sensor for the first time. In a first conference paper, we demonstrated the first preliminary
results [29] showing the feasibility of the approach. In this paper, we demonstrate a robust
and compact laser Doppler extensometer suitable for industrial applications approaching
for the first time the resolution of classical strain gauges of approximately 10−5. The sensor
was integrated into a resonance-testing machine (POWER SWINGly 20 kN from SincoTec)
to prove its suitability as a strain gauge replacement. We prove in this paper that our
model has resulted in design parameters enabling strain resolutions below 10−5 for a
resolution bandwidth of 2.37 Hz and maximal strain deviations of 4× 10−5 compared to a
conventional strain gauge.

2. Optical Setup

The optical layout of our new remote strain sensor is shown in Figure 1. A near-
infrared (NIR) laser (1550 nm) is used as the light source, which allows 10 times more light
power than in the visible range for an eye-safe laser class sensor. A polarizing beam splitter
(PBS) divides the incident beam into two parts. The s-polarizing component is deflected to
the surface of the specimen as one measurement beam (Beam A). A Bragg cell shifts the
frequency of the p-polarized ray by 40 MHz and turned its polarization to perpendicular,
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which is also deflected to the specimen (Beam B). Before reaching the specimen surface, a
non-polarizing beam splitter (BS) and a prism divided each incident ray into two parallel
beams (Beam 1 into Beam A1 and A2, and Beam B as well). Beam A1 and Beam B1 are
superimposed on the surface of the object and create an interference fringe pattern, which
is the first measuring point. Similarly, Beam A2 and B2 are superimposed to define the
second measuring point.

Figure 1. Schematic drawing of the optical setup.

By each measuring point, the frequency of the intensity modulation of the fringe
pattern changes proportionally to the velocity of a scattering particle from the rough
surface that moves through the pattern. The phase of the intensity modulation is then
proportional to the displacement. Usually, several particles move through the fringe pattern
and created a time-dependent speckle-pattern. Then a lens system collects the diffracted
light scattered at both measuring points. The light from each measuring point is imaged
onto a single photodetector. The in-plane displacement could be derived by analyzing the
intensity modulation phase that corresponded to the integration of the Doppler-frequency
shift. The modulation frequency is shifted by an in-plane deformation in the direction
perpendicular to the interference fringes of the fringe pattern on the surface of the specimen.
The measuring point running against the interference fringes increases the Doppler-shift
frequency (difference in frequency between intensity modulation and 40 MHz carrier
frequency) and running with the fringes reduces the Doppler-shift frequency. Here, the
Doppler-shift frequencies are rather derivatives of phases φi(t) of intensity modulation
from the i-th measuring position and are only fixed frequencies at constant velocities.
Therefore, it is possible to detect the direction of movements. The measured strain ε′(t) is
then given by

ε′(t) =
d

2πl

∫ t

t0

( .
φ1
(
t̃
)
−

.
φ2
(
t̃
))

dt̃ =
d

2πl
(φ1(t)− φ1(t0)− φ2(t) + φ2(t0)), (1)

where d is the distance between two nearby fringes, l is the distance between the center of
two measuring points, and t0 is the starting time. The fringe pattern with the image area of
the photodiode is shown in Figure 2.
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Figure 2. Schematic drawing of both measuring points with a fringe pattern.

In addition, the strain measured by our optical sensor ε′(t) from Equation (1) is not
exactly the physical strain ε(t), which is defined by

ε(t) =
∆l(t)

l
, (2)

where l is the original length of the test specimen and ∆l(t) is the change in length. Now
we define the velocities of both endpoints of the test specimen as v1,p(t) and v2,p(t) (in
Figure 3a).

Figure 3. (a) The velocities of both endpoints of the test specimen; (b) The velocities measured by the laser Doppler
strain sensor.

The original distance between both these endpoints is equal to the length of the
measuring object l and the actual distance is then l + ∆l. The differential of the physical
strain

.
ε(t) is proportional to the difference of the velocities at both endpoints v1,p(t) and

v2,p(t).

.
ε(t) =

d ∆l(t)
l

dt
=

v1,p(t)− v2,p(t)
l

(3)

We consider the distance between two measuring points of the laser Doppler strain sensor
is also equal to l. The velocities measured by the laser Doppler strain sensor could be
defined as v1,L and v2,L (in Figure 3b), which could be computed from the Doppler-shift
frequencies fi(t) =

.
φi(t)/2π and the fringe distance d.

vi,L =
d

2π

.
φi(t) (4)

The measured strain ε′(t) from Equation (1) is then given by

ε′(t) =
1
l

∫
(v1,L(t)− v2,L(t))dt. (5)
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Considering the homogeneous material, the relationship between the velocities of both
endpoints of the measuring object v1,p, v2,p and the velocities measured by the laser Doppler
strain sensor v1,L, v2,L is given by

v1,L(t)− v2,L(t)
v1,p(t)− v2,p(t)

=
l

l + ∆l(t)
. (6)

With (6) in (5):

ε′(t) =
1
l

∫ ( l
l + ∆l(t)

(
v1,p(t)− v2,p(t)

))
dt (7)

With v1,p(t)− v2,p(t) = l· .ε(t) and ∆l(t) = l·ε(t) in (7) the relation between the physical and
the measured strain is derived.

ε′(t) = 1
l

∫ ( l
l+l·ε(t)

(
l· .ε(t)

))
dt

=
∫ .

ε(t)
1+ε(t) dt

= ln(1 + ε(t))

(8)

After reforming (8), the exact physical strain could be calculated from

ε(t) = eε′(t) − 1. (9)

This formula shows that a compensable difference of the measured strain ε′(t) compared
with the physical strain ε(t) increases with strain size. The Taylor expansion of the right-
hand side of (9) shows that the physical and measured strain are equal for the first order
of the Taylor expansion. Therefore, we could expect small measurement errors for small
strains (<1%).

3. Modeling

In this part, a mathematical model is presented to estimate the theoretical resolution
limit of our sensor. The relationship between the resolution limit and the crossing angle θ,
the angle between the incident laser beams, is studied.

3.1. Signal Power

The total scattered radiant power Φs depends on the incident radiant power Φin. In
addition, the incident power Φin is in relation to the incident irradiance Ein so that the total
scattered radiant power Φs is given by

Φs = ηΦin = ηEinAmcos
θ

2
, (10)

where η is the scattering efficiency, Φin is the incident radiant power, Ein is the incident
irradiance, Am is the area of the fringe pattern, and θ is the crossing angle. The scattered
radiant power could also be calculated by

Φs = 2πLsAm. (11)

With (10) and (11) the scattered radiance Ls is given by

Ls =
η

2π
Eincos

θ

2
. (12)

If we consider the measuring surface as a Lambertian surface, the scattered radiant in-
tensity Is obeys Lambert’s cosine law: Is(ϕ′) = LsA0cosϕ′, where A0 is the image area of
the photodiode on the surface of the specimen and ϕ′ ∈ (0, ϕ/2) is the observer angle.
Therefore, the receiving light power of the photodiode PD,i from a single incident beam,
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which could be calculated with integration of the scattered radiant intensity Is via the solid
angle Ω of the receiving optics, is given by

PD,single =
∫

IsdΩ
= πLsA0(1− cosϕ)
= 1

2 ηEinA0 cos θ
2 (1− cosϕ).

(13)

Considering the interference of two incident beams, the total scattered light power could
be calculated by

PD = 2PD,single + 2
(

P2
D,single

) 1
2 cos(2πfct + ∆φ), (14)

where fc = 40 MHz is the carrier frequency produced by the Bragg cell, and ∆φ is the phase.
Only the AC component with a root mean square (RMS) value

√
2PD,single represent the

power of the heterodyne carrier signal.

PD,signal =
√

2PD,single , (15)

A photodiode collects this light and produces a photocurrent. With a trans-impedance
amplifier, the photocurrent is converted to a voltage signal. Consequently, the quadratic
RMS signal amplitude in voltage us

2 could be computed from

us
2 =

1
2

(
R f δsδIKPD,signal

)2
, (16)

where R f is the feedback resistance of the trans-impedance amplifier, δs is a factor in relation
to the radiant intensity of the Lambert diffuser, and K is the sensitivity of the photodiode.
In addition, δI is a factor for the consideration of the interference effect. The scattered
light from simultaneous light-dark and dark-light transitions of the scattering bodies could
destructively interfere (in Figure 4).

Figure 4. Destructive interference.

This leads to a deterioration of the carrier signal quality. A small fringe spacing d and
a small crossing angle θ, therefore, have a detrimental effect on the SNR. We assume as an
approximation for the factor δI

δI =
1√√
A0/d

=

√
d

4
√

A0
(17)

with d ≤
√

A0, where A0 is the image area of the photodiode and
√

A0 is the width of
the quadratic image area, and d = λ/2sin θ

2 is the fringe distance. Here λ is the incident
wavelength and θ is the crossing angle. We justify our assumption (17) because only one
fringe in the image area would result in a maximum factor δI = 1, and infinite fringes
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would result in the factor δI = 0. The behavior of this phenomenological introduced
parameter is physically conclusive. If there is one maximal fringe in the image area, the
factor of destructive interference δI is set to 1. Consequently, the factor δI is

δI =

{ √
d

4√A0
,
∣∣∣d ≤ √A0

1,
∣∣d >

√
A0

(18)

If we change the crossing angle from 10◦ to 120◦, the value of the factor δI varies from 0.24
to 0.08. All three factors, scattering efficiency η, a factor in relation to the radiant intensity of
the Lambert diffuser δs, and the factor for destructive Interference δI are estimated values.
With them, the total efficiency is estimated between 2 ∼ 6%. Only 2 ∼ 6% of the incident
power on the image area is received as the heterodyne signal by the photodiode. In the
practice, the efficiency varies with different specimen surface. A more explicit description
of the influence of the speckle effect and destructive interference may be researched later.
Using Formulas (13), (15), and (16), the quadratic RMS signal amplitude in voltage us

2

from (16) is computed from

us
2 =

1
4

(
π2R f δsKηδIEinA0cos

θ

2
(1− cosϕ)

)2
. (19)

with δI given by Formula (18).

3.2. Noise Analysis and SNR

For each measuring point, a single photodiode and a trans-impedance amplifier are
used to detect the light signal. The common noise sources are thermal noise, voltage, and
current noise from the amplifier. Here, because of little receiving light power (less than
0.1 mW) shot noise, which is much less than 1% of thermal noise, it could be neglected.
The noise density of thermal noise is given by

enR =
√

4kBTR f , (20)

where kB is Boltzmann’s constant, T is the temperature. The total noise density with
negative input of the amplifier is computed from

ene =

√
enR2 + en2 +

(
inR f

)2
(21)

where en is the input voltage noise density of the amplifier and in is the input current noise
density of the amplifier. The total noise density with the output of the amplifier is then
given by

en,total = Gnene, (22)

where Gn is the noise gain of the trans-impedance amplifier. Since the signal bandwidth is
much smaller than the carrier frequency, we could consider the noise gain as a constant
near the operating point. The total square noise voltage is calculated as

un
2 = en,total

2B, (23)

where B is the bandwidth. The total SNR is then

SNR =
us

2

un2 =

1
4

(
π2R f δsKηδIEinA0cos θ

2 (1− cosϕ)
)2

G2
n

(
4kBTR f + en2 +

(
inR f

)2
)

B
. (24)
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3.3. Noise Limited Resolution

If the minimum detectable displacement smin of the i-th measuring point could be
detected, the phase deviation ∆φi caused by this displacement should be above the phase
noise ∆φn. Here, the phase φi is given by the sinusoidal carrier signal

√
2ussinφi. The phase

deviation ∆φi has a maximum rise ±
√

2 us, when a scattering body crosses the light-dark
or dark-light transition (in Figure 5).

Figure 5. Intensity modulation, when a scattering body moves through the fringes.

In this case, the phase deviation ∆φi is given by

∆φi = 2π
smin

d
, (25)

with the fringe distance d. Equivalently, the minimum detectable signal amplitude devia-
tion caused by this phase deviation is equal to the voltage deviation un caused by the total
noise. Because two uncorrelated noise components below and above the carrier frequency
always contribute to noise modulation, a factor of

√
2 has to be taken into account [30].

Using the RMS value of signal and noise voltage, the following equation is given

ussin∆φi ≈ us∆φi =
√

2un (26)

Using Formula (24) of the SNR, Formula (26) above could be rewritten as

∆φi =

√
2un

us
=

√
2Pn

Ps
=

√
2√

SNR
. (27)

The minimum detectable displacement smin of the i-th single measuring point is then
given by

smin =
d

2π
∆φi =

d
2π

√
2√

SNR
. (28)

Using Formula (26) of the SNR, Formula (30) is reformulated as

smin =

Gnd

√
2
(

4kBTR f + en2 +
(

inR f

)2
)

B

π3R f δsKηδIEinA0cos θ
2 (1− cosϕ)

(29)

Considering the SNR of both measuring points, the minimum detectable strain εmin is multi-
plied by a factor of

√
2 as below, because the noise of both measuring points is uncorrelated.

εmin =

√
2smin

l
(30)
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Here l is the distance between two measuring points. If εmin is inserted into Formula (26)
instead of smin, the minimum detectable strain εmin is given by

εmin =

2Gnd

√(
4kBTR f + en2 +

(
inR f

)2
)

B

π3lR f δsKηδIEinA0cos θ
2 (1− cosϕ)

. (31)

3.4. Simulation for the Optimal Sensor Design

The specific values of all simulation parameters are shown in Table 1. With estimated
values δs = 0.5, η = 0.5, and δI ∈ (0.08, 0.24), only 2 ∼ 6% of the incident laser power
in the image area of the photodiode on the measuring surface A0 could be received as a
carrier signal by the photodiode.

Table 1. Values of all parameters.

Parameter Value Parameter Value Parameter Value

λ 1550 nm Ein 3183 W/m2 R f 3.5 kΩ
A0 5.63·10−3 mm2 K 1.03 A/W l 6 mm
ϕ 14.9◦ δs 0.5 η 0.5
T 293 K en 6 nV/

√
Hz in 1 pA/

√
Hz

Gn 9.6 dB

Figure 6a shows the noise-limited resolution for a bandwidth of 1 Hz in relation to the
crossing angle θ between the incident laser beams. With the crossing angle θ = 70.53◦, the
best noise-limited resolution of 3.22× 10−8 1/

√
Hz could be reached. In this circumstance,

the total efficiency is 2.3%.

Figure 6. (a) The noise-limited minimum detectable strain in 1/
√

Hz in relation to the crossing angle
θ; (b) The noise-limited minimum detectable strain in relation to the Bandwidth B.

Figure 6b shows that our new type of laser Doppler strain sensor has a better resolution
limit than a conventional strain gauge. The maximum bandwidth of the laser sensor is
decided by the carrier frequency. Usually, the maximum detectable signal bandwidth could
be define using Carson’s bandwidth rule. Using the normal Bragg cell, which produces a
carrier frequency in the high MHz-range, even the MHz strain could be measured by our
sensor. The common strain gauge can usually measure strain in resonance testing machines
up to approximately 10 kHz.
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4. Experimental Setup and Results

We successfully implemented the optical structure and the necessary electronic com-
ponents such as the amplifier, limiter, and power supply in a compact housing (about
300 mm× 270 mm). Figure 7 presents the experimental optical structure of our strain
sensor. The light beams are sketched, with the incident beams shown in red and the scatted
light in yellow.

Figure 7. Internal optical structure of the compact strain sensor.

Figure 8 shows the entire experimental setup. The optical sensor and the strain
gauge are marked. The directions of light beams are sketched, with incident beams
shown in red and the scatted light in yellow. The optical sensor is integrated into a
resonance-testing machine (POWER SWINGly 20 kN) from SincoTec GmbH. The machine
produces a sinusoidal force on both ends of the aluminum sample. The optical sensor and a
traditional strain gauge measure the strain from the same area, but opposite sides. The data
acquisitions of both sensors are synchronized so that comparable results could be obtained.

Figure 8. Experimental setup with the optical sensor integrated into the resonance test machine.

Only a simple measurement configuration is required before assessing the strain. The
optical sensor should be pointed to the specimen perpendicularly. Then, the working
distance (the distance between the sensor and the specimen) should be adjusted until the
carrier signal is detected. During the measurement, the signals from both photodetectors are
amplified by a limiter to fit the ADC range and then sampled by a digital data acquisition
card. The digital data are finally in a PC IQ-demodulation [30] and the strain is calculated.
A real-time digital strain data are acquired. The temporal measurement results from both
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sensors are demonstrated in Figure 9a. Since the optical sensor does not measure the strain
caused by preload, the red curve (results from our optical sensor) was shifted along the
Y-axis to match the result from the strain gauge. The strain state measured by our sensor is
zero at the beginning of the measurement, whereby the state measured by a strain gauge is
zero at the moment when it is installed to the test object.

Figure 9. (a) Measurement results from the optical sensor and a traditional strain gauge. Both results
are presented with a bandwidth of 2.5 kHz and a resolution bandwidth of 2.37 Hz. (b) The spectrum
of the results from both sensors. (c) The sinusoidal force produced by the resonance-testing machine.
(d) Strain deviation, the difference between results from both sensors.

For this measurement, the resonance test machine produces a positive sinusoidal force
as F = Asin(2πk) +A0 with an amplitude A of 1000 N, a frequency k of 40 Hz, and an offset
A0 of 1650 N (in Figure 9c). Therefore, the strain signal has an offset. Roughly, both curves in
Figure 9a are similar. The functionality of our optical strain sensor could be proven. However,
we could also observe a little more noise with the optical sensor. Figure 9b shows the spectral
information of both results. Due to the low sampling rate of 5 kHz of the strain gauge, the
signal from the laser extensometer is also limited with a bandwidth of 2.5 kHz. Even though
the noise floor of our optical sensor is higher than a strain gauge, the signal amplitudes at the
resonance frequency are equal. These experimental results show the strain resolution of our
sensor does not reach the noise-limited resolution of 3.22× 10−8 1/

√
Hz from the simulation

results. Figure 9d shows a maximum strain deviation of the laser Doppler extensometer
compared to the conventional strain gauge under 4× 10−5.

The laser-speckle effect makes it difficult to find two optimal measurement positions.
Laser speckle, which scatters less light power into the detection aperture, reduces the
signal power. The total noise remains unchanged, because the shot noise is neglected, and
other noise sources are independent of the signal power. Thus, the SNR is also reduced.
Compared to out-of-plane measurements, it is much more difficult to find speckles that
scatter high light power into the detection aperture during the strain measurement. If
there is a 30% chance to find a good speckle, which scatters much light power, with only a
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9% chance a good speckle for both measuring points could be found. If the carrier signal
amplitude is below the noise level of the photodetector signal, demodulation of the Doppler
frequency shift or phase shift is impossible. Figure 10 shows the measurement result for
such a case.

Figure 10. (a) Measurement results from the optical sensor with bad speckle and the strain gauge.
Both results are presented with a bandwidth of 2.5 kHz and a resolution bandwidth of 2.37 Hz.
(b) The spectrum of the results from both sensors.

In this case, the carrier signal amplitude is below the noise level. The only noise
is demodulated. However, once a “good” speckle is found, the measurement remains
several hours or even days at a constantly good SNR. Small external vibrations with
submillimeter displacements and temperature fluctuations present in the machine hall
where we performed the strain monitoring did not affect the measurement quality. The
sensor does not need to be readjusted until the specimen is reassembled. The effort to find
two good speckles could be reduced by combining diversity, which is a proven technique in
laser Doppler Vibrometry [31,32]. Therefore, at the next step, we will explore the technique
of diversity combining for our sensor.

5. Conclusions and Outlook

In summary, we developed a new type of optical strain sensor with a compact struc-
ture, which we integrated into a resonance test machine from SincoTec. Our laser Doppler
extensometer measures strain in real-time using the principle of differential in-plane, laser
Doppler vibrometry. Unlike other optical methods such as speckle or image correlation
methods, the use of the laser Doppler principle allows our sensor to have an extremely
large bandwidth (up to the MHz range). Due to the efficient signal demodulation (IQ-
demodulation), a real-time digital strain signal can be generated. Therefore, even the
strain in a high-frequency range can be measured in real-time. A mathematic model was
derived to estimate the optimal design parameters. According to the simulation results
of this model, a noise-limited resolution of 3.22× 10−8 1/

√
Hz can be achieved with a

crossing angle θ = 70.53◦ (the angle between two incident laser beams). The laser Doppler
extensometer delivers a comparable result to a traditional strain gauge with a maximum
strain error below 4× 10−5. Our laser extensometer is capable of monitoring the strain
of a probe in a resonance-testing machine but has slightly more noise. However, we see
still further optimization possibilities to explore. Especially, signal diversity may improve
dramatically the speckle robustness and noise level of this kind of sensor. Therefore, po-
larization or angle diversity, or a combination of both will be implemented in the future.
We expect a significant improvement of the actual speckle problem which will enable a
fast and easy adjustment of a good speckle. Our compact remote laser Doppler strain
sensor has the potential to replace strain gauges in many application areas on dynamic
strain measurement.
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