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Abstract: While low-power wide-area network (LPWAN) technologies have been studied exten-
sively for a broad spectrum of smart city applications, their potential for water distribution system
monitoring in high temporal resolution has not been studied in detail. However, due to their low
power demand, these technologies offer new possibilities for operating pressure-monitoring devices
for near real-time leak detection in water distribution systems (WDS). By combining long-distance
wireless communication with low power consumption, LPWAN technologies promise long periods
of maintenance-free device operation without having to rely on an external power source. This is of
particular importance for pressure-based leak detection where optimal sensor positions are often
located in the periphery of WDS without a suitable power source. To assess the potential of these tech-
nologies for replacing widely-used wireless communication technologies for leak detection, GPRS is
compared with the LPWAN standards Narrowband IoT, long-range wide area network (LoRaWAN)
and Sigfox. Based on sampling and transmission rates commonly applied in leak detection, the abil-
ity of these three technologies to replace GPRS is analyzed based on a self-developed low-power
pressure-monitoring device and a simplified, linear energy-consumption model. The results indicate
that even though some of the analyzed LPWAN technologies may suffer from contractual and techni-
cal limitations, all of them offer viable alternatives, meeting the requirements of leak detection in
WDS. In accordance with existing research on data transmission with these technologies, the findings
of this work show that even while retaining a compact design, which entails a limited battery capacity,
pressure-monitoring devices can exceed runtimes of 5 years, as required for installation at water
meters in Austria. Thus, LPWAN technologies have the potential to advance the wide application
of near real-time, pressure-based leak detection in WDS, while simultaneously reducing the cost of
device operation significantly.

Keywords: water distribution system analysis; leak detection; low-power wide-area networks

1. Introduction

The development of the Internet of Things (IoT), accelerating digitization and the
consequently wide availability of low-power and low-cost communication technologies led
to a continuous trend towards so-called smart cities and smart infrastructures. This trend
was both induced and accompanied by the development of numerous communication
protocols and modules for monitoring devices. Within the broad spectrum of wireless
communication technologies and protocols theoretically suitable for smart city applications,
from short-range technologies like Bluetooth, Wi-Fi or ZigBee [1] to long-range cellular
technologies like 5G [2], only some standards combine low-power, long-range data trans-
mission capabilities with transmissions rates suitable for most infrastructure monitoring
applications. Alongside several highly energy-efficient radio technologies [3], such ca-
pabilities are offered by standards designed for ultra-low-power machine-to-machine
(M2M) communication, among which low-power wide area network (LPWAN) standards,
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like Narrowband IoT (NB-IoT), Sigfox and long-range wide area network (LoRaWAN) are
particularly promising for smart infrastructure monitoring [4].

Chaudhari et al. [5] and Mekki et al. [6] provide analyses of applications for LPWAN
technologies, given the specific limitations of each communication standard. Listed applica-
tions range from traffic and infrastructure monitoring to smart rain barrels in [7]. However,
while the authors consider a broad spectrum of use cases, to our knowledge no publication
considers the advantages and drawbacks of these technologies in the context of data require-
ments for leak detection algorithms in water distribution systems (WDS). Such detection
algorithms usually rely on data from hydraulic sensors, collected via pressure-monitoring
devices and flow meters [8] operated at suitable positions in WDS [9,10], for model genera-
tion, calibration and validation. Once a detection algorithm is deployed, it relies on data
streams from hydraulic sensors to identify leaks among deviations between modeled and
monitored WDS behavior (e.g., [11]). Consequently, detection time and accuracy rely on
these data streams.

Fast and reliable leak detection, based on real-time monitoring, can contribute to the
reduction of water losses. In this context, Bonoli et al. [12] propose a framework for resource
conservation based on green smart technology. Within this framework, Alvisi et al. [13]
provide an extensive overview of IoT communication standards for open smart metering so-
lutions in WDS, as well as hardware and software solutions for collecting and transmitting
water meter readings with different communication protocols.

As many water utilities currently do not operate smart water meters or are in a
state of transition during which conventional water meters are substituted by smart de-
vices, they continue to rely on hydraulic sensors placed in their WDS for leak detection.
However, as more and more inexpensive LPWAN monitoring devices become available
and coverage of the corresponding networks is gradually expanded in both urban and rural
areas, they allow water utilities to operate dense, large-scale sensor networks without the
constraint of having to invest in their own communication infrastructure (e.g., gateways or
signal concentrators).

Low-energy demand of LPWAN monitoring devices enables high sampling and data
transmission rates without diminishing device runtimes. Consequently, by using NB-IoT,
Sigfox or LoRaWAN, water utilities gain the possibility to generate time series of hydraulic
and water quality parameters in high spatiotemporal resolution at relatively low operating
costs, since, for instance, device maintenance efforts (e.g., regular battery changes) can be
reduced considerably.

Along with suitable time series databases and algorithms which are designed to
analyze such time series in real-time, LPWAN technologies offer new possibilities in
near real-time anomaly detection in WDS, e.g., to detect contamination events [14,15],
cyber-attacks [16], as well as leaks and bursts [17–19].

Low energy consumption is of particular importance in the case of pressure-based
leak detection where the optimal, most sensitive sensor positions are often located in
the periphery of a WDS [10,20], where no external power source is available and energy-
harvesting [21] might not be a viable option. Particularly in these cases, a key aspect
of the operation of low-power monitoring devices is the trade-off between the device
configuration (sampling and transmission rates) required for fast and reliable leak detection,
the available battery capacity and required minimum device runtimes.

In this work, the potential of LPWAN technologies to fulfil technical and operational
long-term requirements of pressure monitoring for near real-time leak detection in WDS
was analyzed. For this purpose, a conventional wireless wide-area network (WWAN) tech-
nology and the three above-mentioned LPWAN technologies were compared. Power con-
sumption of a pressure-monitoring device, relying on GPRS (general packet radio service),
a cellular (2G) standard for different sampling and data transmission rates, was assessed.
In addition, an evaluation of how an alternative microcontroller (MCU), built around a
communication module which is able to transmit data via NB-IoT, LoRaWAN and Sigfox,
would influence power consumption was undertaken. Further, given the specifications and
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constraints of the three communication standards, the arising limitations for near real-time
leak detection were derived. To ensure comparability, sufficient network coverage for either
technology was assumed, as well as that the water utility uses existing communication
networks, with all the possible drawbacks, like limitations due to fair access policies.

For this assessment, a simplified, linear energy-consumption model was employed,
combined with specifications from data sheets, laboratory-assessment and field-testing.
This model was applied on common sampling and data transmission rates for leak and
burst detection given in literature.

This work is structured as follows. First, descriptions are provided for wide-area
telecommunication technologies, data and device requirements for leak detection in
WDS and an energy-efficient pressure-monitoring device, which was developed based on
these specifications.

Second, the methodology of the conducted analyses is detailed, as well as the un-
derlying assumptions for viable device configurations, power consumption and runtime
analyses. Third, results of the comparison are presented and discussed. In the fourth and
final section, conclusions and an outlook on further research, required to make full use of
the potential of LPWAN technologies for near real-time leak detection in WDS, are offered.

2. Materials and Methods
2.1. Wireless Wide-Area Telecommunication Networks for WDS Monitoring

While energy-efficient data transmission is not a core problem for measurements
at tanks or pumping stations of WDS, as they usually have an external power supply,
the situation is entirely different for customer smart meters and pressure-monitoring
devices within a WDS. In these cases, sensors with minimal power consumption have to
be paired with energy-efficient communication technologies to allow maintenance-free
operation without an external power source for multiple years. While most customer smart
metering applications rely on highly energy-efficient radio technologies (e.g., versions of
wireless M-Bus [13]) in combination with fixed network solutions [3], increasing coverage
of LPWAN technologies [4,6,22] offers water utilities new possibilities to operate larger
numbers of pressure-monitoring devices for fast leak detection.

Historically, many applications for long-range wireless communication for moni-
toring tasks were implemented by radio technologies or wireless broadband standards,
like Wi-MAX or GPRS [1], for either security reasons or a lack of viable alternatives. As cur-
rently a transition towards nation-wide coverage for LPWAN standards can be observed,
water utilities in urban and rural regions have the opportunity to decide between several
technologies [23–26]. Each technology offers advantages and limitations, either based on
operational constraints or technological and contractual requirements [13,27], which have to
meet the standards for the data required by the applied detection algorithms. The expected
performance and limitations of NB-IoT [28–31], Sigfox [32] and LoRaWAN [30,33–39] have
been analyzed and tested extensively. In addition to energy consumption, the communi-
cation technologies vary regarding transmission rates (e.g., 100–600 bps for Sigfox versus
0.24–37.5 kbps for LoRaWAN), hourly or daily data transmission limits due to contractual
terms or fair access policies in shared networks and expected transmission success or data
loss rates. The last aspect is of particular importance when the sensors are installed in
manholes or basements and even more so in densely-built urban environments, a use case,
for which e.g., NB-IoT was specifically designed.

Moreover, when deploying sensor networks in critical infrastructures like WDS,
concerns of cyber security have to considered [40], as new threats and attack vectors
are likely to arise with the wider use of LPWAN monitoring devices. Consequently,
potential cyber risks resulting from IoT sensor networks need to be addressed with the same
importance as the above-mentioned technological and operational advantages and limitations.
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2.2. Data Requirements for Leak Detection in WDS

Aside from technical, contractual and organizational limitations of communication
technologies, required sampling and data transmission rates, as well as minimum runtime
requirements for monitoring devices in WDS have to be considered.

The spectrum of methods and algorithms applied to the problem of leak detection in
WDS spans model-based, e.g., [41], data-driven [42] and combined approaches, e.g., [43].
Like the methodologies, the applied data sets to develop these approaches, train, and test
the underlying algorithms vary. On the one hand, this is caused by the fact that differ-
ent approaches use different monitoring principles for data generation, like flow [44],
pressure [41], demand [17], acoustic signals [45], as well as combinations thereof [46].
On the other hand, in many cases where real data sets are used, multivariate time se-
ries representing normal operation and at times containing engineered leaks are used
as provided by a water utility. While in other instances, simulated, artificial datasets,
generated with a hydraulic model are applied [47], in some cases combined with data from
engineered leaks for model calibration, validation and performance evaluation [43,46].
For data-driven approaches, data preparation and the structure of the provided data is of
particular importance, as the quality of the underlying dataset is the basis for model devel-
opment and performance [48]. While there are instances without a detailed description of
the source of the applied dataset, its preparation or the initial exploratory data analysis,
works like [49,50] provide a detailed description of their study site, sensor network and the
preparation steps leading to the dataset used for algorithm development.

In [51] the authors assess the performance of different leak detection algorithms when
providing data in sampling rates of 5 s, averaged to 1, 5 and 15 min. They conclude that no
significant difference in detection performance can be observed between 1-min and 5-min
sampling rates. In [52], Ye and Fenner consider the trade-offs in alarm rates and sampling
rates by analyzing algorithm performance for sampling rates between 1 min and 30 min
and conclude that higher sampling rates lead to faster burst detection. More recently,
a similar study was published by Ahn and Jung [53], comparing performance changes
of a hybrid statistical control method for burst detection when varying the number of
sensors, as well as the sampling rate. Sampling rates of 5, 10, 15, 30 and 60 min are
compared. These configurations can be found in multiple works on leak detection in
WDS. For example, while the authors in [44] only consider flow data, the sampling rate in
this case is 15 min with a data transmission rate of 30 min, similar to the authors of [17],
who use a sliding window of 2 h, which is considered a substitute for the transmission
interval. Other works use sampling rates between 1 min [54], 5 min [55–58], 10 min [59],
or 15 min [11,60–66], which in one case were resampled [62]. Choi et al. [67] propose
a Kalman-Filter-based methodology making use of adaptive sampling rates between
1 min and 1 h, which would directly impact sensor device runtime. This is of particular
importance, as adaptive sampling rates might not only improve algorithm performance,
but increase device runtime in the process.

2.3. Operational Constraints for Low-Power Monitoring Devices in WDS

In addition to leak detection performance, minimum device runtime is an important
constraint for water utilities when deploying battery-powered monitoring devices at
WDS-scale. To facilitate the adaptation of near real-time leak detection with pressure-
monitoring devices, operating costs have to match the generally low initial cost of LPWAN
monitoring devices [6]. These devices have to run maintenance-free for long periods of
time. Given an ideal, compact design, battery capacity is limited, which directly translates
to the feasible device configurations, as high sampling and transmission rates limit the
achievable runtimes.

When installed at fire hydrants, a pressure-monitoring device has to be able to operate
reliably for a minimum time span of several months between frost periods. Installation
at house connections and water meters requires a minimum device runtime of several
years with a single battery charge. An example for a minimum runtime requirement in this
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case is the interval for obligatory water meter calibration, which is currently five years in
Austria [68].

For runtime analyses, configurations from literature on leak detection using pressure
data or combinations of pressure, flow and/or demand data are applied. Since the overall
goal is to evaluate the suitability of pressure-monitoring devices for near real-time leak
detection, continuous operation is assumed.

However, as online operation of devices and detection algorithms is in many cases
only emulated in literature, with pre-processed data from static databases, sampling and
especially transmission rates are not always discussed in detail. Thus, in order to provide an
integrated analysis of energy consumption, a broad spectrum of sampling and transmission
rates is considered in this work (see Section 2.7). To assess the achievable device runtime
across LPWAN technologies, runtimes are compared for a compact battery with an available
energy capacity of 3700 mWh, which is currently installed in our pressure-monitoring
devices. Additionally, the above-mentioned minimum runtime of five years is used to
derive battery sizes required to attain this runtime with device configurations for leak
detection from literature.

2.4. Energy-Efficient Pressure-Monitoring Device

For the research presented in this work, an all-purpose, energy-efficient pressure-
monitoring device (EPMD), with an ultra-low-power microcontroller with a GPRS com-
munication module (Figure 1a) was developed. The device is designed to meet the re-
quirements of two use cases. First, it has to be able to operate temporarily at fire hydrants.
Second, its design has to enable long-term installation at house connections in basements,
inspection pits and manholes (Figure 1c).

1 

 

 

 

(a) 

 

(b) 

 

(c) 

 
Figure 1. A microcontroller (MCU) with SIMCom SIM800C (general packet radio service, GPRS) communication module
(a), MCU with Sequans Monarch (NB-IoT) and Semtech SX1272 (long-range wide area network, LoRaWAN and Sigfox)
communication modules (b); schematic representations of energy-efficient pressure-monitoring device (EPMD) prototype
installation at a water meter and at a fire hydrant (c).
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Given the relatively high energy consumption of GPRS compared to other commu-
nication technologies, the EPDM has an internal battery in a water and dust-proof case
with an IP68-rating, but can be combined with any external power source, ranging from a
larger battery to a common power outlet, solar panels or a micro turbine [69]. Additionally,
the layout of the device’s circuitry allows the use of different microcontrollers (MCUs)
for control and data transmission. While the device uses a rapidM2M M3 MCU [70] by
company Microtronics in its GPRS-configuration, it relies on a FiPy MCU [71] by company
Pycom (Figure 1b) for data transmission via NB-IoT, LoRaWAN and Sigfox.

The pressure sensors [72] of the EPMD, which use a linear voltage-signal-conversion
to monitor pressure at a fixed input current, have an IP65-rating and all wetted surfaces are
made from stainless steel, thus suitable for contact with drinking water. The devices are
designed in a way that enables the use of an external antenna, if required. All cable glands
are water and dustproof. Field tests showed that the devices can withstand temperatures
below 0 ◦C, as well as above 30 ◦C, heavy rain, snow and even temporary submersion.
Figure 2a–c shows a period of EPMD operation at a fire hydrant by the end of fall of 2019,
where the device was exposed to all these weather changes and periods of direct insolation,
with temperatures ranging between −5 ◦C and 25 ◦C. In comparison, in Figure 2d–f,
an EPMD is operated at a water meter under more stable conditions in a basement of the
same area in 2020. Pikes in temperature time series indicate data transmission.

Figure 2. Snapshots from long-term field-testing of the EPMD at a fire hydrant (a–c) and a water meter (d–f).

2.5. Energy Consumption Model and Device Runtime Calculation

To assess energy consumption of the EPMD, a simplified energy consumption model
is employed, which was derived from multiple sources on the calculation of GPRS [73],
NB-IoT [22,74,75], LoRaWAN [22,76–78] and Sigfox [22,79] energy consumption.
Simplifications are based on operational experience with the EPMD and recent publications
including analysis and field testing of LPWAN sensors and monitoring devices [13,27].
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The applied model is considered accurate enough for the assessment in this work,
even though device performance and thus energy consumption can depend considerably
on on-site conditions. The aim of using this simplified model is to provide a sufficiently ac-
curate comparison, while ensuring comparability among the communication technologies.

The model assumes that EPMD operation is a continuous sequence of the three basic
operating states deep sleep, monitoring/logging and data transmission, as depicted in
Figure 3a.

Figure 3. Simplified energy consumption model (a) with discrete events of mean power draw and translation to a cumulative
energy consumption over time (b) for EPMD runtime analysis.

For this simplified model, energy consumption of the EPMD and its individual compo-
nents (microcontroller, pressure sensor and GPRS communication module) were monitored
for all operating states in multiple trial runs in the laboratory. Measured energy consump-
tions for the rapidM2M M3 MCU are simplified to mean consumptions for all operating
states, as well as mean durations for the operating states monitoring/logging and data
transmission (Figure 3a). In a similar manner, power consumption and transmission
specifications for the three LPWAN technologies, where no measured data was avail-
able, were derived from the MCU datasheet [71] and findings of similar studies [22,79].
By employing this approach, it was possible to include the specifications for all four com-
munication technologies. This allows for consideration of technology-specific effects for
every operating state, which can vary considerably.

Energy consumption during deep sleep depends primarily on the ability to shut down
elements of the MCU, peripheral electronics and the pressure sensor, when not required,
relying primarily on MCU configuration and energy efficiency. As indicated by its name,
energy consumption of the sensor dominates the operating state monitoring/logging,
with a neglectable consumption for mean calculation, binary encoding and storage of taken
pressure samples. Laboratory tests with the ratiometric pressure sensor showed that two
seconds of sensor operation, including device wake-up, high-frequency monitoring at
several hundred Hertz and device shut-down, are sufficient to generate reliable readings.
This sensor configuration is used for all following analyses.
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Energy consumption for the operating state data transmission depends primarily on
the selected communication technology and module. There are significant differences in
the amounts of time and energy required for establishing a connection to the network,
transmitting the data package, detaching from the network before going back to deep
sleep. All analyses in this work, assume that EPMD operation is timed by an on-board
real-time clock and communication modules of the MCUs are configured for unidirectional
communication with uplink and data transmission, and confirmation downlink only if
required. Additionally, technical and contractual limitations imposed by the respective
communication technologies are observed.

As depicted in Figure 3b, daily energy is calculated according to Equation (1), for a
number of potentially feasible configurations, meaning a combination of sampling and
transmission rates, derived from the introductory literature review on leak detection
in WDS.

Daily energy consumption (Etech
sr,tr) for a communication technology (tech), a sampling

rate (sr) and a transmission rate (tr), is the sum of mean energy consumption and du-
ration for all samples ( ∑

samples
Etech

sr × ttech
sr ) and transmission ( ∑

transmissions
Etech

tr × ttech
tr ) in a

day, plus the energy consumption for the time the monitoring device is operated in deep
sleep (Eds,tech × tds,tech). Based on daily energy consumptions derived with Equation (1),
the EPMD’s runtime (runtimetech,batt) for a fixed battery size (Ecap,batt) is calculated accord-
ing to Equation (2).

Etech
sr,tr = ∑

samples
Etech

sr × ttech
sr + ∑

transmissions
Etech

tr × ttech
tr + Eds,tech × tds,tech (1)

runtimetech,batt =
Ecap,batt

Etech
sr,tr

(2)

To assess possible runtime improvements when using LPWAN technologies, first the
expected device runtime for the battery currently used in the device with an available
energy capacity of 3700 mWh is calculated. Before second, the required energy capacity for
a minimum device runtime requirement of five years is determined with the same equation.

Since efficient data encoding is a key factor for efficient operation of LPWAN tech-
nologies, uniformly encoded payloads are applied for all tested EPMD configurations in
all energy consumption and runtime comparisons.

2.6. Payload Encoding

To compare energy consumption across communication technologies objectively,
standardized payloads were defined, which are made up of uniform, binary encoded
strings, representing a sequence of measurements by the EPMD for different ratios of
sampling and transmission rates. The selected form of data encoding, as shown in Table 1,
follows three basic assumptions. First, the EPMD is configured such that it calculates the
average voltage of all measurements taken at multiple hundred Hertz over two seconds
and provides a single pressure value in bars for each timestamp according to the selected
sampling rate. The measurement generated has three decimal points, allowing to record
pressure changes of 0.001 bars or one centimeter. Second, the resulting measurement is
converted into a binary string (two’s complement) of two bytes.

Missing values (e.g., in case of sensor malfunction) are encoded as a string of zeros.
Resulting binary strings are stored into the internal memory of the EPMD. When the
sampling rate exceeds the transmission rate, measurements are sequentially appended to
the existing binary string without a delimiter character.

Once successfully transmitted, binary payload strings are split in two-byte subsections
and converted back to doubles representing the actual pressure measurements in bar.
Individual measurements are reassigned a timestamp reflecting the time the sample was
taken and stored in a suitable time series database. This uniform encoding allows the
consideration of effects of technological and contractual constraints, as well as fair access
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policies and best practice guidelines for different sampling and transmission rates specific
to the four communication technologies. This is of particular importance, given the strict
package size limitations and number of daily transmissions for Sigfox, or device airtime
limitations when using LoRaWAN.

Table 1. Example for binary encoding of monitored pressure data.

EPMD Configuration Raw
Data in

bar

Representation
for

Encoding

Binary
Encoded

Measurements

Payload
SizeTransmission

Rate
Sampling

Rate Ratio

30 s 30 s 1 6.125 06125 0001011111101101 2 byte

15 min 5 min 3
5.295
5.169
5.225

05295
05169
05225

0001010010101111
0001010000110001
0001010001101001

6 byte

2.7. Feasible EPMD Configurations

To assess the feasibility of the three LPWAN technologies for use in the EPMD and
thereby for near real-time leak detection in WDS, 44 sampling and 44 transmission rates
were selected, ranging from five seconds to four hours. The step width between sampling
and transmission rates is increased as the temporal resolution increases (Table 2).

Table 2. Configurations for sampling and data transmission rates with varying step widths.

Sampling or Transmission Rate Step Width

5 s, 15 s, 30 s, 45 s, 1 min 10 s, 15 s
1 min–5 min 30 s
5 min–30 min 1 min

30 min–1 h 5 min
1 h–4 h 15 min

Among the potentially suitable configurations, those for which the transmission rate
exceeds the sampling rate or those with a non-integral ratio of sampling and transmission
rate were not considered. Derived feasible configurations are marked by blue tiles in Figure
4a, while the corresponding payload size per transmission, based on the above-mentioned
encoding, is represented in the tiles in Figure 4b.

Figure 4. Feasible EPMD configurations (a) and payload size for a single transmission (b).
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For the EPMD configurations in Figure 4a, the feasibility was assessed individually
for each communication technology, based on constraints of the energy consumption
model, the encoding of the payload and transmission performance of the communication
modules on the MCUs. Further, constraints and technology-specific limitations on payload
or package size [22], as well as hourly device airtime limits or the maximum number of
daily transmissions were considered. Since actual transmission rates may vary based on
the conditions encountered at the installation site (e.g., inadequate network coverage),
data transmission rates based on the values offered in the MCUs data sheets (Table 3)
were assumed.

Table 3. Data transmission rates for the communication modules of the compared MCUs [71,80].

MCU Communication
Module

Communication
Standard

Data Transmission
Rate

rapidM2M M3 SIMCom SIM800C
[80] GPRS 85.6 kbps

FiPy [71]
Sequans Monarch NB-IoT 55 kbps

Semtech SX1272
Sigfox 100 bps

LoRaWAN 1.1 kbps

These transmission rates were not only applied to calculate energy consumption for
data transmission, but to verify whether a configuration violates policy or contractual
limits of LoRaWAN or Sigfox. For LoRaWAN, specifications and limitations for a frequency
of 868 MHz were assumed, as is standard in Austria [81], with a spreading factor SF 7 and
a bandwidth of 250 kHz, leading to a maximum package size of 243 bytes and maximum
application payload of 222 bytes. Consequently, configurations with high sampling and
low transmission rates exceed this payload limitation for a single transmission. In these
instances, a transmission was split into subsets of so-called bursts, a set of sub-transmissions
with the maximum payload, minimizing overall device airtime. Figure 5b contains the
number of bursts comprised by a single transmission.

Figure 5. Transmission bursts (b) required to enable the implementation of configurations (a) with high sampling and low
transmission intervals within the constraints of LoRaWAN.
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For Sigfox, radio configuration RC1 and contractual limits were assumed, as offered
by Austrian Sigfox operator Heliot [82], meaning a maximum payload size of 12 byte
and a maximum number of 140 daily messages (see Figure 6d). For GPRS, transmission
rates below one minute were not considered, as they would require permanent or quasi-
continuous operation of the communication module in transmission state, thus violating
the constraints of the energy consumption model and defying the purpose of low-power
monitoring. For the same reason, transmission intervals under 45 s were disregarded for
NB-IoT. Limitations on data transmission for NB-IoT at a frequency of 200 kHz can be
contractual and specific to cellular network carriers. Nonetheless, the maximum payload
size for a single NB-IoT transmission is limited to 1600 bytes [22], a constraint, which was
considered by splitting respective transmissions into multiple subsequent bursts, similar to
the approach for LoRaWAN.

Figure 6. Feasible configurations for each communication technology (a–d).

Given these assumptions and limitations, the final subset of feasible configurations
was determined individually for GPRS, NB-IoT, LoRaWAN and Sigfox, represented by the
tile colors in Figure 6. With the approach for splitting large transmissions into individual
bursts, all device configurations can be analyzed for LoRaWAN. In contrast, the maximum
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of 140 daily transmissions and payload restrictions reduce the feasible configurations for
Sigfox significantly.

3. Results and Discussion
3.1. EPMD Operating States and Mean Energy Consumption

Figure 7 shows a power-consumption time series for GPRS as monitored with the
EPMD in the laboratory. The time series depicts the power draw during deep sleep,
interrupted with a peak every minute, indicating sensor operation and data logging on
the internal storage of the device. The plateau occurring between seconds 1280 and 1310 is
caused by data transmission. Power supply of the EPMD’s components is controlled by
self-developed circuitry, regulating the voltage required by the sensor and the MCU when
supplied from a battery. Energy losses arising from this circuitry were considered in the
following analysis and results.

Figure 7. Energy-consumption time series for the EPMD with GPRS.

Results from device testing ensure that the pressure sensor provides stable results
when operating the EPMD in state monitoring/logging for a maximum of 2 s. Given the
low energy consumption of the MCUs, consumption for this operating state is solely based
on the pressure sensor, which requires a mean input current of 4 mA and a maximum input
current of 4.2 mA with a stable input voltage of 5 V (Table 4).

Table 4. Energy consumption during deep sleep and monitoring/logging.

Operating State MCU Mean Power Consumption Based On

deep sleep rapidM2M M3 0.75 mW EPMD testing

FiPy 0.1 mW EPMD circuitry testing and
[71]

monitoring/logging rapidM2M M3 20 mW EPMD testing

FiPy 20 mW EPMD circuitry testing with
pressure sensor and [71]

The stable base line between the peaks of Figure 7, which represents the operating state
deep sleep, indicates that constant consumption for this operating state can be assumed.
Based on laboratory testing and data from literature, the mean power consumptions for
deep sleep of Table 4 were determined for the two MCUs.

Since, in contrast to the rapidM2M M3 MCU, laboratory testing of the FiPy MCU was
not yet conducted, a set of definitions was introduced to ensure comparability across com-
munication technologies, while facilitating the use of the simplified energy consumption
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model. These definitions are based on the two MCUs’ documentation, laboratory testing
for GPRS and findings of recent studies investigating power consumption of LPWAN
communication technologies. Accordingly, energy consumption for data transmission was
split into (i) an overhead resulting from the processes of establishing and ending a connec-
tion to the communication network, which is specific to a communication technology and
constant, regardless of data transmission rate, and (ii) the actual data transmission process,
which depends on package size and transmission rate. Thus, the actual transmission
process varies by technology and device configuration.

EPMD tests show peak power consumptions of up to 1200 mW during data transmis-
sion via GPRS, as depicted between second 1280 and second 1310 in Figure 7. However,
mean power consumption varies during this operating state due to fluctuations in the dura-
tion the device requires to establish a connection to the network. To account for this effect,
a mean overhead of 26.5 s and a corresponding mean current during data transmission of
141 mA were derived for GPRS transmissions.

For NB-IoT, with the exception of a data transmission rate of 55 kbps, no energy
consumption information is provided in the documentation of the FiPy MCU. Consequently,
data and findings from [22], albeit for a different MCU and network service provider,
were used as guide values for this technology. By using values and characteristics from
a data transmission time series in this work, a rounded up overhead of 18 s and a mean
current of 47 mA were assumed for the following analysis. In contrast to [22], configurable
periods, during which the communication module would listen for downlink messages
were not considered in our analysis.

As findings in [79] and [22] indicate, Sigfox power consumption for a single, unidirec-
tional data transmission can vary, depending on the selected MCU and communication
module. Given the dominant role of the actual data transmission for Sigfox energy con-
sumption in both works, no overhead was assumed for transmissions with this technology.

Similar definitions were made for LoRaWAN. For transmissions with this technology,
a Class A end-device with a mean supply current of 28 mA and a transmission power
of 13 dBm [71] was assumed. Further, ideal conditions were presumed, during which
the MCU only consumes deep sleep power of 0.1 mW while waiting for transmission
acknowledgement by the gateway, which is received within the first transmission win-
dow [79]. Results in [78] and [22] show potentially significant variations in LoRaWAN
energy consumption. These variations stem from the energy-efficiency of the MCU or
the configuration of the communication module. Since they are specific to each use case,
no overhead for LoRaWAN transmissions was selected. Nonetheless, depending on the em-
ployed communication module, the required reliability and range of transmissions, as well
as the number of gateways or monitoring devices, necessary adaptations of LoRaWAN
parameters might require incorporation of significant overheads, which can considerably
increase energy consumption [76].

The resulting equations for calculating transmission times of all four communication
technologies, measured power consumption values, as well as those derived from literature,
were combined in Table 5.

Table 5. Assumptions for power consumption during data transmission.

Communication
Standard Transmission Time Mean Power

Consumption Based On

GPRS 26.5 s overhead + package size/86.5 kbps 521.7 mW EPMD testing, [80]

NB-IoT 18 s overhead + package size/55 kbps 173.9 mW EPMD circuitry testing,
[22,71]

Sigfox package size/100 bps 155.4 mW EPMD circuitry testing,
[22,71,79]

LoRaWAN package size/1.1 kbps 103.6 mW EPMD circuitry testing,
[22,71,76,78]
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While accounting for losses caused by the design of the device, all power draws and
respective energy consumptions for the MCUs were calculated with a supply voltage of
3.7 V as provided by the battery, which, if required, can be further regulated by the circuitry
of the EPMD.

3.2. Daily Energy Consumption

Based on the introduced definitions for deep sleep, monitoring/logging and data trans-
mission from the previous section, daily energy consumption for the four communication
technologies was calculated according to Equation (1).

As expected, results in Figure 8 point out the high energy demand of GPRS when
compared to the three LPWAN technologies. GPRS energy consumption is almost three
times as high as the daily demand of NB-IoT. Daily energy consumption of LoRaWAN and
Sigfox is a decimal power lower than for NB-IoT. Nonetheless, the limitations of Sigfox
become apparent in this figure, as no transmission rates below 10 min or larger package
sizes are possible due to contractual limitations. However, even when considering these
limitations, these results for daily energy consumption indicate that by using LPWAN
communication technologies, improvements for EPMD device runtime between 20 and
30 times can be achieved.

Figure 8. Daily energy consumption for feasible EPMD configurations (a–d).
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3.3. EPMD Runtime Comparison

Based on daily energy consumptions from the previous section, Equation (2) was used
to calculate and assess possible EPMD runtimes when using LPWAN technologies instead
of GPRS. For this analysis, a battery with an available energy capacity of 3700 mWh was
assumed, as such a model is currently installed in the pressure-monitoring device.

Results in Figure 9 show that device runtime can be significantly improved when swap-
ping GPRS for LPWAN communication. While the small battery limits EPMD runtimes
with the GPRS-module to around three months under ideal on-site operating conditions,
which, as filed tests showed, can be diminished to several weeks, without a battery change
or an external power source, all other technologies offer runtimes exceeding one year.
Nonetheless, runtimes of two years can only be achieved with sampling rates exceeding
15 minutes and data transmission rates over one hour for LoRaWAN and Sigfox. In com-
parison, with NB-IoT, even when reduction sampling and transmission rates, devices can
barely exceed runtimes of one year with the currently used battery. Interestingly, the hori-
zontal color gradients in Figure 9 show the influence of transmission energy consumption
for GPRS and NB-IoT, where longer runtimes require a transmission rate beyond one hour.
In contrast, the vertical color gradient for LoRaWAN and Sigfox indicates that power con-
sumption for monitoring and data logging on the MCU drives overall energy consumption.

Figure 9. Expected EPMD runtime with a 3700 mWh battery (a–d).
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In order to determine which energy capacity is required to operate the EPMD at water
meters for a minimum period of five years, which is the current mandatory interval for
water meter calibration or replacement in Austria, this runtime requirement and daily
energy consumptions were combined via Equation (2). The results of this calculation are
represented in Figure 10.

Figure 10. Expected battery capacity for five years of maintenance-free EPMD runtime (a–d).

This analysis clearly indicates that long-term operation of a GPRS module in the
EPMD without an external power source is not feasible for long-term operation (e.g.,
for five years at a water meter). Even low sampling and transmission rates would require
a sizeable battery or an external power source, like a solar panel, or some form energy
harvesting, like a micro turbine. The required energy for NB-IoT is considerably smaller,
and less than a third of GPRS’ requirements for sampling and transmission rates around
one minute, which would be an interesting configuration for near real-time leak detection
in WDS. While such configurations are not possible for Sigfox, LoRaWAN has the potential
to implement leak detection with high-frequency measurements and a compact battery.
For both, Sigfox and LoRaWAN, the required energy capacity for a device runtime of five
years is an order of magnitude smaller than for NB-IoT.
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LoRaWAN can meet the five-year runtime requirement with the highest sampling and
transmissions rates of this analysis, while retaining a batter capacity, which is smaller than
the one required by GPRS for a four-hour sampling and transmission rate.

Consequently, a common sampling rate of five minutes and a transmission rate of
15 minutes for leak detection can be realized with relatively small batteries for LoRaWAN
and Sigfox, thereby ensuring a compact EPMD design, while enabling flexible deployment
(e.g., installation in confined spaces like inspection pits), without increasing maintenance
requirements for battery changes.

3.4. Implications for WDS Monitoring and Near Real-Time Leak Detection

As the results of this work indicate, EPMD-runtime gains derived from applying
LPWAN communication technologies instead of GPRS can be considerable. In accordance
with the findings of [1] or [22], the potential of LPWAN technologies for reliable, energy-
efficient data transmission, extending device runtimes, without having to rely on external
power sources or frequent battery changes, is considerable. Even though calculations with
the introduced energy-consumption model are based on certain simplifications and assume
optimal operating conditions, it is reasonable to infer that the EPMD will be able to sustain
sampling and transmission rates between five and 30 min, commonly used in literature on
leak detection in WDS [51–53] with LPWAN data transmission. LoRaWAN in particular
has the potential to meet the defined five-year runtime requirement without sacrificing the
device’s compact design with a small internal battery.

Nonetheless, LPWAN transmission performance can be adversely affected during
deployment in WDS under real-world conditions, diminishing potential runtime increases
and the spectrum of feasible sampling and transmission rates.

In addition to regional variations of NB-IoT, Sigfox or LoRaWAN coverage, inadequate
quality of service, local interference from building stock or vegetation, as well as effects of
ambient conditions (e.g., variations in temperature) might lead to an increase in energy
consumption or prohibit reliable operation. To that effect, numerous publications [29,38,39]
discuss the specific limits of the compared technologies. Further, results in [13] or [27]
confirm the influence of on-site conditions on transmission performance. Such effects,
like higher energy consumption during periods of low temperature (e.g., see Figure 2c)
and data losses at locations where transmission was impaired by cast iron covers, were re-
peatedly observed during EPMD field-testing.

Moreover, national contractual and technological constraints for device configura-
tions, for NB-IoT and Sigfox, as well as for LoRaWAN, which have not been considered
in detail in the presented analysis, can severely reduce achievable transmission rates
and device runtimes in real-time WDS monitoring. MCU selection can influence energy
consumption across all operating states, while potentially necessary adjustments to de-
vice configurations, for example, to accomplish long-distance transmissions, can reduce
transmission performance.

Thus, all the above-mentioned aspects have to be considered, when selecting the most
suitable LPWAN technology, since this selection does not only determine the achievable
data quality for leak detection and required battery capacity. It also influences the initial
cost of monitoring devices and communication infrastructures [4,6], as well as labor costs
for device maintenance (e.g., battery changes) and operating costs for data transmission for
cellular technologies or Sigfox.

Nonetheless, even when considering potential adverse effects, the results of this
work show the enormous potential of NB-IoT, Sigfox and LoRaWAN for maintenance-free,
long-term pressure monitoring of WDS in near real-time. Moreover, by facilitating fast
MCU changes, the EPMD’s modular design allows instant transitions between GPRS and
LPWAN communication, allowing configurations tailored to specific monitoring tasks.

While the presented analysis focused on instances where the utility does not operate its
own communication infrastructure, flexible middleware solutions, like the one developed
by Alvisi et al. [27], introducing a standardized framework for simple integration of
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different cellular and LPWAN technologies, can help to optimize pressure-monitoring
networks for near real-time leak detection in WDS.

In addition to performance and cost, a key aspect to consider when implementing
LPWAN sensor networks in critical infrastructures like WDS are cyber risks. While IoT sen-
sor networks driven by LPWAN communication technologies introduce new possibilities
for intrusion detection in industrial control systems (ICS) of water utilities, new treats and
attack vectors arise with their implementation. Respective risks are likely to increase as
LPWAN technologies see wider application in WDS monitoring and control. To mitigate
risks while making use of the potential of these technologies, security gaps have to be
addressed [40], guidelines have to be developed and awareness among ICS operators in
the water sector has to be raised.

4. Conclusions and Outlook

LPWAN communication technologies offer new opportunities for long-term,
maintenance-free operation of pressure-monitoring devices for leak detection in water dis-
tribution systems (WDS). In this work, the potential of such technologies as alternatives for
data transmission in a self-developed, energy-efficient pressure-monitoring device (EPMD)
was assessed. A device, which is designed to operate microcontrollers with either a GPRS
or a combined NB-IoT, Sigfox and LoRaWAN communication module. An integrated
assessment was provided, considering technological and contractual limitations of the
four communication standards, as well as operational requirements for large-scale sensor
networks in WDS, like easy and flexible installation, a compact design and long-term oper-
ation without an external power source. Paired with a literature review on leak detection
and the algorithms and datasets used in these works, a simplified energy consumption
model was used to calculate energy consumption and device runtimes with a compact
battery. Further, the required battery capacities for a minimum device runtime of five years,
as required for EPMD operation at water meters in Austria, was determined.

While the results of this work confirm findings from other research, showing the
unique capabilities of LPWAN technologies for energy-efficient long-distance data trans-
missions, extensive field testing is required to quantify the impact of site-specific constraints,
e.g., the availability and quality of service of LPWAN networks, as well as the impact
of building stock on EPMD performance. Since these constraints are expected to have
an impact on device runtime, as well as sampling and transmission rates, which can be
achieved and reliably sustained, such analyses are not only considered to have merit, but to
be necessary to determine the actual improvements LPWAN data transmission can provide
for near real-time leak detection in WDS.

Nonetheless, LPWAN communication modules allow water utilities to design and
configure pressure-monitoring devices, tailored to their specific monitoring requirements.
Even when keeping drawbacks due to sub-optimal operating conditions in mind, the pre-
sented findings indicate that LPWAN technologies enable device runtimes of multiple
years for the compact EPMD, significantly reducing efforts for device maintenance without
diminishing detection performance. While this is true for sampling and transmission
rates currently used in leak detection, further research has to determine improvements
for near real-time monitoring of WDS, as LPWAN data transmission enables the efficient
collection and transmission of hydraulic data in even higher spatiotemporal resolution.
However, given the potential of e.g., artificial neural network architectures for accurate
and fast anomaly detection with high volumes of noisy and partially faulty sensor data,
devices with LPWAN capabilities can be expected to advance real-time WDS monitoring
on a larger scale, well beyond leak detection.
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